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ABSTRACT

The recent development of multivariate imaging techniques, such as the Toponome Imaging System (TIS), has
facilitated the analysis of multiple co-localisation of proteins. This could hold the key to understanding complex
phenomena such as protein-protein interaction in cancer. In this paper, we propose a Bayesian framework for cell-
level network analysis allowing the identification of several protein pairs having significantly higher co-expression
levels in cancerous tissue samples when compared to normal colon tissue. It involves segmenting the DAPI-labeled
image into cells and determining the cell phenotypes according to their protein-protein dependence profile. The
cells are phenotyped using Gaussian Bayesian hierarchical clustering (GBHC) after feature selection is performed.
The phenotypes are then analysed using Difference in Sums of Weighted cO-dependence Profiles (DiSWOP),
which detects differences in the co-expression patterns of protein pairs. We demonstrate that the pairs highlighted
by the proposed framework have high concordance with recent results using a different phenotyping method.
This demonstrates that the results are independent of the clustering method used. In addition, the highlighted
protein pairs are further analysed via protein interaction pathway databases and by considering the localisation
of high protein-protein dependence within individual samples. This suggests that the proposed approach could
identify potentially functional protein complexes active in cancer progression and cell differentiation.

Keywords: Bayesian hierarchical clustering, colon cancer, protein interaction, biomarkers, multi-tag imaging,
TIS.

1. INTRODUCTION

Over the last few years several multivariate imaging techniques have been developed. These include the To-
ponome Imaging System (TIS),1 MxIF,2 Matrix-assisted laser desorption/ionization (MALDI) imaging,3 Raman
microscopy4 and multi-spectral imaging methods.5 TIS is an automated high-throughput technique able to co-
map up to a hundred different proteins or other tag-recognisable bio-molecules in the same pixel on a single tissue
section without damaging it.6 It runs cycles of fluorescence tagging, imaging and soft bleaching in situ. These
techniques present a new challenge for the development of analytical tools that can extract useful, quantitative
information from the large amounts of data obtained.

Previous work using TIS has demonstrated the importance of colocation of proteins rather than abundance on
its own. Despite the spherical and the exploratory cell states of rhabdomyosarcoma cells having identical average
protein profiles, striking differences were found between the two states at the sub-cellular protein cluster level.7

Hence, rearrangement, rather than up- or down-regulation of proteins is (or can be) key to generating new cell
functionalities.6 Furthermore, when comparing different samples, the differences in image intensities could be a
result of differences in the staining or image acquisition processes, rather than due to different protein expression.
Using the protein-protein dependence (PPD) substantially diminishes this problem. While colocation does not
necessarily imply interaction, co-dependence between two proteins is an indication of a possible interaction, which
may be indirect. Therefore, any protein interaction suggested using TIS would need to be further investigated
using other experimental techniques.
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Figure 1. Outline of the method presented.

Kovacheva et al. (2013)8 present a novel measure, DiSWOP, for detecting protein pairs with different degree
of co-localisation in cancerous and normal tissue. Once thoroughly validated, the pairs highlighted could be used
as multiplex biomarkers for colon cancer. By analysing the expression of multiple proteins in relation to each
other, this measure has the potential to improve the low prognostic value of the simple biomarkers currently
used in clinical practice.9,10

The analytical framework presented involves segmenting the DAPI-labeled image into cells and determining
the cell phenotypes according to their protein-protein dependence profile (PPDP). An outline of the methodology
is shown in Figure 1. In the earlier paper, cells are phenotyped using Affinity Propagation (AP)11 clustering.
Here, we present a novel Bayesian framework for phenotyping using Gaussian Bayesian hierarchical clustering
(GBHC)12 and analyse the phenotypes with the DiSWOP measure. Although we expect the DiSWOP scores to
differ slightly, the protein pairs highlighted by the measure should be independent of the phenotyping method
used. We then further verify the significance of the highlighted protein pairs using protein interaction pathways
and by considering differences in localisation of high PPD between cancerous and normal samples.

