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Quantifying the Structure of Free Association Networks Across the Life Span
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We investigate how the mental lexicon changes over the life span using free association data from over
8,000 individuals, ranging from 10 to 84 years of age, with more than 400 cue words per age group. Using
network analysis, with words as nodes and edges defined by the strength of shared associations, we find
that associative networks evolve in a nonlinear (U-shaped) fashion over the life span. During early life,
the network converges and becomes increasingly structured, with reductions in average path length,
entropy, clustering coefficient, and small world index. Into late life, the pattern reverses but shows clear
differences from early life. The pattern is independent of the increasing number of word types produced
per cue across the life span, consistent with a network encoding an increasing number of relations
between words as individuals age. Lifetime variability is dominantly driven by associative change in the
least well-connected words.
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Across the life span, humans are exposed to an ever-changing
stream of language and associative information. Hart and Risley
(1995) propose that by the time children are 4 years old they have
heard between 10 and 50 million words, which further increases over
the lifetime as individuals learn to read and engage in more fluent
conversation. This extensive exposure to language allows us to infer
meaning from word co-occurrence, which is the basis for many
investigations into our use and understanding of words (Hills, 2013;
Landauer & Dumais, 1997; Stefanowitsch & Gries, 2003).

One implication of increasing language exposure is the potential
for a change in lexical relations (i.e., associations) across the life span.
This potential change has been used to explain lifelong developmental
changes, including language learning (Hills, Maouene, Maouene,
Sheya, & Smith, 2009b) and age-related memory decline (Borge-
Holthoefer & Arenas, 2010; Ramscar, Hendrix, Shaoul, Milin, &
Baayen, 2014). However, thus far, no study has recorded associative
change across the life span from early to late life.

There are many open questions relevant to associative change
over the life span. How stable are associative representations? In

what ways do associative relationships change? And which words
are likely to change most? These questions have been difficult to
answer in the past because data rich enough to detect changes in
associations across the life span has not been available. Many
studies, including those mentioned, have used the well-established
University of South Florida free association norms—largely col-
lected among university students (Nelson, McEvoy, & Schreiber,
2004). These have had a huge impact on psychological and cog-
nitive science. However, at least in practice, these require the
implicit assumption of a static lifelong representation—a one-size-
fits-all-ages account of lexical representation.

In the present study, we investigate lifelong changes in the
mental lexicon using a large-scale cross-sectional study with word
associations collected from over 8,000 individuals between 10 and
84 years old. Before we describe our approach to investigating this
data, we first briefly review the literature on lifelong associative
change in the mental lexicon.

Associative Change Across the Life Span

One of the more stable findings associated with aging is that
vocabulary increases across the life span, well into old age (Light,
1992). Recent evidence involving over 400,000 Dutch participants
in a lexical-decision task shows that between the ages of 12 and 80
years, vocabulary increases from 26,000 words to almost 42,000
words (Brysbaert, Warriner, & Kuperman, 2014). There is grow-
ing evidence that the relationships between words also changes
over the life span, beginning as early as the second year of life.
Children as young as 18 months exhibit associative priming effects
(Arias-Trejo & Plunkett, 2013). Other studies have found changes
in the consensus among response types across individuals (i.e., the
number of unique associations elicited for a cue); comparing the
associations between primary and secondary school, for example,
shows an increase in the frequency of the most popular responses
with age (Palermo, 1964; Shapiro, 1964). This is followed by
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stability in midlife and—based on fairly small samples relative to
the present study—mixed evidence for possible increases in sta-
bility or heterogeneity in late life (Dörken, 1956; Hirsh & Tree,
2001; Lovelace & Cooley, 1982; Riegel & Birren, 1965; Tresselt
& Mayzner, 1964). Up to early adulthood, the reduction in re-
sponse types is consistent with overlearning associations related to
the natural mastery of language skills (Anglin, Miller, & Wake-
field, 1993; Maratsos, 2005). What is happening in late life re-
mains to be seen. The results suggest two possible alternatives: a
plateauing of associative development reached in midlife or, alter-
natively, an inverted U-shaped pattern reflecting a reversal in
language coherence into late life.

One way to investigate this change involves network analysis.
Network analysis provides a flexible means for investigating the
large-scale structure of the lexicon, representing words as nodes
and relations between words as edges (e.g., Baronchelli, Ferrer-i-
Cancho, Pastor-Satorras, Chater, & Christiansen, 2013; De Deyne
& Storms, 2008; Vitevitch, Chan, & Goldstein, 2014). One of the
advantages of network analysis is that it allows researchers to
study phenomena at scales that range from individual words (i.e.,
nodes) to the entire lexicon (i.e., the network). Network analyses
have been widely used to study the large scale structures of
associative networks (De Deyne, Navarro, & Storms, 2013; De
Deyne & Storms, 2008; Steyvers & Tenenbaum, 2005), the for-
mation of categories in toddlers (Hills, Maouene, Maouene, Sheya,
& Smith, 2009a), and the trajectories of network development
during early life (Bilson, Yoshida, Tran, Woods, & Hills, 2015;
Hills et al., 2009b).

