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The shared features that characterize the noun categories that young children learn first
are a formative basis of the human category system. To investigate the potential categorical
information contained in the features of early-learned nouns, we examine the graph-the-
oretic properties of noun–feature networks. The networks are built from the overlap of
words normatively acquired by children prior to 2½ years of age and perceptual and con-
ceptual (functional) features acquired from adult feature generation norms. The resulting
networks have small-world structure, indicative of a high degree of feature overlap in local
clusters. However, perceptual features – due to their abundance and redundancy – gener-
ate networks more robust to feature omissions, while conceptual features are more dis-
criminating and, per feature, offer more categorical information than perceptual features.
Using a network specific cluster identification algorithm (the clique percolation method)
we also show that shared features among these early-learned nouns create higher-order
groupings common to adult taxonomic designations. Again, perceptual and conceptual fea-
tures play distinct roles among different categories, typically with perceptual features
being more inclusive and conceptual features being more exclusive of category member-
ships. The results offer new and testable hypotheses about the role of shared features in
human category knowledge.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Theories about categories are often about shared fea-
tures and how lower-order categories can be organized
into higher-order categories by their overlapping feature
distributions (McRae, Cree, Westmacott, & De Sa, 1999;
Rogers & McClelland, 2004; Rosch, Mervis, Gray, Johnson,
& Boyes-Braem, 1976). Although the relevance of shared
features to category formation is generally well accepted,
there are theoretical disputes about whether shared fea-
tures in and of themselves are sufficient to form meaning-
ful categories and also as to whether some kinds of
features are more important than others (Ahn, Kalish,
Medin, & Gelman, 1995; De Renzi & Lucchelli, 1994;
. All rights reserved.

.
s).
Komatsu, 1992). With respect to the question of superordi-
nate category formation, the developmental literature has
been particularly concerned with so-called perceptual ver-
sus conceptual features (Booth & Waxman, 2002; Gelman
& Bloom, 2000; Keil, 1979, 1989; Kemler Nelson, Russell,
Duke, & Jones, 2000; Madole & Oakes, 1999; Mandler &
McDonough, 1996; Nelson & Ware, 2002; Quinn & Eimas,
1996; Smith, Jones, & Landau, 1996). This paper takes a
first look at the shared-feature structure of categories com-
monly known to children younger than 3 years of age,
using a graph-theoretic approach to understand how
shared features in general, and perceptual and conceptual
features in particular, may contribute to early category
knowledge.

In the literature on children’s categories, ‘‘perceptual
features” refer to the perceivable and fixed properties of
an individual thing (e.g., ‘‘has wheels”). In contrast,
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‘‘conceptual features” concern relations (also perceivable)
that do not so much characterize an individual thing as
its role in some event (e.g., ‘‘used for transportation”).
One controversy concerns whether perceptual features
are the developmentally earlier source of children’s cate-
gory organizations (with conceptual features emerging la-
ter) or whether more relational and conceptual features
organize categories from the start. This debate is also re-
lated to proposals that conceptual features are privileged
in superordinate category formation (Carey, 1985; Gelman,
1990; Mandler, 1992a, 1992b) and in licensing causal
inferences about different kinds (Keil, 1994; Waxman &
Markow, 1995; Younger & Cohen, 1990).

There is considerable evidence on both sides, including
studies showing that infants and young children readily
learn about correlated perceptual features (e.g., Mareschal,
Quinn, & French, 2002; Quinn & Eimas, 1996; Rakison,
2003, 2005; Younger & Cohen, 1990) and often have diffi-
culty using conceptual features (Carey, 1985; Keil & Bat-
terman, 1984; Landau, Smith, & Jones, 1988; Sheya &
Smith, 2006); while other studies show that relational fea-
tures support category inferences by young children and
often trump perceptual features (e.g., Gelman & Bloom,
2000; Graham & Kilbreath, 2007; Kemler Nelson, Franken-
field, Morris, & Blair, 2000). The details of this debate are
not addressed in this paper. Instead, as Sheya and Smith
(2006) argue, the evidence as a whole clearly indicates that
both kinds of features matter. What is needed, then, is a
better understanding of their inter-related roles in a larger
system of developing categories.

One way to approach this question is by examining the
graph-theoretic properties of early noun–feature networks,
with an eye towards the distinctive contributions made by
different feature types. The idea that semantic knowledge
may be understood as networks of interconnected con-
cepts has been around since the beginning of cognitive sci-
ence (e.g., Quilian, 1967; Rumelhart & Norman, 1973;
Shapiro, 1976). Many have claimed that categorical knowl-
edge can be derived from the structure of these represen-
tations – for example, from the way features are
correlated across nouns (Rosch et al., 1976; Rogers & McC-
lelland, 2004). We take the feature correlation approach to
build network representations, and then use the formal-
isms of graph theory to examine the noun–feature rela-
tionships in terms of the structure they provide.

One example of the graph-theoretic approach is the
evaluation of small-world structure in large-scale semantic
networks (Steyvers & Tenenbaum, 2005; Vitevitch, 2008).
A small-world network is a network in which the local
clustering among nodes is high, despite the fact that the
average distance between any two nodes is not dramati-
cally different from what one would expect from a random
network with the same density – i.e., having the same
number of nodes and links (Dorogotsev & Mendes, 2003).
Small-world structure seems a likely characteristic of fea-
ture-based categories for two reasons: (1) nouns need to
belong to local clusters of items that are conceptually sim-
ilar (i.e., categories), but may be sufficiently discriminated
from sharing connections with random nouns, and (2)
some nouns belong to multiple clusters (e.g., AIRPLANE is
a flying thing and a vehicle). By examining the small-world
structure of early noun networks – as well as other graph-
theoretic properties – we take a quantitative approach to
evaluating the structural contributions of perceptual and
conceptual features in the development of early categories.

Accordingly, this study examines the graph-theoretic
properties of the system of pairwise relations among
early-learned noun categories as indicated by the shared
features that connect them. The nodes represent noun cat-
egories (e.g., dog, telephone, spoon) that are produced be-
tween 16 and 30 months of age (or between 1.5 and
2.5 years); these categories, then, are the formative base
of the human category system. The links are formed when
nouns share features derived from adult feature generation
norms. Thus, the resulting networks are organized accord-
ing to feature correlations.

There are two potential criticisms of this approach.
First, a limitation of using feature norms (well-recognized
in the feature generation literature, Cree & McRae, 2003;
McRae, Cree, Seidenberg, & McNorgan, 2005) is that the
features provided by adults do not usually include crucial
but not easily labeled properties (e.g., ‘‘cow shaped”) nor
properties so essential that they are apparently assumed
and not mentioned (e.g., ‘‘breathes”). In the present case,
this limitation implies that our results should be taken as
a conservative estimate of what children could infer from
the available feature information, as the missing features
seem likely to license more robust categorical inferences.
Second, it is possible that children do not have access to
all the features listed by adults. To address this, we con-
sider only a subset of adult generated features, using only
perceptual and conceptual features that characterize
everyday experiences with these things: dogs have fur,
four legs, and bark; airplanes have wings, fly, and are made
out of metal; apples are sweet, have seeds, and grow on
trees, etc.