2. MATERIALS AND METHODS

2.1 Data Acquisition and Pre-processing

The results presented here were obtained by considering a total of 11 samples of colon tissue 6 healthy and 5
cancerous. A library of 12 antibody tags, some of which are known tumour markers or cancer stem cell markers,
were used based on the findings by Bhattacharya et al.13 CD133, CK19, Cyclin A, Muc2, CEA, CD166, CD36,
CD44, CD57, CK20, Cyclin D1 and EpCAM were used in the analysis and a DAPI tag was included to identify
the cell nuclei. Background autofluorescence is digitally subtracted at an early stage and hence any remaining
fluorescence should be true protein expression. Sample images are shown in Figure 2. In each of the stacks, the
images were aligned using the RAMTaB (Robust Alignment of Multi-Tag Bioimages) algorithm.14 This is done
in order to prevent possible noise in the protein interactions that would result from the slight mis-alignment
of the multi-tag images obtained using TIS. Each image stack is then segmented into individual cells so that
analysis is restricted to cellular areas only. This is done using a modified form of the graph cut method15 applied
to a DAPI channel.16 The nuclei segmented are used as a rough approximation of the cells (Figure 3). A total
of 2945 cells were obtained. This is the same data as used in Kovacheva et al.8
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Figure 2. Sample data images. The columns show CD133, Muc2, EpCAM and CEA respectively. The first row shows
images from a healthy sample and the second row shows images from a cancerous sample. The length of the scale bar is
10 µm

Figure 3. Segmentation of the cell nuclei on a part of a colon cancer sample. The outline of each identified nucleus is
shown in green. The length of the scale bar is 10µm.8



2.2 Cell Phenotyping

For each pair of proteins, localised to each individual cell, the maximal information coefficient (MIC)17 is cal-
culated to obtain the protein-protein dependence profile (PPDP) of the cell. This statistic has been used since
it has been shown to capture a wide range of associations, both functional and not, and it gives similar scores
to equally noisy relationships of different types.17 The protein pairs that best discriminate between cancer and
normal samples were selected using the Wilcoxon rank sum test.18 For a protein pair, this was done by calcu-
lating the p-value that the PPD values of the cancer cells and of the normal cells come from distributions with
a different median. Then, out of the 66 protein pairs, the 33 with lowest p-values were selected for clustering
to be performed on. This drastically speeds up performance of the algorithm. Cells with similar phenotype
are expected to have PPDPs with similar nature. In terms of probability, we can hypothesise that different
phenotypes are explained by different probability distribution, and cells with similar phenotype should come
from the same distribution. Cell phenotyping can therefore be achieved through GBHC,12 which models data as
a mixture of probability distributions.

Let the PPDP of the ith cell be denoted by x(i) = (x
(i)
1 , . . . , x
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and Γ(·) denotes a gamma function. This likelihood term indicates how likely it is that cells in Dk have the same
phenotype, and it will be used as an alternative to a distance-based dissimilarity measure, which is normally
used in agglomerative hierarchical clustering methods.

GBHC uses Bayesian model selection to decide which pair of small data sets Dk and Dl is the most probable
to belong to the same distribution, and should be merged together to form a larger data set Dm. This is done
through Bayes rule:

rm =
πmP (Dm|λ0, β0, κ0)

πmP (Dm|λ0, β0, κ0) + (1− πm)P (Dk|λ0, β0, κ0)P (Dl|λ0, β0, κ0)
, (8)

in which P (Dk|λ0, β0, κ0) is the marginal likelihood of a cluster Dk as defined in Equation 2, πm = αΓ(nm)/ρm,
ρm = αΓ(nm)+ρkρl, we set πk = 1, ρk = α for every initial cluster set and α is a concentration parameter related



to the expectation of the number of clusters in the data. As we climb up a hierarchical tree, the probability
that two clusters being merged come from the same distribution gets lower. Using this information, GBHC
does not consider merges with probability less than 0.5 as valid merges. This in turn results in the algorithm
automatically giving the final number of clusters, here found to equal 25.

Since there is no ground truth available for the number and distribution of cell phenotypes in these samples,
evaluating the accuracy of the clustering methods is challenging. Hence, this clustering method was selected
mainly due to its contrasting approach from AP clustering. This allows us best to demonstrate the robustness
of the DiSWOP results.

2.3 Calculating DiSWOP

Once the phenotypes are obtained, the DiSWOP8 measure is calculated on the average PPDPs of the cell
phenotypes. This is done as follows. For each cluster D we obtain a mean PPDP, x̄D = (x̄1, . . . , x̄d̂), where

d̂ = 66 is the total number of protein pairs. Suppose we only want to consider the top N PPD values of the M
most frequent phenotypes in each sample. Let x̂D be the vector with the elements of x̄D (lying in [0, 1]) sorted
in descending order, prD is the probability of phenotype D in sample r, Dα,r is the αth most frequent phenotype
in sample r, and

Xj
D =

{
x̄jD, if x̄jD is one of the first N elements of x̂D

0, otherwise
, (9)

then the DiSWOP value for a protein pair j, wj , is given by
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where ψ and ν are the sets of cancerous and normal samples, respectively. Hence, the measure weights the
dependency score of a protein pair with the phenotype probability in the sample, and sums all occurrences of
the protein pair in all the cancerous samples and of all the normal samples. The two sums are normalised by
the number of samples that they were obtained from. The score for the normal samples is subtracted from the
score for the cancer samples. Subsequently, we obtain a positive score if a pair appears more frequently and with
higher dependency scores in the cancerous samples than in normal samples.