Network analysis has also provided evidence for changes across
the life span. A study by Zortea, Menegola, Villavicencio, and de
Salles (2014) compared the associative networks of teenage chil-
dren (8–12 years), adults (17–45 years), and older adults (60–87
years). In this study, 57 individuals from each age group generated
three associative responses per person to each word in a list of 87
cue words. This work connected nodes if more than one participant
responded to a cue word, generating unweighted and undirected
networks. Results showed an increase in network degree over the
life span, along with an increase in clustering coefficient. The
present study extends this previous work by collecting data from
more than 8,000 individuals with more than 400 cues, and over a
much more fine-grained age progression. We also use weighted
and directed network analyses when possible, allowing us to

provide a detailed picture of associative network development
across the life span. Our analyses also include a detailed investi-
gation of the global structural changes as well as changes associ-
ated with individual words.

The Current Study

Our aim here is to characterize the word- and structure-level
changes in the associative lexicon in sufficient detail to help
understand the directionality and time scale of associative change.
In particular, we are interested in understanding to what extent
there may be distinct stages in associative development and how
the connectivity of words change over the course of development.
We also examine the shape of this change across the life span.
Among other things, this should directly inform our understanding
of age-related differences in language related tasks (e.g., Hills,
Mata, Wilke, & Samanez-Larkin, 2013; Ramscar et al., 2014).

Here we describe a basic word association task in which a
cross-sectional sample of participants respond to a short list of
word cues with the first words that come to mind. Next, we outline
(a) a traditional word-level approach to study how word meaning
consensus changes over the life span, and (b) a network-level
analysis, which aims to explore structural changes in terms of
global connectivity.

Method

Participants

We collected data from nine age groups, ranging from the fourth
year of primary school (9-10 years old) to persons older than 68
years. For each group a total of 16,800 responses were collected to
420 words. Table 1 provides basic statistics for our participants
and their responses after excluding unknown or missing responses
(hence, the numbers in R1, R2, and R3 are somewhat lower than
16,800). A number of criteria were used to decide on the inclusion
of a participant. First, we only considered individuals who indi-
cated that they knew at least 30% of the cues and provided at least
25% of secondary and tertiary responses (each participant was
asked to provide three responses to each cue word). These criteria
were chosen to avoid excluding too many younger participants
who might not know all the cues from a particular list or were not

Table 1
Summary Statistics for Participants and Free Association Responses

Age group Average age # Participants R1 R2 R3 Total responses
Unique

responses
Unique/total responses

ratio

9–10 9.2 490 14,453 12,393 9,598 36,444 6,441 .177
11–12 10.5 466 15,227 13,728 11,364 40,319 6,904 .171
13–14 13.5 502 15,982 14,600 12,043 42,625 7,970 .187
17–19 18.3 1,081 16,709 16,364 15,557 48,630 8,663 .178
28–32 31.0 1,136 16,769 16,623 16,221 49,613 8,947 .180
38–42 41.0 1,152 16,759 16,624 16,243 49,626 9,501 .191
48–52 51.0 1,223 16,789 16,645 16,254 49,688 10,280 .207
58–62 61.0 1,279 16,777 16,665 16,364 49,806 11,144 .224
68� 71.9 1,222 16,787 16,595 16,126 49,508 12,538 .253

Note. Details for the different age groups, showing their average age; number of participants; numbers of primary (R1), secondary (R2), and tertiary (R3)
responses; number of total responses; as well as the number of unique responses (vocabulary size) and their ratio (type/token ratio).
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sufficiently motivated to complete the entire list of cues. Next, as
some of the developmental data was collected as part of an
ongoing study, we tried to match the number of males and females
for each cue in each age group and obtain the same number of
responses for each cue word (40 primary, secondary, and tertiary
responses) by randomly selecting a subset of participants meeting
these criteria. For each age group, there were approximately an
equal number of males as females, except for the 18-year-old
participants who had, on average, 60% of responses from females.
Education level was available for a subset of participants. When
this information was available, it was used to exclude adult (age
groups 30 to 68�) participants who did not finish high-school (see
Appendix for education-based analysis).

Each response was converted to lowercase letters and checked
against a list of common spelling mistakes. Different word forms
were then normalized to match the word forms in the cue list (e.g.,
the response apples becomes apple). Nonalphanumeric characters
and particles were removed (“a dog” becomes “dog”), and re-
sponses like “is red” were changed to “red.” For responses that
contained extra information between brackets, such as “play (the-
ater),” only the part outside the brackets was retained. In a small
number of cases, more than three responses were given. Only the
first three responses were entered into the data. The total number
of responses that were retained after these steps and the number of
unique responses are shown in Table 1 for each of the age groups.