For the present analyses, the features were taken from
the feature norms reported by McRae et al. (2005). Cree
and McRae (2003) classified these features into mutually
exclusive kinds. Two of those kinds, in their classification
system, were called (1) perceptual features (e.g., ‘‘has 4
legs”, ‘‘has a tail”), which refer to stable and perceivable
properties of a thing and (2) functional features (e.g., ‘‘used
for racing”, ‘‘used for transportation”), which refer to how a
thing may be used or its role in an event. These two kinds
of features were defined independently of the goals of this
study, but also overlap with the perceptual-conceptual dis-
tinction in the developmental literature. Accordingly, we
use them – as given by Cree and McRae (2003) – to exam-
ine whether so-called perceptual and conceptual features
differ in their contributions to children’s categories, or per-
haps play similar roles (see Yoshida & Smith, 2003).

This is primarily a descriptive study that addresses four
specific questions: (1) Do features provide sufficient struc-
ture to infer common adult taxonomic categorizations
among the nouns children know at 30 months of age? (2)
If so, what are the available categories? (3) How robust
are these categories to more or less stringent criteria for
feature correlations? (4) Do perceptual and conceptual fea-
tures differ in the structure they provide – are some fea-
ture types more robust, more discriminating, or more
redundant?
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2. Methods

2.1. Noun categories

The nouns were selected from the MacArthur-Bates
Communicative Developmental Inventory (Fenson et al.,
1994), Toddler version. This inventory contains the words
that were in at least 50% of children’s productive vocabu-
lary by 30 months in a large normative study. Feature
norm data are available (from McRae et al., 2005) for 130
nouns (a subset of the 312 nouns on the MCDI). These
130 nouns over-represent (with respect to the inventory
as a whole) animals (33 nouns, 25% of the subset versus
15% of whole inventory) and under-represent food (17
nouns, 13% of the subset versus 23% of the whole inven-
tory). Nonetheless, the sample includes a broad array of
nouns across several different superordinate categories.
The complete list of nouns is given in Appendix.

2.2. Features

The features were taken from the feature norms re-
ported by McRae et al. (2005). That study collected features
for 541 nouns from 725 adults with 30 adults providing
features for each noun. The participants were given a noun
and 14 blank spaces to fill with features. They were
prompted to provide physical properties (how it looks,
smells, sounds, etc.), functional properties or uses, internal
properties, and other pertinent facts. We use the brain re-
gion coding presented in Cree and McRae (2003) to classify
the features. This classified the features into 4 perceptual
feature sets representing the 5 senses (e.g., ‘‘is yellow”,
‘‘is soft”), functional (e.g., ‘‘eaten by monkeys”, ‘‘eaten by
peeling”), encyclopedic (e.g., ‘‘grows in tropical climates”)
and taxonomic (e.g., ‘‘a fruit”). We used only features coded
by Cree and McRae as perceptual and functional (concep-
tual in our usage) for three reasons. First, these are the
two kinds of features about which developmental theories
have been concerned. Second, these kinds of features are
likely to be in the everyday experiences of young children.
Third, superordinate names (e.g., ‘‘a fruit”) – the likely real-
world correlate of taxonomic features in Cree and McRae’s
classification (2003) – are not typically known by children
younger than three years of age. Also, our principle focus
concerns the ability of feature correlations among percep-
tual and conceptual features to form a representational ba-
sis for higher-order categories later in life.

2.3. The networks

Nodes represent nouns and edges represent features
that are shared between nouns. To investigate how the
quantity of shared information between nouns influences
categorical structure, we define edges in terms of differing
numbers of shared features. For example, when w (the fea-
ture threshold to define an edge) is 1, nouns are connected
by an edge if they share at least one feature, and when w is
2, nouns are connected by an edge if they share at least 2
features. These different criteria for defining edges (the
connectedness of any two nouns) yield a series of net-
works, which correspond to different requirements for
shared numbers of features, with larger w meaning more
information is required for connectedness.

In total, the analyses are based on 130 nouns. The total
number (tokens) of features associated with these nouns is
1394, with 991 perceptual tokens and 403 functional to-
kens. The number of features per noun ranged between 6
and 17 (M = 11.08, SD = 2.4). The number of unique fea-
tures (types) were 655: 385 perceptual and 270 concep-
tual. Because we only use shared features to detect
categories (as proposed by Rosch et al., 1976), many of
these features do not contribute to the network structure
as they occurred with just one noun, and they are not in-
cluded in the subsequent analyses. One hundred and
ninety-nine unique features were shared by at least 2
nouns. These consisted of 57 conceptual features and 142
perceptual features, consisting of 1 smell feature, 3 sound
features, 13 tactile features, 4 taste features, 13 visual-col-
or features, 97 visual-parts features, and 11 visual-motion
features.

2.4. Small-world analyses

Watts and Strogatz (1998) measured small-world struc-
ture by comparing the average clustering coefficient for the
network being analyzed with that expected for a randomly
connected control network (a network that has the same
number of nodes and edges, but with randomly assigned
connections). The clustering coefficient for each node is
calculated by determining the proportion of a node’s clos-
est neighbors (nodes connected by an edge) that are also
connected to each other by an edge. For example, Fig. 1
demonstrates the clustering coefficient calculated for three
separate nodes. The clustering coefficient of a node, e.g.
c(a), is calculated by determining how many connections
exist between nearest neighbors of that node (node a).
The number of possible connections that can exist between
neighbors is determined by the node’s degree:
sðaÞ ¼ dðaÞ2�dðaÞ

2 . The clustering coefficient is then the frac-
tion of observed connections, kðaÞ, among those possible:
cðaÞ ¼ kðaÞ

sðaÞ.
To get the clustering coefficient for the network as a

whole, the clustering coefficient is averaged for all nodes.
When a network has a high average clustering coefficient
relative to the appropriate random control network, it indi-
cates the existence of subnetworks, or clusters of kinds of
categories. We use this measure to ask how well features
organize early-learned categories into clusters of higher-
order categories and more specifically, the role of percep-
tual and conceptual features in that organization.

2.5. Cluster analyses

To identify categories in a principled way, we sought a
method that does not force items into categories (in con-
trast to hierarchical clustering algorithms). That is, TELE-
PHONE and BOOK may properly not belong to any
‘‘superordinate category” in a young child’s semantic
knowledge, because they do not share enough features
with other nouns (and may not therefore support general-
izations to or from other artifacts). We also wanted to
avoid forcing objects into only one category, because items



Fig. 2. Clique percolation method. On the left, two 3-cliques (circled) are 3-clique connected because they share two neighbors. On the right: a network
showing two clique percolation clusters (black and white), which are composed of 3-clique connected subgroups.

1 We limit our analysis to w between 1 and 4, because above w = 4 more
than half the nodes are isolates in the full network.

Fig. 1. Graphs and clustering coefficients: c(a) = 0/15 = 0, c(b) = 3/15 = 0.2, c(c) = 15/15 = 1.0.
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may well belong to more than one category. For example,
AIRPLANE may belong in a category with flying things,
but it may also share features with other vehicles. Given
these goals, we used the clique percolation method intro-
duced by Palla, Derenyi, Farkas, and Vicsek (2005).