3. RESULTS AND DISCUSSION

The top and bottom 10% of the DiSWOP results are shown in Figure 4. It is encouraging to see that most
of the protein pairs highlighted are the same as the ones found when Affinity Propagation (AP) is used for
phenotyping.8 In particular the CEA and EpCAM protein pair comes out as one of the pairs that is more co-
localised in cancer tissue and CD36 and CD57 as more co-localised in normal tissue. In fact, when we compare
the full two sets of results there is very high agreement as to which pairs have high positive or negative DiSWOP
values. In order to quantitative evaluate the similarity between the networks we calculate distance measures
between the vectors containing the DiSWOP values. The L1 norm between all the edges in the graphs shown is
0.636 and the mean of the relative absolute difference between the edge weights, as defined by

mean

(
|w(1) − w(2)|

max(|w(1)|, |w(2)|)

)
(11)

is found to be 0.683, where w(1) and w(2) are the weights of each of the two graphs shown in Figure 4, respectively.
The later measure can take values between 0 and 2, with 0 meaning that all the edges are the same, 1 meaning
that non of the edges co-occur and 2 showing that all w(1) = −w(2). On the other hand, when all of the edges
(thresholded and non-thresholded) are considered, the L1 norm is 0.89 and the mean of the relative absolute
difference between the edge weights is found to be 0.561. In both cases, the maximum absolute difference between
the edge weights is 0.0624.
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Figure 4. The interaction networks of proteins. Each node represents a protein and each edge colour shows a protein pair
with different level of co-expression in the normal and cancer samples. The range of values in the colour bar has been
slightly extended so that colours between the two figures correspond. Here, a large positive value (shown in red) indicates
that the protein pair is more co-dependent in cancer samples, whereas a large negative value (shown in blue) means that
the protein pair is more active in normal tissue. Only edges with the top and bottom 10% of the DiSWOP values are
shown. Figure (a) shows the results obtained using GBHC after feature selection and figure (b) shows the results found
using AP8

In addition, some of these protein pairs have been experimentally found to interact or to be part of a
pathway involved in colorectal cancer. For example, several studies have established that CEA and EpCAM
interact through the pathway CEA – SOX9 – Claudin7 – EpCAM19–22 (Figure 5), which plays an important role
in determining the morphology of the colon epithelium and promotes colorectal cancer progression.22

Further analysis of the results have been performed using an interactive tool for localisation of high PPD
within the different samples, as shown in Figure 6. It enables the user to consider two protein pairs simultaneously
and see where their PPD is above manually set thresholds. Alternatively, there is the option to see all cells in
the samples coloured corresponding to the dependence between a selected protein pair. In this case, the PPDs
are binned in intervals of size 0.2 and each cell is displayed in a corresponding colour. A screenshot of the
tool has been shown in Figure 6, which shows the cells expressing high PPD (above 0.7) of the two pairs CEA
and EpCAM, and CD36 and CD57. We can easily see that normal and cancerous samples show differences
in the distribution of high PPD for these two protein pairs. This tool confirms the heterogeneity of protein
co-localisation both of neighbouring cells within the same tissue specimen and between different cancerous and
normal samples. It could help identify complex biomarkers for cancer stem cells or cancer prognosis.

4. CONCLUSIONS

We have presented a Bayesian framework for phenotyping cells according to their protein-protein dependence
profiles. Analysing the results using the DiSWOP measure highlights protein pairs that could play an impor-
tant role in carcinogenesis. Our results are in concordance with the results of recently published study, which
suggests that the DiSWOP measure could help unravel the protein interaction networks involved in cancer. The
highlighted protein pairs have been further analysed via protein interaction pathway databases and by consid-
ering the localisation of high protein-protein dependence within individual samples. Such analysis could aid our
understanding of interactions between neighbouring cells and of the heterogeneity within and between cancer
samples.