The age resolution for the younger participants reflects antici-
pated changes in childhood and early adulthood, whereas the
remainder of the participants’ ages was separated by an average of
10 years. The participants were drawn from a large and ongoing
online study currently involving over 120,000 persons, described
in De Deyne et al. (2013). In this study, participants volunteered
for a short online word association task. For the current study,
participants that matched our criteria for age were detected and
presented with different stimuli. This procedure was feasible for all
but the youngest participants. In order to gain responses from
younger age groups as well, additional participants were recruited
from the fourth, fifth, sixth, and eighth grades by recruiting them
at primary and high schools in Flanders, Belgium. Though this
represents a difference in recruitment, it was felt that this recruit-
ment strategy would produce a better random sample than impos-
ing a similar recruitment strategy across ages.

Stimuli

The stimuli were 420 Dutch words selected from the list of cues
present in the adult word association norms (8,974 words) that
were completed at the start of the study in 2009 and reported in De
Deyne et al. (2013). The list of cues was designed to be a repre-
sentative sample over common words, composed of 216 nouns,
102 adjectives, and 102 verbs. These were randomly selected from
words with known age-of-acquisition and imageability ratings (see
De Deyne & Storms, 2008) in order to compile a list of cues
containing concrete and abstract words acquired at different ages.

Procedure

We used the continued word association task from De Deyne et
al. (2013): Each participant was asked to provide three associations
for each of a short list of cues. To reduce possible chaining, the

instructions stressed the fact that responses should only be given to
the cue word and should not be based on the previous responses.
The number of cues varied from 15 to 42. This was adapted to the
place of recruitment, with participants who performed the task at
home responding to fewer cues and those performing the task at
school doing more. This difference is made apparent in column
three of Table 1. From 17 onward, all participants performed the
task online. Because not all of the youngest participants were able
to use a computer keyboard, a pen-and-paper procedure was used
in the primary schools and at certain high schools in which
computer facilities were unavailable. The instructions were similar
in all age groups, except that one or two examples were provided
by the experimenter for the classrooms with the youngest children.
The final data set consisted of 120 responses per cue (40 for each
of the primary, secondary, and tertiary responses) from each age
group. Words that elicited less than 25% of the required responses
for any age group were not further analyzed. This procedure
removed 16 words from the set of cues.

Word-Level Analysis

The goal of the word-level analysis was to investigate how the
heterogeneity in responses changes as a function of age. This
allows us to investigate possible changes in consensus across
individuals by comparing response entropy of each cue for each
age group. This also allows us to consider the similarity between
consecutive age groups by comparing similarities in their distri-
butions over targets using cosine distance.

Entropy. Response counts were aggregated for each cue word
and each age group separately, and then transformed to probabil-
ities. This created nine response probability vectors per cue word,
one for each age group. In order to evaluate the diversity in
responses, taking into account both the number of different re-
sponses and their probabilities, the normalized or metric entropy1

of each cue’s response probability vector was computed as fol-
lows:

H � �
i�1

n p(xi)log(p(xi))
log(n) (1)

where p(xi) represents the proportion of response type xi, and n
represents the total number of response types that were produced
as associations for that cue. This results in values bounded between
0 and 1. This is obtained by normalizing the entropy with the
information length log(n) in Equation 1. Entropy is low for words
for which participants provide the same associates, and high for
words for which participants provide more diverse response asso-
ciations. An example is shown in Figure 1. A word with low
entropy, like lemon (top panel), has most of the probability mass
concentrated in just a few responses. A word with high entropy,
like bank (bottom panel), has its probability mass more equally
distributed across a variety of words.

Cross-year associative change. In order to evaluate the cross-
year change in a word’s associations, we computed the cosine
distance between consecutive age groups’ response probability
vectors as follows:

1 Normalized entropy and metric entropy are used interchangeably in the
literature to denote the same thing.
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�W � log�1 �
�i�1

n
xi,t * xi,t�1

��i�1
n

(xi,t)
2 � ��i�1

n
(xi,t�1)

2� (2)

with xi,t and xi,t�1 representing the proportion of response type xi

for consecutive age groups, t and t � 1, and n representing the
number of different response types elicited by that word in the two
age groups. In order to meet the assumptions of normality for later
statistical analysis, these data were log transformed to reduce
skewness.

Network Analysis

Each of the network measures we use captures increasingly
more global information. This allows us to investigate how words
change over time, taking into account different amounts of infor-
mation about its structure as we go from local structure (degree
centrality) to global structure (the small world index). Before
explaining what each of these measures mean, we first explain how
the network was derived.