The clique percolation method identifies groups of
nodes that are well connected with one another. It does
this by identifying the presence of cliques, which are sets
of nodes that are all connected with one another (maximal
complete subgraphs). A k-clique represents a set of k nodes
where all k nodes are connected to one another. Two k-cli-
ques are adjacent if they share k � 1 vertices (see Fig. 2).
Two k-cliques are k-clique-connected if they are connected
by a sequence of adjacent k-cliques. A k-clique percolation
cluster is the union of all k-cliques that are k-clique-con-
nected to one another. In the present case, the clique per-
colation method identifies nouns that share sufficient
feature correlations (sensu Rosch et al., 1976; Rogers &
McClelland, 2004), or that are sufficiently connected
through other nodes, to be considered clusters.

For a given value of k, the clique percolation method
identifies all k-clique percolation clusters. Fig. 2 illustrates
the method showing, on the left, how two sets of 3 nodes
(k = 3) are 3-clique connected because they share 2
(k � 1) edges and on the right showing two clique percola-
tion clusters (composed of 3-clique connected subgroups).

The clique percolation method also provides a princi-
pled approach to identifying the cut-off threshold that
yields the most structural information (see Palla, Barabasi,
& Vicsek, 2007). This is accomplished by increasing the va-
lue of k for each cut-off threshold, w, until the second larg-
est component is larger than half the size of the largest
component. For low values of k, most nodes tend to be con-
nected in one large cluster. However, as k is increased, the
percolation clusters separate as the method focuses in on
narrow regions of high connectivity. After adjusting k up-
wards for each cut-off threshold, we then identify the cor-
responding w and k that have the largest number of
percolation clusters, and therefore the most putatively
identifiable categories.

3. Results

The analyses take the following approach: First, we ask
if the full network of features provides sufficient informa-
tion to infer the higher-order categorical structure among
the words that children are likely to know at 30 months
of age, and if so, what are the higher-order categories likely
to represent. Second, we examine the relative contribution
of conceptual and perceptual features, again asking how
structurally informative these features are, and what cate-
gories they give access to.

3.1. The full network

3.1.1. Network statistics and small-world analyses
Fig. 3 shows a series of noun–feature networks, with

nouns connected if they share at least 1, 2, 3, or 4 features
(w = 1, 2, 3, or 4, respectively).1 When w = 1, there is one
densely connected network. When w = 2, 3 and 4, subgraphs
emerge and considerable structure is apparent. Visual
inspection reveals that nouns that refer to animals tend to
be connected to each other, nouns that refer to foods are
connected to each other, and so-forth. The clusters of nouns



Fig. 3. A series of networks of the 130 nouns with each noun connected to another noun if they shared one feature (A), at least 2 features (B), at least 3
features (C), and at least 4 features (D).

T.T. Hills et al. / Cognition 112 (2009) 381–396 385
that share the most correlated features (apparent in the
w = 4 network) are animals, vehicles, foods, clothes, and
household objects. Thus, features alone can represent cate-
gorical information, but increasing the threshold for the
number of features required to produce an edge leads to
more meaningful category subdivisions.

To formalize the existence of subnetworks formed by
shared features, we calculated the average clustering coef-
ficient across all nodes in each network (see Fig. 1). This is
then compared to the mean clustering coefficient for 500
randomly connected networks with the same density
(i.e., number of nodes and edges). The clustering coefficient
(C), average shortest path length (L), and related graph sta-
tistics are reported in Table 1.

Table 1 reveals that the noun–feature network of the
nouns normatively known at 30 months has all the proper-
ties of a small-world network (L � Lrandom;C � Crandom).
This property is also robust to increasing values of the
cut-off threshold, w. As w increases from 1 to 4, the cluster-
ing coefficient increases from 0.55 to 0.6, while the average



Fig. 3 (continued)
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clustering coefficient of the 500 random networks of the
same density goes from 0.29 to 0.02.2 The presence of
2 The difference in the distributions of the ratios of observed to random
clustering coefficients is significantly different between thresholds (data not
shown). However, at present there is no quantitative criteria for stating that
one network is more or less of a small-world than another. Our interpretation
of the data is that the categorical structure is robust to changes in feature
threshold. For example, for the full network, significant structure is observed
out to w = 6, which has a clustering coefficient of 0.27, and categories of food,
vehicles, clothes, animals, and furniture are still visible (data not shown).
small-world structure in the noun–feature network is con-
sistent with the structure observed for other semantic and
real-world networks (Steyvers & Tenenbaum, 2005; Watts
& Strogatz, 1998). With respect to early concept develop-
ment in children, the small-world structure provides a basis
for superordinate categorical structure; it has the following
properties: (1) some items are located in robust clusters
(i.e., even when the number of shared features required for
an edge is high), (2) some items are not found in categorical
clusters (these are the isolates), and (3) because of the nat-



Table 2
Clique percolation clusters from the full network. Superscripts refer to category designations provided in the MCDI (Fenson et al., 1994). The second occurrence
of a taxonomic label is indicated by an acronym taken from the first letters of the label.

BREADFOOD AND DRINK CHEESEFAD LAMBANIMAL

BALLOONTOY BENCHFURNITURE AND ROOM BOWLSMALL HOUSEHOLD ITEM BROOMSHI BRUSHSHI BUCKETSHI COMBSHI CUPSH DISHSHI FORKSHI HOSEOUTSIDE THING PENT

PLATESHI SLEDVEHICLE SPOONSHI TRAYSHI

DOORFAR HAMMERSHI SHOVELOT SPOONSHI

FORKSHI KNIFESHI SCISSORSSHI

BEARA CATA COUCHFAR COWA DEERA DOGA DONKEYA ELEPHANTA FROGA HORSEA LAMBA LIONA MOOSEA MOUSEA PIGA PONYA SHEEPA SQUIRRELA TIGERA

TURTLEA ZEBRAA

BOOTSCLOTHING COATC DRESSC JACKETC JEANSC PANTSC SCARFC SHIRTC SHOESC SLIPPERSC SOCKSC SWEATERC

APPLEFAD BANANAFAD BEANSFAD CAKEFAD CHEESEFAD GRAPEFAD ORANGEFAD, DESCRIPTIVE WORD PEASFAD PICKLEFAD RAISINFAD STRAWBERRYFAD TUNAFAD

BEARA BIRDA CHICKENA, FAD DUCKA GOOSE A OWLA PENGUINA ROOSTERA TURKEYA

BEDFAR CHAIRFAR COUCHFAR PILLOWSHI SLIPPERC SOFAFAR

AIRPLANEV BICYCLEV BUSV CARV HORSEA MOTORCYCLEV TRACTORV TRAINV TRICYCLEV TRUCKV

Table 1
Statistics for the full-network when at least 1, 2, 3 or 4 shared features is required to connect any two noun categories. Columns represent the following: (1)
clustering coefficient; (2) average shortest length to connect every possible pair of nodes within a component (the within component criteria allows for the
nonmonotonic progression in lengths); (3) mean (with standard deviations in parentheses) of the clustering coefficient computed for the random networks; (4)
mean (with standard deviations in parentheses) of the average path length computed for the random networks; (5) density – observed number of edges divided
by possible number of edges; (6) clusters represent the number of unconnected components that contain at least 2 nodes; (7) isolates, the number of nodes that
are not connected to any other node. �Indicates a significant difference (p < 0.001) for the clustering coefficient, from the random population, using a one-
sample t-test.