One-mode network. Constructing a graph based on cues and
their associates results in a two-mode graph, also known as bipar-
tite graph, with one node type denoting cue words, and a second
node type denoting associations (or target words). To facilitate
graph analysis, the two-mode graph was compressed into a one-
mode (square matrix) graph using the projection method devel-

oped by Newman (2001) and Opsahl (2013). This allows the use
of the entire response repertoire in the network construction; it
retains cue words as nodes, and relations between target words as
directed edges. Two cue words in the projected graph share di-
rected edges if they both have edges to the same target node (i.e.,
if they led to the production of the same associate). The directed
edges are weighted in proportion to their relative production of
shared targets, meaning the edges between words represent the
strength with which they produce shared associates. The new
graph therefore represents the general structure of associations,
with cue words with shared patterns of association linked together.
The Appendix provides a detailed account of this projection
method along with further rationale.

For each of the nine graphs, degree centrality, clustering coef-
ficient, average shortest path, and small world index were com-
puted using generalized methods for weighted directed graphs
(Opsahl, Agneessens, & Skvoretz, 2010; Opsahl & Panzarasa,
2009). We provide a short summary of each of these measures (for
further details about each of these measures, see the Appendix).

In-degree and out-degree. In- and out-degree (kin, kout) rep-
resent the centrality of the nodes in the network on the local level
and distinguishes between ingoing and outgoing edges. Our mea-
sures of in- and out-degree use Opsahl’s method (Opsahl et al.,
2010). This method combines both edge count and edge weight
into an integrated measure, allowing us to evaluate the impact of
the projection across edge count and weights. Our results show the
same qualitative pattern for both degree and node strength (i.e.,
weighted degree) measures. Henceforth, we refer to Opsahl’s
integrated measure as degree.

Clustering coefficient. The clustering coefficient (C) indi-
cates the interconnectivity among the neighbors of a node. Words
whose immediate neighbors are connected among themselves have
higher clustering coefficients than words whose neighbors are not
connected.

Average shortest path. The average shortest path (L) be-
tween a pair of nodes indicates how well a node is connected to
any other node in the network, and therefore measures its role in
the entire network structure. A central word that is well connected
would have a smaller average shortest path length than a more
peripheral word.

Small world index. A small world network has higher relative
clustering coefficient and average shortest path than a random
network of the same size and density (the probability of an edge in
the network). Humphries and Gurney (2008) proposed a small-
world index (SWI) that measures how much a network deviates
from randomness in relation to its small-world properties and this
is the measure we use here.

Statistical Tests

We compare changes in the network measures to null hypothesis
distributions based on simulated Erdös-Renyi random networks.
This was done for each measure and each age group separately. In
addition, in order to assess associative changes, the data for each
measure (clustering coefficient, average shortest path length, and
in-/out-degrees) were submitted to a multivariate analysis of vari-
ance (MANOVA), with age group as the independent variable.
The Bayesian information criterion (BIC; Schwarz, 1978), which
penalizes models according to their complexity, was used to eval-

Figure 1. Illustration of two different response profiles for two cue words
(top: lemon, bottom: bank). Responses (x-axis) are sorted according to their
response proportions (y-axis).
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uate the shape of the curve across the life span. Regression analysis
was used to predict associative changes between consecutive age
groups. A hierarchical regression was used in order to assess the
contribution of different factors to associative change. Additional
details on each of these tests, along with controls for education and
word knowledge, mentioned in the Discussion, can be found in the
Appendix.

Results

In order to describe the lexicon structure and its change, we used
two types of measures: word-level measures (entropy and associa-
tive change) that are computed directly on the raw association data,
and network-level measures (in-/out-degree, clustering coefficient,
average shortest path, and small-world index) that are computed on
the network projection.

Entropy has a U-shaped Structure Across the
Life Span

The results for changes in the entropy of associations are shown
in Figure 2. The U-shaped pattern for normalized entropy reveals
that associations tend to become more predictable as individuals
age from childhood up until Age 30. After Age 30, the pattern
reverses, with older individuals producing increasingly dissimilar
responses with age. These results indicate that words differ in the
entropy of their response associations between age groups (results
of a one-way ANOVA: F[8, 3605] � 17.42, MSE � .002, �2 �
.037, p � .001). Permutation tests confirm this is not simply a
result of changes in density (p � .001 for each age group).

To investigate the nonlinear pattern in Figure 2, we calculated
the BIC for linear and various polynomial models listed in Table
2. As shown, the optimal model for entropy (H) was a cubic model,
confirming the nonlinear U-shaped pattern visible in Figure 2.

Network Measures Have a U-Shaped Structure Across
the Life Span

Figure 3 presents the network structure for a representative
sample of ages across the life span. The networks visually present
a gradual nonlinear change in structure across the life span. This is
evident in the number of isolates shown in the hemisphere around
the larger central component. It is also apparent in the number of
interconnections in the central component, which is sparsest in
early and late life. In what follows, we present the network
statistics that support this visual progression.

A multivariate analysis of variance for the four network-level
measures (MANOVA) revealed that the network structure indeed
changes across life (Wilk’s � � .747, F[32, 13285] � 34.114, p �
.001). Figure 4 presents the results for each of the network’s
measures over the life span. For the in- and out-degree, we find
that the cue words start with relatively few in and out links to other
words, followed by a dramatic increase into midlife, and then a
drop in late life (Figure 4a and 4b, respectively). This is supported
by one-way ANOVAs for both the in- and out-degree (kin: F[8,
3605] � 34.93, MSE � 75.87, �2 � .072, p � .001; kout: F[8,
3605] � 28.27, MSE � 89.02, �2 � .059, p � .001), confirming
these measures differ between the age groups. For the average
shortest path (Figure 4c), cue words start with relatively long
paths, followed by shorter paths in midlife, and then a lengthening
toward old age, F(8, 3605) � 116.77, MSE � .077, �2 � .206, p �
.001. This decrease and later increase in the average shortest path
indicates that the words move toward more densely associative
patterns of connectivity in midlife, but become more distant in
their associations later in life.

The clustering coefficient (Figure 4d) shows a decrease through-
out life, with a possible increase in later life, F(8, 3605) � 21.91,
MSE � .004, �2 � .046, p � .001. The large decrease indicates
that the immediate environment of the words becomes less clus-
tered over development, that is, word neighbors become less
connected among themselves. All of the network results are further
supported by permutation tests, indicating these patterns are not
driven by the underlying constraints inherent in the network den-
sity (p � .001 for each measure at each age group).

The average shortest path and in- and out-degree clearly con-
form to a U-shape pattern throughout life, as confirmed by the
nonlinear polynomial fits (see Table 2). This U-shape pattern is in
contrast to the near monotonic decrease in clustering coefficient.
Finally, the small-world index in Figure 5 shows a similar
U-shaped pattern, with small world indices greatest in early and
late life.

Figure 2. Average entropy of words associations across age groups. Bars
represent standard error of the mean. The dashed gray line represents the
cubic polynomial fit that was found to be the best-fitting polynomial model
(see Table 2).

Table 2
Bayesian Information Criterion Scores for Fits to Five Measures

Measure Linear Quadratic Cubic 4th degree

C �87.36 �92.67 �95.83 �116.90
L �34.23 �42.89 �49.83 �56.09
kin 18.73 11.42 5.77 4.30
kout 18.49 11.21 5.73 4.21
H �82.07 �92.10 �98.40 �96.93

Note. The best-fitting model is marked in bold.
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Cross-Year Associative Change Is Driven by Words at
the Periphery

To understand which words are changing the most across the
life span, we ran a multiple regression predicting cross-year asso-
ciative change using the network measures. Table 3 shows for each
pair of consecutive age bins that the network-level measures are all
significant predictors of cross-year change (p � .001). Notably,
words that have lower clustering coefficients, higher average path
length to other nodes, and higher in-degree and lower out-degree
are the words most likely to change from one year to the next.
Because in-degree and out-degree are on the same scale (and well
correlated), we can see that lower out-degree has the strongest
effect. Collectively, these measures suggest that words that are

least well connected to other nodes are the words that change the
most from one year to the next.

Table 4 shows that entropy becomes the most important predic-
tor when entered into the regression alongside the network statis-
tics. The positive coefficient is consistent with the results we
observe for the network statistics. Words with more weak associ-
ates, that have the least predictable associations, show greater
change in associations over the life span.

Discussion

The present work makes a number of contributions to under-
standing how associative patterns change across the life span and
what factors influence this change at the level of the individual

10 18 30 40 50 60 70

Figure 3. Free association networks across the life span. These networks were produced by setting a threshold
of 5 for each directed edge. Isolates and small components are combined in the crescents around the outer
perimeter. The giant component is centered in each image. See the online article for the color version of this
figure.

Figure 4. Network analysis measures across the life span for (a) in-degree, (b) out-degree, (c) average shortest
path, and (d) clustering coefficient. Bars represent standard error of the mean. Dashed gray lines represent the
best-fitting polynomial models from Table 2.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

6 DUBOSSARSKY, DE DEYNE, AND HILLS



word. Our results demonstrate a complex pattern of associative
change, one that is reflected by a rapid increase in associative
consistency during the formative years of language acquisition (up
to early adult life)—as indicated by a reduction in entropy and
average shortest path length. This is also indicated by an increase
in in-and out-degree because the number of edges between nodes
increases as the associative responses become more shared across
cues. In late life, all measures reverse direction. Older ages showed
increasing average path length, smaller in- and out-degree, and
increasing entropy. The collective pattern indicates that the asso-
ciative networks begin rather sparse, with increasing numbers of
density toward midlife, followed by an increasing sparseness as
individuals move into old age. The data suggests a U-shaped
pattern of associative development, in line with previous work
(Zortea et al., 2014).