w Clustering coefficient Average length Random clustering coefficient Random average length Density Clusters Isolates

1 0.55� 1.76 0.29 (0.01) 1.71 (0.01) 0.29 1 0
2 0.54� 2.57 0.10 (0.01) 2.15 (0.03) 0.10 1 6
3 0.58� 4.96 0.04 (0.01) 3.12 (0.09) 0.04 4 20
4 0.60� 3.22 0.02 (0.01) 4.89 (0.38) 0.02 10 47

3 While the clique percolation method will identify clusters in any
network, the absolute values of k and w are relative to the edge information
provided; in the present case they are relative to the information provided
in the adult feature norms.

4 We chose the MCDI designations over those provided by Cree and
McRae (2003), because they were identified independently of the features
produced in the feature generation norms. The MCDI categorizations also
include fewer singletons. However, using the Cree and McRae categories
does not alter our interpretation or the conclusions we draw.
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ure of small-worlds, some items provide cross-overs be-
tween clusters, which keeps the average path length low,
even when all items are connected (w = 1).

The observation of small-world structure offers test-
able predictions. For example, in these networks, three
or fewer features connect relatively many noun categories
but only a few categories are connected by at least 4 fea-
tures. If connectedness in these networks is predictive of
psychological similarity then these more highly intercon-
nected subgraphs (in the w = 4 network) should be ex-
pected to better support generalizations from one basic-
level category to another, compared with subgraphs
formed under lower thresholds (e.g., when w = 3, 2, or
1). Similarly, basic-level categories that are the first to be-
come isolated as w increases (categories such as BOOK
and TELEPHONE) may be the least likely to support such
generalizations.

3.1.2. Cluster analyses
The above analyses based on the clustering coefficient

indicates the existence of subnetworks of local structure.
What are these clusters and how coherent are they? To
identify these, we used the clique percolation method de-
scribed above (Palla et al., 2005). For the noun–feature
network, the k and w values that yield the most clusters
are 3 and 3, respectively. This yields a conservative esti-
mate for category membership, because only nouns with
enough local information to be included in a clique of size
k = 3 will be included in the output. Nouns lacking this
connectedness are not assigned to any cluster. The 10
clusters identified for these values of k and w are listed
in Table 2.3

These clusters represent potential category structure
and are generally consistent with our adult expectations,
at least in terms of what they include. We provide as
superscripts the category designations provided in the
MCDI, which we consider to be reasonable estimates of
how adults would organize these words.4 Comparing these
taxonomic memberships with the percolation clusters finds
significant parallels. Categories that are perfectly consistent
with adult taxonomic categories – in terms of what they in-
clude – are Food and Drink, Vehicles, and Clothing. The cli-
que percolation method using feature overlap identifies
these categories with no errors of inclusion; there is nothing
present that doesn’t belong. It is also interesting that the fea-
ture clusters pick up ad hoc categories (Barsalou, 1983) such
as a category of ITEMS FOR CUTTING, a SOFT-WHITE THINGS
category, and a category of THINGS TO REST AND RELAX.
However, in some cases, category members lie outside our
intuitive taxonomic assignments. For example, COUCH is in
a category with animals, because it ‘‘has four legs”, ‘‘is large”,
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and ‘‘is soft”. COUCH is also an item that is found in more
than one category, as are five other items: LAMB, FORK,
SPOON, BEAR, and HORSE. Most of these are arguably correct
(except BEAR in the birds category), but as we note in the
following section, overgeneralization and errors of inclusion
are but one end of a trade-off between generalization and
specificity.

In sum, the results from the full network demonstrate
the following: First, readily available features among
nouns that children know at 30 months provide sufficient
information to structure these nouns into superordinate
categories, without the use of taxonomic labels. Second,
the structure (shown in Table 1) provided by feature infor-
mation is robust to perturbations in the number of features
required to form a categorical relationship. This indicates
that the necessary small-world structure required to pro-
duce meaningful categories is largely redundant and there-
fore robust to random feature omissions. And third, the
categories that do arise out of feature overlap are to a large
extent exactly those categories adults consider reasonable
when categorizing these nouns a priori. In the following
section we examine each of the two main feature types
to determine how each provides structure in the full
network.

3.2. Perceptual and conceptual feature networks

3.2.1. Network statistics and small-world analyses
To represent the kinds of semantic structural informa-

tion children would have if they used only conceptual or
perceptual relatedness to link categories, we composed
Fig. 4. The perceptual network with w = 2. Grey circles indicate
separate networks of only perceptual or conceptual fea-
tures. Figs. 4 and 5 present the conceptual and perceptual
networks at the thresholds found to reveal the most struc-
ture via the clique percolation method. Table 3 presents
statistics for the series of perceptual and conceptual net-
works for w = 1–4.

As is apparent from Figs. 4 and 5 and Table 3, the per-
ceptual network is far denser than the conceptual network.
On average, a node in the perceptual network at w = 1 is
connected to 27% of the other nodes; the average node at
the same cut-off threshold in the conceptual network is
only connected to 5% of the other nodes. This would sug-
gest that conceptual information is more discriminating
than perceptual information among these early-learned
nouns.

The discriminatory role of conceptual information is
also evident in the number of nouns to which the features
link. The most common conceptual features (in terms of
the number of nouns with which they are associated)
are: ‘‘is edible” (20), ‘‘used for transportation” (11), ‘‘worn
for warmth” (8), ‘‘hunted by people” (6), ‘‘used by children”
(6), and ‘‘used for holding things” (6). The most common
perceptual features are: ‘‘made of metal” (24), ‘‘different
colors” (22), ‘‘has four legs” (22), ‘‘is large” (21), and ‘‘is
small” (21). Note that perceptual features divide the nouns
in to two very large categories: small and large objects
(metal) and small and large living entities (4 legs) where
functional features divide the world into more categories.
Note also that the most common perceptual features are
more promiscuous (appear with more nouns) than the
most common conceptual features. Across all nouns, con-
areas of the larger network that are enlarged for clarity.



Fig. 5. The conceptual network with w = 1. Grey circles indicate areas of the larger network that are enlarged for clarity.

Table 3
Statistics for the perceptual-feature network (up) and the conceptual-feature network (down) when at least 1, 2, 3 or 4 shared features is required to connect
any two noun categories: Columns are as in Table 1. �Indicates a significant difference (p < 0.001) for the clustering coefficient from the random population,
using a one-sample t-test.

w Clustering coefficient Average length Random clustering coefficient Random average length Density Clusters Isolates

Perceptual networks
1 0.54� 1.76 0.27 (0.005) 1.73 (0.005) 0.27 1 0
2 0.54� 2.69 0.08 (0.01) 2.33 (0.03) 0.08 2 10
3 0.62� 5.02 0.03 (0.01) 3.66 (0.16) 0.03 8 31
4 0.62� 2.55 0.01 (0.02) 6.17 (1.55) 0.01 11 69

Conceptual networks
1 0.88� 3.08 0.05 (0.01) 2.80 (0.06) 0.05 7 33
2 0.59� 1.59 0.01 (0.02) 6.31 (1.67) 0.01 14 81
3 0.38 5.02 0.43 (0.49) 1.10 (0.12) 0.00 7 113
4 1.00 1.00 0.94 (0.21) 1.00 (0.06) 0.00 2 126

T.T. Hills et al. / Cognition 112 (2009) 381–396 389
ceptual features share on average 1.54 (SD = 1.64) nouns
and perceptual features share 2.58 (SD = 3.67) nouns. The
results of a Wilcoxon rank sum test show these differences
are significant (W(43245), p < 0.001); per feature, concep-
tual features are associated with fewer nouns than percep-
tual features.

The discriminating nature of conceptual features has
the further consequence that the number of isolates is
much higher for the conceptual network than for the per-
ceptual network. At a cut-off threshold of w = 2, more than
half of the nodes in the conceptual network are uncon-
nected to any other node. At the same cut-off threshold
for the perceptual network, only 10 nodes are isolates.
The greater increase in isolates for the conceptual network
arises for two primary reasons. One is that most animals
have no functional features. The other is that most objects
are used for one main function only. This has the conse-
quence that shared perceptual features tend to be more
redundant than conceptual relationships – perceptual fea-
tures can be removed with less radical structural alteration
of the network. Indeed, edge relationships in the concep-
tual network are predominantly based on a single shared
feature.

When using all perceptual and conceptual features,
both networks have small-world structure. With w ranging
from 1 to 4, the conceptual network clustering coefficients
range from 0.88 to 1. For the same w range, the perceptual
network clustering coefficients range from 0.54 to 0.62.
Using the clustering coefficient as a measure of local struc-
ture, one conceptual feature is apparently as good as or



Fig. 6. The normalized clustering coefficient for each threshold presented
for the various networks. The error bars on the 200 perceptual subnet-
works represent the 95% confidence interval.
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better than 4 perceptual features in creating that structure.
However, at w = 2, the number of isolated nouns in the
conceptual network is 81, but only 10 for the perceptual
network. Thus, while conceptual networks appear to be
more discriminating, they are also more sensitive to the
presence or absence of any given feature. Conceptual fea-
tures appear to trade-off robustness for precision, while
perceptual features are more robust but less precise.

The argument that conceptual features are more dis-
criminating and thus potentially more effective at isolating
categories is further evidenced by the fact that the differ-
ence between the observed clustering coefficients and that
for a random network of similar density is higher for the
conceptual network than for the perceptual network. This
is consistent with what we can visually observe in Figs. 4
and 5: the conceptual network has more local structure
than the perceptual network. However, even the slightest
increase in the cut-off threshold reduces the conceptual
network to a large number of isolates. Meanwhile, the per-
ceptual network maintains small-world structure and in-
volves the majority of the nodes in this structure even if
the requirement for noun-pair relatedness is three or more
perceptual features.

The above analyses reveal that perceptual features (as
provided by adults) are more robust to changes in the
underlying threshold. However, this may be due to there
simply being more perceptual features in the feature gen-
eration norms. To control for this, we created 200 percep-
tual subnetworks, where for each subnetwork we
randomly selected as many perceptual features as there
are conceptual features. Table 4 presents the statistics for
these 200 perceptual subnetworks and shows where they
are significantly different from the matched conceptual
networks at each threshold. The results clearly indicate
that feature-for-feature, perceptual features do far less
work at organizing categorical information. There are more
isolates and fewer clusters for the perceptual subnetworks.

While the clustering coefficient appears higher at w = 3,
this does not control for the number of nodes still con-
nected in the network. To control for this, we computed
the normalized clustering coefficient, which is the cluster-
ing coefficient multiplied by the fraction of nodes that are
not isolates. Fig. 6 presents the normalized clustering coef-
ficient for each threshold value for each of the network
representations. It clearly shows that perceptual features,
when matched to the number of conceptual features, are
significantly less effective at clustering nouns than concep-
tual features. Note also, however, that the normalized clus-
tering coefficient for the full perceptual network is similar
Table 4
Statistics for 200 perceptual subnetworks, composed of randomly selected percep
number of conceptual features produced in the feature norms. Columns are as i
conceptual networks, using a one-sample t-test.

w Clustering coefficient Average length

200 perceptual subnetworks
1 0.52� 2.79�

2 0.42� 2.14�

3 0.59� 1.15�

4 0.98 1.03
to that of the full network, and appears to drive most of the
categorical structure in the full network. Thus, perceptual
information may provide the lion’s share of information
relevant to category inference, but this appears to be due
to their abundance, not because individual perceptual fea-
tures are more informative.

Taken together, these results support the idea as pro-
posed by many (Keil, 1989; Mandler, 1992; Carey, 1985;
Gelman, 1990) but doubted by others (Ahn & Luhman,
2005; Smith, 2005) that perceptual and conceptual fea-
tures contribute differently to category organization. Fur-
ther, there is a clear trade-off here. Perceptual
information, because of its abundance, is more redundant
and can provide more robust information about category
inclusion, but this information is not as discriminating as
conceptual information. A single conceptual relation is suf-
ficient to define all category members that are, for exam-
ple, ‘‘used for transportation.” No single perceptual
feature contains that information.

3.2.2. Cluster analyses
Using the clique percolation method, the conceptual

network provides the most number of clusters (11) when
k = 3 and w = 1; for the perceptual network, the most clus-
ters (9) are separated out when k = 5 and w = 2. This is con-
sistent with the graph-theoretic data in Table 3 showing
that the conceptual network has fewer isolates and greater
local structure at its lowest cut-off threshold, while the
tual features. The number of perceptual features was chosen to match the
n Table 1. �Indicates a significant difference (p < 0.001) from the matched

Density Clusters Isolates

.062� 1.9� 17.3�

.00� 10.12� 90�

.00 2.6� 123.8�

.00 0.27� 129.4�
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perceptual network loses only a few nodes to isolates but
gains substantial local structure – compared with a ran-
dom network of the same density – by increasing w to 2.