More specifically, however, our results show that late adult life
is not merely the inverse of early life. In late life, words do not
revert to the same structure found in early life, as indicated by
comparing early and late life clustering coefficients. This is also
reflected in the small-world index, showing that late life networks
are not the same small worlds observed in early life. This reflects
a strength of the network approach, as this difference is not clear
from the entropy-level analysis alone.

Broadly, we can characterize this fairly continuous developmen-
tal trajectory into three stages: (a) a preadult formative stage, (b) a
midlife plateau, and (c) a late-life expansion. The network con-
tracts into an ordered midlife stage, that then loses coherence into

late life. This is a simplification, of course, as the demarcations of
these stages follow different patterns for each of our measures. The
in- and out-degree peak at Age 30 (Figure 4). whereas the clus-
tering coefficient is lowest at Age 60.

The difference in inflection points for the U-shaped patterns
may reflect complex developmental interactions between struc-
tural change, such as vocabulary learning, and cognitive control.
These have different characteristic dynamics across the life span
(Salthouse, 2009). Past research has often confounded the inde-
pendent roles of cognitive structures and the cognitive control
processes that access those structures (Jones, Hills, & Todd,
2015)—they are not the same and both are likely to contribute to
age-related changes in cognition. Several recent studies have dem-
onstrated how changes in cognitive control processes can lead to
different patterns of retrieval in both memory search and problem
solving (Hills et al., 2013; Hills & Pachur, 2012; Hills, Todd, &
Goldstone, 2010). Alternatively, numerous studies have shown
that word knowledge is acquired throughout adulthood and is a
language-learning capacity preserved into old age (e.g., Brysbaert
et al., 2014). In part, this follows naturally from the Zipfian nature
of language: Many words are rare—encountering and learning
them requires extended exposure to language (cf. Landauer &
Dumais, 1997). The result is that associations are likely to reflect
changing control processes and a gradual accumulation of lexical
knowledge across the lifetime, with possible decay in old age.

Life span research is often subject to criticisms regarding po-
tential cohort differences. Older individuals may have different
associates for words like computer and tablet not because of
age-related effects in cognition, but because these words had
different meanings 70 years ago than they do now. To investigate
this, we used a chronological dictionary of Dutch (van der Sijs,
2001) to remove 36 words that were either introduced in Dutch
before 1930 or missing from this dictionary. Excluding these
words did not affect our results in any way.

Different age groups may also differ in their levels of education.
Unfortunately, we do not have education data on all our partici-
pants. However, for those for which we do have this data, con-
trolling for education levels provided results nearly identical to
those reported.

Finally, it might be that there are systematic differences between
the different age groups because the young participants were
recruited differently (through parents’ consent in schools) com-
pared with the older participants. This interpretation is unlikely.
The differences within the young participants for all measures
were extreme, indicating that our recruitment method did not yield
a homogenous group. As a more conservative test, we also con-
sidered evidence based only on the age groups recruited on a

Figure 5. The small-world index across the life span.

Table 3
Beta Coefficients for the Four Network-Level Measures in a Multiple Regression

Measures 10–11 11–14 14–18 18–30 30–40 40–50 50–60 60–70

C �.116� �.148� �.135� �.119� �.103� �.148� �.093� �.118�

L .175� .251� .151� .201� .153� .219� .087� .100�

kin .140� .145� .103� .142� .164� .142� .130� .111�

kout �.368� �.213� �.292� �.157� �.193� �.132� �.243� �.202�

R2 .511 .385 .408 .324 .322 .381 .334 .300

� p � .001.
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voluntary basis (18- to 68� year-olds). For all analyses, the same
qualitative results were obtained. A variety of additional analyses
showed that the nature and magnitude of the effects are quite
robust against cohort differences (see Appendix for further de-
tails). Though more costly and time consuming, longitudinal data
would of course be ideal.

Notwithstanding the obvious caveats, our results are quite prom-
ising with respect to the predictive utility of associative norms
during different stages of development. In particular, they offer an
inroad for understanding the relative stability of word meanings
over time. The prominent use of the University of South Florida
free association norms (Nelson et al., 2004) in cognitive modeling
work has been extremely productive (e.g., Griffiths, Steyvers, &
Firl, 2007; Hills et al., 2009b). Our results suggest that age-
appropriate norms may further enhance this productivity.

Our results also offer insight into word-level factors that influ-
ence associative change across the life span. Words with more
heterogeneous connections (as measured by entropy) were the
most likely to change their associative structure over the life span;
the more diverse the response profile of a word, the more likely it
was to show an age-related change in its associations. In our
results, the pattern is one in which words that are less well
connected become more well connected into midlife, and then
reverse this pattern in old age. More poetically, the lexicon appears
to breathe—with an inhalation and ordering peaking in midlife,
followed by an exhalation and relaxing of order into late life.

What determines a word’s capacity to change are the associa-
tions it has already acquired. This is referred to as entrenchment,
following Stefanowitsch and Gries (2003), meaning the degree to
which the formation and activation of word associations is routin-
ized and automated in the mental lexicon. This correlates with the
frequency of occurrence with associations (Langacker, 1987;
Schmid, 2010). Importantly, recent results by Baayen, Tomaschek,
Gahl, and Ramscar (in press) showed that it is more difficult to
learn new associations for well-entrenched words relative to less-
entrenched words, as evaluated by their lexical entropy. Our re-
sults are consistent with this interpretation.

Finally, we note that like previously existing association norms,
our norms are aggregated across individuals and may therefore not
reflect the lexical representations of any single individual. Infer-
ences from aggregated association norms are generally the rule in
cognitive psychology and they have been highly successful at
predicting behavior (e.g., Griffiths et al., 2007; Hills et al., 2009b).
Nonetheless, corroborating inferences about individual change are
naturally limited by the difficulty of acquiring longitudinal data
from individuals. Although it might be impossible to track the

lifetime development of the lexicon of an individual comparable
with what we have reported here (covering more than 60 years), a
longitudinal study of a more modest scale would be a natural next
step.
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Appendix

Projecting the Two-Mode Association Network Onto a One-Mode Network

We transformed our two-mode graph of cues and associations
into a weighted directed graph based on common associations
shared between cue words. In the one-mode projection, nodes
represent cue words, but the edges no longer represent the asso-
ciations between the words (two nodes are not tied together be-
cause one is a direct associate of the other). Instead, the edge
weights are defined asymmetrically as the count of associates from
word i to the associates shared with word j. This is normalized by
the relative distinctiveness of the shared associates by dividing the
number of times these associations are shared over all the cue
words. More formally:

wij � �
i�1

P wi,p

Np � 1

where wij is an edge’s weight in the one-mode graph directed from
node i to node j. P is the number of shared associations between
cue words i and j. wi,p is the number of times cue i produced p as
an associate. Np is the number of cue words that produced p. Cue
words’ idiosyncratic responses were removed prior to projection.

To provide some intuition for this measure, consider the cue
words fish and bird, which led to the production of similar asso-
ciative targets, pet and food. If no other cue words produced pet
but many other cue words produced food, then pet will make a
larger contribution to the projected edge weight than food, as it is
a more distinct association. A threshold of wij � 1 was used to
ensure that very weak edges were removed from the graph.2 The
projection method results in a directed graph, in which nodes are
cue words, and edges convey information about their similarity as
measured through their shared associates.

Note that the intention of the projection is not to represent a
cognitive lexical representation, but rather to capture the structural
properties of the more complex bipartite free association network
in a way that allows us to quantify structural properties of all of the
data as it changes over the life span. We feel this is preferable to
representations based only on cue–cue associations and undirected
networks, which we can confirm show the same qualitative pat-
terns across the life span as presented here.

In- and Out-Degree

In order to preserve as much information on the nodes’ connec-
tions as possible, we used the Opsahl’s method (Opsahl et al.,
2010). This allowed us to vary the influence of the counts of the
number of connections and their weights, as follows:

kin⁄out(i) � ki
(1��) � wi

� � �ki � �wi

Our results proved to be insensitive to particular values of �.
The results we report use � � .5, equally weighting the contribu-

tions of degree and strength for each node. We keep the traditional
degree k notation, but use this weighted variant throughout the
text.

Clustering Coefficient

We use a version of the clustering coefficient described for
weighted networks (Barrat, Barthélemy, Pastor-Satorras, & Vespig-
nani, 2004), where wij is the weight between nodes i and j, si is the
sum of the weighted edges going out from node i, ki is the number
of neighbors of node i, and j and h represent all neighbors of node
i. This measure is then defined as follows:

ci � 1
si(ki � 1)�j,h

wij � wih

2

This measure computes coherence based on the interconnectedness
of neighboring nodes, and does so by accounting for the weights of
local edges to the target node. The normalization using s and k
confines ci to range between 0 and 1. It measures how much of the
weights node i projects to its neighbors remain in the local neigh-
borhood among connections between its neighbors, and how much
is lost because of neighbors that lack such connectivity.

Average Shortest Path

The shortest path, L, between two nodes is defined as the path
that travels the shortest distance over the edges between the nodes.
In Figure A1, an edge with a weight of 2, as a result of our
projection, implies a path twice as short compared to an edge with
a weight of 1. Therefore, the shortest path between A and C is the
indirect path through B.