A close look at Tables 5 and 6 and the different kinds of
clusters present in the two networks reveals some interest-
ing comparisons. First, there is a difference in cluster size
between the two groups. Clusters in the conceptual net-
work are generally smaller (M = 8.45, Median = 4) than
those in the perceptual network (M = 13, Median = 12).
The conceptual categories also appear to be more conser-
vative – there are fewer odd members in any category.
Using a liberal inclusion method – where an object is in-
cluded in a superordinate category if we can imagine any
argument in favor of its inclusion – we count 3 odd objects
among the conceptual clusters and 9 among the perceptual
clusters (e.g., CRAYON, DOLL, and BRUSH, are in the domi-
nantly vehicle category among the conceptual clusters,
while HOSE and PEN are in the dominantly fruit category
among the perceptual clusters). Using the MCDI category
labels, the only unmixed category among the perceptual
features is vehicles, while conceptual features provide four
unmixed categories, consisting of small household items
(for cleaning), toys (for drawing), animals, and clothes. Fi-
nally, we note the number of items in more than one cat-
egory differs between the two feature types: The
perceptual categories have 11 nouns that are in more than
one category, whereas there are only 4 duplicate nouns in
the conceptual categories. Compared with the 6 duplicate
nouns in the full network, it is again clear that perceptual
Table 5
Clique Percolation Clusters from the Perceptual Network. Superscripts refer to cate
as in Table 2.

BALLT BALLOONT BASKETSHI BENCHFAR BOWLSHI BROOMSHI BRUSHSHI BUCKETSHI C
PENT PLATESHI SCISSORSSHI SHOVELOT SLEDV SPOONSHI TRAYSHI

BEDFAR COUCHFAR LAMBA PAJAMASC PILLOWSHI SLIPPERSC SOFAFAR

BELTC BENCHFAR COATC DRESSC JACKETC JEANSC PANTSC PENT SCARFC SHIRTC SO
APPLEFAD BANANAFAD BEANSFAD GRAPEFAD HOSEOT ORANGEFAD,DW PEASFAD PENT

BREADFAD CHEESEFAD LAMBA NAPKINSHI PILLOWSHI

BELTC BENCHFAR BROOMSHI HOSEOT PENT PENCILT STICKOT

BUSV CARV MOTORCYCLEV TRACTORV TRAINV TRUCKV

AIRPLANEV BIRDA BUTTERFLYA CHICKENA, FAD COWA DUCKA GOOSEA OWLA PEN
BEARA BOXSHI CATA CHAIRFAR CHICKENA, FAD COUCHFAR COWA DEERA DOGA DON

MOUSEA PENGUINA PIGA PONYA RAISINFAD SHEEPA SOFAFAR SQUIRRELA TABL

Table 6
Clique Percolation Clusters from the Conceptual Network. Superscripts refer to cate
as in Table 2.

BASEMENTFAR BOXSHI CLOSETFAR

BROOMSHI BRUSHSHI NAPKINSHI

CRAYONT PENT PENCILT

CUPSH OVENFAR STOVEFAR

ELEPHANT A LIONA TIGERA

BALLT HAMMERSHI ROCKOT STONEOT

BANANAFAD BEANSFAD BEARA BREADFAD CAKEFAD CARROTSFAD CHEESEFAD CHICKE
MOOSEA PEASFAD PICKLEFAD PIGA POTATOFAD RAISINFAD ROOSTERA SHEEPA S

BEDFAR BENCHFAR CHAIRFAR COUCHFAR PILLOWSHI SOFAFAR

BOOTSC COATC DRESSC NECKLACEC PANTSC SCARFC SHIRTC SHOESC SLIPPERSC SO
AIRPLANEV BALLOONT BATHTUBFAR BICYCLEV BOATV BRUSHSHI BUSV CARV CRAY

SLEDV TRAINV TRICYCLEV TRUCKV

BASKETSHI BOTTLESHI BOWLSHI BUCKETSHI DISHSHI FORKSHI JARSHI OVENFAR PLATE
features are more inclusive in determining category mem-
berships, compared with conceptual features.

We warn against blaming these category inclusion er-
rors on the clique percolation algorithm. It can only use
the information it is provided with, and it does quite well
when provided with all features, and in other paradigms
(see Palla et al., 2005). Also, though an individual category
inclusion error may be argued one way or the other, we
feel the weight of the evidence provided above shows that
perceptual features do overgeneralize category boundaries
at the risk of inclusion errors, whereas conceptual features
appear to do just the opposite.

Finally, compared with the full network, both features
types produce categories more representative of ad hoc
categories. For example, to our best approximation, two
of the perceptual clusters represent LONG THIN THINGS
and THINGS THAT CAN FLY, plus there is a large category
of ARTIFACTS held together because they are MADE_OF
common materials like METAL and PLASTIC. Similarly for
conceptual clusters, we find PLACES TO STORE THINGS,
ITEMS FOR CLEANING, ITEMS FOR DRAWING, AND ITEMS
FOR THROWING OR HITTING.

Table 7 provides a summary of the observed differences
between the conceptual and perceptual networks. The con-
ceptual networks typically involve fewer features, they are
less dense, some categories are left out, they are less likely
to put items in more than one category, and they are not
robust to the omission of features. However, individual
categories are well discriminated and are more likely to in-
gory designations provided in the MCDI (Fenson et al., 1994). Acronyms are

OMBSHI CUPSH DISHSHI DOORFAR FORKSHI HAMMERSHI HOSEOT KNIFESHI

CKSC SWEATERC

PICKLEFAD PUMPKINFAD RAISINFAD STRAWBERRYFAD

GUINA ROOSTERA TURKEYA

KEYA ELEPHANTA FROGA GIRAFFEA HORSEA LAMBA LIONA MOOSEA

EFAR TIGERA TURKEYA TURTLEA ZEBRAA

gory designations provided in the MCDI (Fenson et al., 1994). Acronyms are

NA,FAD CORNFAD COWA DEERA ELEPHANTA GOOSEA GRAPEFAD LAMBA

TRAWBERRYFAD TUNAFAD TURKEY A ZEBRAA

CKSC SWEATERC

ONT DOLLT DONKEYA HELICOPTERV HORSEA MOTORCYCLEV PONYA

SHI SPOONSHI TRAYSHI



Table 7
Summary of the observed differences between conceptual and perceptual
networks.

Conceptual features Perceptual features

Number – +
Density – +
Redundancy – +
Connected – +
Overgeneralizing – +
Items in Multiple Categories – +
Discriminating + –
Under generalizing + –
Information per feature + –
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clude items that would be included in that category by
adults. In contrast, the perceptual networks involve more
features, are denser, hold their structure with less feature
information, include most items in a category, are more
likely to put items in more than one category, and are more
likely to make errors of inclusion. In summary, conceptual
categories tend to be smaller (underestimating category
membership) and less sullied by near-members, whereas
perceptual categories are larger and over-estimate cate-
gory membership. These differences suggest that percep-
tual and conceptual features play distinct but possibly
mutually supporting roles in category formation and use.

3.3. Correlations between conceptual and perceptual features

Although there are many differences between the con-
ceptual and perceptual networks, they also – as is apparent
in Table 5 and Table 6 – pick out overlapping, albeit not
identical, higher-order clusters. These, then, are partially-
redundant and correlated forms of category relatedness.
We examined this overlap by considering a subset of 199
features (57 conceptual and 142 perceptual) that are pres-
ent for at least 2 of the 130 nouns. We measured the de-
gree to which these 199 features are associated with
each other, defining association as the shared pattern of
presence and absence across nouns. To compute this, we
chose the Jaccard distance – also known as the asymmetric
Fig. 7. The two-dimensional space derived from classical multidimensional scal
features and the 2’s are the conceptual features. There are several apparent clust
binary distance – because it has the property that features
present for the exact same nouns have a distance of 0 and
features that are never present for the same noun have a
distance of 1. The Jaccard distance for two features, a and
b, takes the following form:

Jða; bÞ ¼ 1� nA\B

nA[B

where A is the set of all nouns sharing the feature a, B is the
set of all nouns sharing the feature b, and n is the number
of items in the set representing either the union or inter-
section of A and B. Classical multidimensional scaling was
then used to transform the pairwise Jaccard distances into
a two-dimensional set of coordinates so that the pattern of
overlap between types of features could be visualized. In
Fig. 7, the number 1 refers to perceptual features and the
number 2 to conceptual features. We also list some of
the specific features to make the apparent overlap more
intuitive.