In order to transform the weights to distances, the edges’
weights were normalized by dividing by the average weight of the
network, and then inverted using the method from Opsahl et al.
(2010). In the example (right), the direct path from A to C has a
length of 2, and the indirect path has a length of 1.67.

2 The value of the cutoff can be varied without influencing the results.

(Appendix continues)

Figure A1. Transforming the network edges from weights (left) to dis-
tances (right).
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Small-World Index

Humphries and Gurney (2008) proposed a small-world index
(SWI) that measures how much a network deviates from random-
ness by taking the ratio of the normalized clustering coefficient
and the normalized average path length. The normalization is
computed by dividing by the average values computed for random
graphs of the same size and density as follows:

SWI � C�
Crand�

⁄ L�
Lrand�

where C= and L= are the average clustering coefficient and average
shortest path, respectively, and C=rand and L=rand are those mea-
sures computed for an Erdös-Renyi random graph with the same
size and density (computed by randomly shuffling edges between
nodes in observed networks).

Permutation Tests

We compare each network statistic against a null hypothesis
derived from randomized versions of the observed word-level or
network-level properties. These allow us to conclude that the
statistical patterns we observe in the data are unlikely to be an
artifact of a random data generation process.

Entropy. For each cue word, the total number of responses
(i.e., tokens), n, and the number of response types, k, that were
produced as its associations were computed from the observed
data. For each cue word, random associations were produced by
sampling uniformly with replacement, n out of k, creating a re-
sponse distribution for that word under a uniform probability
condition. The entropy was then computed for the random distri-
bution of each word according to Equation 1. This was averaged
across words creating the test statistic, 	. This process was re-
peated 10,000 times, creating a null distribution for the random
entropy. The statistical significance, p, of the true average entropy
score was defined as 1 minus the proportion of times it was smaller
than 	 out of the 10,000 repetitions.

Degrees, shortest path, and clustering coefficient. Random
graphs were created by randomly shuffling the weighted edges of
the observed graphs, creating standard Erdös-Rényi graphs with
the same densities. Statistics were then computed for the random
networks in the same way these were computed for the observed
networks. This process was repeated 10,000 times. The statistical
significances, p, for each statistics was defined as 1 minus the
proportion of times each statistic was smaller than its random
counterpart out of the 10,000 repetitions.

Education-Level Analysis

For logistical reasons, education levels were collected for only
the more recent participants that took part in the experiment: a total
of 407, 396, 452, 390, and 829 participants for the age groups of
30, 40, 50, 60, and 70. Within this partial data, a large portion of

participants had a master’s degree or higher (more than 4 years of
University in the Belgian system). The percentages were 62% (30
years old), 51% (40 years old), 34% (50 years old), 28% (60 years
old), 42% (�68 year olds). All the remaining participants had
finished some form of tertiary education.

We controlled for possible contributions of between-groups
differences in education levels by computing our BIC analysis for
each of the five measures after controlling for education by using
a vector projection method. We found similar nonlinear effects
previously reported (see Table A1):

We repeated our analysis of variance for the six age groups
between 18 and 68 after controlling for the effects of educational
differences, with similar results as reported in the main text:
entropy (F[5, 2418] � 25.62, p � .001), kin (F[5, 2418] � 12.54,
p � .001), kout (F[5, 2418] � 11.01, p � .001), L (F[5, 2418] �
35.1, p � .001), and C (F[5, 2418] � 3.74, p � .01).

Conservative Removal of Diachronically
Suspicious Words

This list of words was removed from analysis because their first
appearance in Dutch was after 1930 (van der Sijs, 2001). This
allowed us to control for words that may have entered our older
participant’s lexicons later in life. The removal of these words had
no influence on the statistical pattern of our results.

aanraden - to recommend, bemind - loved, bikini - bikini,
bloemen - flowers, CD - CD, concentratie - concentration, eeuwig -
eternal, grappig - funny, gunstig - beneficial, horen - to hear, inzet -
effort, keukengerief - kitchen utensils, kleding - clothing, metro -
metro, muis - mouse, muziekinstrument - musical instrument,
nadenken - to think, nakomen - to honor, nuttig - useful, ongewoon -
unusual, opletten - to pay attention, sappig - juicy, schattig - cute,
shoppen - to shop, snoep - candy, speels - playful, stank - stench,
verdriet - sadness, vergissen - to mistake, verkiezen - to prefer,
vriendelijk - friendly, vriendschap - friendship, waarheid - truth,
wonde - wound, ziekenhuis - hospital, zielig - pathetic.
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Table A1
BIC After Controlling for Education

Polynomial degree Linear Quadratic Cubic 4th degree

C �93.70 �95.91 �95.83 �107.70
L �38.69 �47.19 �52.56 �61.09
kin 15.01 7.81 2.84 .53
kout 14.76 7.62 2.84 .48
H �83.11 �93.14 �98.93 �97.42

Note. BIC � Bayesian information criterion.
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