The figure shows a systematic relationship between
perceptual and conceptual features. For any given concep-
tual feature, one is likely to find several perceptual features
with roughly the same designations. So conceptual fea-
tures and perceptual features share at least some of the
work in the way they divide up the space. Moreover, be-
cause they are related with respect to the overlapping (if
not exactly the same) higher-order categories, they provide
two routes into higher-order categories, perhaps enabling
children to bootstrap knowledge or inferences from one
to another. Consistent with our previous analyses, percep-
tual features show more redundancy than the conceptual
features – perceptual features more densely fill the MDS
space in any given area, while conceptual features tend
to be more evenly dispersed.

4. General discussion

The main contributions of the present analyses are as
follows: (1) Perceptual and conceptual features commonly
associated with nouns known by young children are suffi-
cient to organize those nouns into small-world networks,
ing on the pairwise distance between features. The 1’s are the perceptual
ers of features for each of these a subset of the feature labels are provided.
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capable of representing higher-order categorizations. (2)
These higher-order categorizations represent common
superordinate categories as identified by adults. (3) These
categorizations and the network structure underlying
them are robust to minor changes in the criteria for cate-
gory relations, but the degree of sensitivity to these
changes is dependent on the kinds of feature involved.
(4) Perceptual and conceptual features play different roles
when structuring higher-order categories, with perceptual
features being more abundant, more robust to random
missing features, but less discriminating than conceptual
features. In what follows, we discuss these contributions
with respect to prior research in this area.

4.1. Higher-order categories from shared features

Following Rosch’s (1973, 1975; Rosch et al., 1976) sem-
inal papers and Smith and Medin’s (1981) landmark book,
the standard view of categories has been that while basic-
level categories may be well-organized by overlapping and
probabilistic features, superordinate, categories are not. In-
deed, in the cognitive development literature, the exis-
tence of superordinate categories have been taken as
prima facie evidence in favor of more abstract, more essen-
tialist and theory-like representations of categories over
representations in terms of mere feature distributions
(Mandler, 1992; Gelman, 1990; Horton & Markman,
1980; Keil, 1994). The present results, however, show that
shared features create clusters of categories rather like the
traditional superordinate categories of food, clothing, ani-
mals, and so-forth. Things of the same general kind share
correlated features. As Rosch et al. (1976) observed for ba-
sic-level categories, the world presents co-occurring prop-
erties that naturally group things into different kinds. This
appears to be so for higher-order categories as well.

This conclusion fits the findings of McRae and col-
leagues, whose analyses of the feature distributions across
adult categories also indicate superordinate groupings.
Moreover, that work also shows that feature correlations
predict adults’ performance in a variety of category judg-
ment tasks. The present results extend these findings by
showing that higher-order categories may be derived from
just the perceptual and functional features (without taxo-
nomic or encyclopedic information) that are shared across
a relatively small number of very early-learned basic cate-
gories. Thus, higher-order categories can be found in the
feature correlations present at early stages of category
development. The present results also fit with recent mod-
eling efforts by Rogers and McClelland (2004) who also
showed that feature correlations could generate superordi-
nate categories. Their simulations of the incremental learn-
ing of these feature correlations also predicted observed
developmental trends in a number of category judgment
tasks. The present results go beyond these simulations
(which were based on labeled links between categories
and features that were generated by the theorists them-
selves) by showing that features normatively associated
with the nouns children actually know early do have the
requisite structure. In sum, although overlapping features
may not be enough in and of themselves to explain all of
human category organization, the present results suggest
that co-occurring features may be enough to start category
knowledge off in the right direction.

4.2. Perceptual and conceptual features

Contemporary accounts of categories often distinguish
between perceptual features and conceptual (relational/
functional) features, with conceptual features assumed to
be less probabilistic, more abstract, and the basis of high-
er-level distinctions (e.g., Sloutsky & Fisher, 2004; Gelman
& Koenig, 2003; Keil & Batterman, 1984; see also Holyoak
& Thagard, 1995; Hummel, 2000; Keil, 1989; Murphy &
Medin, 1985). The observed differences between the net-
works built from perceptual versus conceptual features
are consistent with and, indeed, provides a new form of
support for this traditional view. A single shared concep-
tual feature yields well-organized and well-segregated
superordinate groups, at least in terms of what the catego-
ries include. In contrast, the perceptual features yield
messier approximations to these same categories, often
overgeneralizing category memberships. Moreover, in
terms of clustering per feature, conceptual features provide
far more clustering information than perceptual features.

Many have hypothesized that category development
proceeds from a more rough and probabilistic beginning
to a more refined and essentialist mature structure (Gel-
man & Koenig, 2003; Keil & Batterman, 1984). The present
finding that the more numerous and more redundant per-
ceptual features are correlated with conceptual features
across these early-learned categories could be used to sup-
port this view of perceptual features as the imperfect but
critical starting point for superordinate category formation
(Carey, 1985; Keil & Batterman, 1984; Sheya & Smith,
2006; Sloutsky & Fisher, 2004). Similar to Gentner’s more
general view that similarities in the surface properties of
objects help learners discover relational structure (Kotov-
sky & Gentner, 1996), early attention to many overlapping
perceptual properties, for example to redundant properties
probabilistically characteristic of vehicles such as wheels,
and doors, and seats, for example, could help children dis-
cover the more abstract and relational property of provid-
ing transportation.

We suspect that there is some truth to these ideas about
category development. However, the larger framework
may be wrong on two grounds. First, the assumption that
the conceptual network is better than the perceptual net-
work because its superordinate groupings are organized
by a single conceptual feature may miss the cognitive
importance of the full network structure. The full network
has several properties characteristic of many real-world
networks (including molecular, neural, semantic, and so-
cial networks: for a review, Barabasi, 2002; Csermely,
2006; Watts & Strogatz, 1998) that may be advantageous.
For example, degeneracy is a property of many complex
systems (for example, Edelman & Galli, 2001) in which a
function can be accomplished in different ways by differ-
ent components. In the full network, stable clusters of
superordinate category organization emerge from different
kinds of partially-redundant links. This is a form of degen-
eracy in that there is more than one way to form superor-
dinate clusters and individual categories may be connected
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to more than one of these clusters. In general, the value of
degeneracy in a complex system is both increased stability
(more than one way to the same outcome) and increased
flexibility (variable paths). Weak links are also a common
property of real-world networks; these are sparse long-
range links between more densely connected subgroups
and they appear to aid communication in the network
and also enable the network –even one composed of
well-articulated modules – to act as a whole (see Grano-
vetter, 1973; for a review, Csermely, 2006). These proper-
ties of the full network – encompassing the contributions
of both conceptual and perceptual features – seem highly
relevant to some contemporary views of categories – not
as fixed partitions – but as functional relations within a
system of distributed knowledge (Barsalou, 1999; Samuel-
son & Smith, 2000; Tyler, Moss, Durrant-Peatfield, & Levy,
2000). Within such a complex system of connectivity, a
horse can be both an animal and a mode of transportation,
and the ad hoc category of soft white things can be found
and used.

A second potential problem with a framework that seg-
regates or privileges conceptual or relational features is
that the origins of such relational features themselves are
not at all clear (for relevant discussions, see Doumas, Hum-
mel, & Sandhofer, 2008; Yoshida & Smith, 2003). Formally,
any n-place relation may be redefined as a combination of
n � 1 place relations, which suggests that functional fea-
tures such as ‘‘can be worn” might ultimately be under-
stood as composed of clusters of interconnected 1-place
perceptual features (see Yoshida & Smith, 2003, for a dis-
cussion of this idea with respect to animacy features). If
this is so, then conceptual features might be not so much
fundamentally different from perceptual features but in-
stead be themselves dense subnetworks in the larger
graph, subnetworks so dense and useful perhaps that lan-
guage provides labels for the subnetwork as a whole (e.g.,
‘‘can be worn”) and such that adults then spontaneously
offer those labels in feature generation studies. This idea
that the nodes of a network are networks themselves are
common in graph-theoretic analyses of molecular and cel-
lular processes in biology (e.g., Csermely, 2006). Whether
these ideas are appropriate to perceptual and conceptual
features is not clear at present; what is clear, however, is
the perceptual and conceptual features freely offered by
adults in feature generation studies contribute in comple-
mentary ways to the structure of early-learned categories.

4.3. Testable predictions

If the psychological coherence of higher-order groups is
a function of the number of shared features, then the w = 4
full network in Fig. 2 presents some intriguing patterns.
The subgraphs in this network are composed of categories
connected by at least four shared features. By hypothesis,
these groupings of containers, vehicles, animals, food,
clothing and things to sit on are highly coherent for 2-
and-a-half-year-olds. If this category cohesion prediction
is true, then in classification tasks, young children should
form higher-order categories of these high threshold clus-
ters earlier than other clusterings. For example, container
is a better superordinate grouping than tools. Furthermore,
the network offers clear predictions about which basic-le-
vel categories should be incorporated into these higher-or-
der categories. A belt is not well connected to clothing by
redundant shared features; a bathtub is not a good con-
tainer, and a sled is not a good vehicle.

The graph-theoretic approach taken here also makes
predictions about feature generalization. If category cohe-
sion predicts category formation, then it may also predict
feature generalization as a kind of feature momentum pre-
diction: i.e., the probability that two items share one fea-
ture is directly proportional to how many other features
they share. For example, young children might be expected
to generalize some new fact about pants to socks but not to
belts, or some new fact about airplanes to tricycles but not
to sleds; the latter, in both instances, being less well
connected.

In the w = 4 full network (and as indicated by the perco-
lation clusters), four-legged animals constitute the most
densely connected subgraph in the network. As such,
four-legged animals should support the most within-kind
generalizations, a fact that has been documented in several
influential studies of category induction by preschool chil-
dren (see Carey, 1985; Gelman & Markman, 1986). Some
(e.g., Gelman, 1990; Keil, 1994) have attributed children’s
seeming precocity in making inferences about animal cat-
egories to their evolutionary significance and innate con-
ceptual structures. The present results (as do the
simulations of Rogers & McClelland, 2004) offer a poten-
tially different account based on feature correlation:
‘‘four-legged animals” makes a particularly strong group-
ing because there are many features that are correlated
across four-legged animals.

One can also ask more fine-grained developmental
questions about the role of features in category develop-
ment. For example, one hypothesis is that children become
better able to make category inferences because they be-
come better at attending to multiple features, i.e., they
can increase w to fine-tune category memberships. Alter-
natively, with age may come the ability to selective attend
to specific classes of features, e.g., just conceptual features.
Finally, one can also ask how features may contribute to
learning, by investigating how new noun–feature combi-
nations enter the developing network at specific ages
according to the MCDI (e.g., Hills, Maoune, Sheya, Maoune,
& Smith, 2009).

5. Conclusion

The capacity to create categories from feature correla-
tions is a powerful tool for predicting properties about
the world. By taking a subset of nouns that many chil-
dren know at 30 months and combining these with fea-
tures reported to be characteristic of these things, we
were able to construct a network that represents a cogni-
tive hypothesis about how information is structured in
early semantic networks. Analyses of this network re-
vealed that it had small-world structure and that the lo-
cal structure was consistent with categories that are
largely familiar as ad hoc categories of practical utility.
We also found clear differences between conceptual and
perceptual features. The perceptual network, due to the
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HELICOPTER
HORSE
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JAR
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LAMP
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PEN
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ROCK
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SCARF
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SLED
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STONE
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TIGER
TRACTOR
TRAIN
TRAY
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abundance and resulting redundancy of perceptual fea-
tures, maintained local structure under higher thresholds,
where as the conceptual network reduced to isolates as
the degree of overlap between nouns was increased.
Nouns overlapped on several perceptual features but only
on a single or very few conceptual features. The pattern
of overlap for perceptual features was also such that a gi-
ven noun could be closely connected to several clusters
of densely interconnected nouns that are only sparsely
connected to each other. This pattern of overlap allows
perceptual features to support several sets of partitions
or systems of categories. Whereas conceptual features
tend to form isolated collections of densely connected
nouns and thus only support a single set of partitions.
Both feature types are likely to be important to a func-
tioning category system in which the same information
is consistently brought to bear across a variety of con-
texts, and one in which the information, the set of parti-
tions, is sensitive to changes in context – which set of
overlapping perceptual features is relevant could be mod-
ulated by the needs of the current context and relevant
input from the environment.
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Appendix. List of nouns
AIRPLANE
ALLIGATOR
ANT
APPLE
BALL
BALLOON
BANANA
BASEMENT
BASKET
BATHTUB
BEANS
BEAR
BED
BEDROOM
BELT
BENCH
BIKE
BLACKBIRD
BOAT
BOOK
BOOTS
BOTTLE
BOWL
BOX
BREAD
BROOM
BRUSH
BUCKET
BUS
BUTTERFLY

CAKE
CARROTS
CARS
CAT
CHAIR
CHEESE
CHICKEN
CHURCH
CLOCK
CLOSET
COAT
COMB
CORN
COUCH
COW
CRAYON
CUP
DEER
DISH
DOG
DOLL
DONKEY
DOOR
DRESS
DUCK
ELEPHANT
GOLDFISH
FORK
FROG
GIRAFFE

PIG
PILLOW
PLATE
PONY
POTATO

TRUCK
TUNA
TURKEY
TURTLE
ZEBRA
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