Figure 5. CEA and EpCAM interaction pathway.19 Sox 9 has been found to activate expression of CEA20 and mediate
repression of Claudin-7 by Tcf-4.21 Claudin-7 and EpCAM have been found to co-express in colon tissue and possibly be
part of a complex.22

Figure 6. Screenshot of the interactive tool for high PPD localisation. The tool displays the location of PPD above a
threshold of 0.7 between CEA and EpCAM (in red) and between CD57 and CD36 (in green). Overlap between the two
is shown in yellow and other nucleic regions are shown in blue. Colours are overlaid on top of a phase image. The two
samples on the left are cancerous and the two on the right are healthy tissue. Below each sample is information about
the fraction of cells above the threshold, the minimum and maximum PPD between each of the two protein pairs.
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Friedenberger, M., Bode, M., and Dress, A. W., “Analyzing proteome topology and function by automated
multidimensional fluorescence microscopy,” Nature biotechnology 24(10), 1270–1278 (2006).

[2] Gerdes, M. J., Sevinsky, C. J., Sood, A., Adak, S., Bello, M. O., Bordwell, A., Can, A., Corwin, A., Dinn,
S., Filkins, R. J., et al., “Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer
tissue,” Proceedings of the National Academy of Sciences 110(29), 11982–11987 (2013).

[3] Cornett, D. S., Reyzer, M. L., Chaurand, P., and Caprioli, R. M., “Maldi imaging mass spectrometry:
molecular snapshots of biochemical systems,” Nature Methods 4(10), 828–833 (2007).

[4] van Manen, H.-J., Kraan, Y. M., Roos, D., and Otto, C., “Single-cell raman and fluorescence microscopy
reveal the association of lipid bodies with phagosomes in leukocytes,” Proceedings of the National Academy
of Sciences of the United States of America 102(29), 10159–10164 (2005).

[5] Barash, E., Dinn, S., Sevinsky, C., and Ginty, F., “Multiplexed analysis of proteins in tissue using multi-
spectral fluorescence imaging,” Medical Imaging, IEEE Transactions on 29(8), 1457–1462 (2010).

[6] Schubert, W., Gieseler, A., Krusche, A., Serocka, P., and Hillert, R., “Next-generation biomarkers based on
100-parameter functional super-resolution microscopy tis,” New biotechnology 29(5), 599–610 (2012).

[7] Schubert, W., “On the origin of cell functions encoded in the toponome,” Journal of biotechnology 149(4),
252–259 (2010).

[8] Kovacheva, V. N., Khan, A. M., Khan, M., Epstein, D., and Rajpoot, N. M., “Diswop: A novel measure for
cell-level protein network analysis in localised proteomics image data,” Bioinformatics , btt676 (2013).

[9] Vucic, E. A., Thu, K. L., Robison, K., Rybaczyk, L. A., Chari, R., Alvarez, C. E., and Lam, W. L.,
“Translating cancer omics to improved outcomes,” Genome research 22(2), 188–195 (2012).

[10] Evans, R. G., Naidu, B., Rajpoot, N. M., Epstein, D., and Khan, M., “Toponome imaging system: multiplex
biomarkers in oncology,” Trends in molecular medicine 18(12), 723–731 (2012).

[11] Frey, B. J. and Dueck, D., “Clustering by passing messages between data points,” Science 315(5814),
972–976 (2007).

[12] Sirinukunwattana, K., Savage, R. S., Bari, M. F., Snead, D. R., and Rajpoot, N. M., “Bayesian hierarchical
clustering for studying cancer gene expression data with unknown statistics,” PloS one 8(10) (2013).

[13] Bhattacharya, S., Mathew, G., Ruban, E., Epstein, D. B., Krusche, A., Hillert, R., Schubert, W., and
Khan, M., “Toponome imaging system: in situ protein network mapping in normal and cancerous colon
from the same patient reveals more than five-thousand cancer specific protein clusters and their subcellular
annotation by using a three symbol code,” Journal of Proteome Research 9(12), 6112–6125 (2010).

[14] Raza, S. e. A., Humayun, A., Abouna, S., Nattkemper, T. W., Epstein, D. B., Khan, M., and Rajpoot,
N. M., “Ramtab: robust alignment of multi-tag bioimages,” PloS one 7(2), e30894 (2012).

[15] Al-Kofahi, Y., Lassoued, W., Lee, W., and Roysam, B., “Improved automatic detection and segmentation
of cell nuclei in histopathology images,” Biomedical Engineering, IEEE Transactions on 57(4), 841–852
(2010).

[16] Khan, A. M., Humayun, A., Raza, S. e. A., Khan, M., and Rajpoot, N. M., “A novel paradigm for mining
cell phenotypes in multi-tag bioimages using a locality preserving nonlinear embedding,” Neural Information
Processing 7666, 575–583 (2012).

[17] Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S.,
Mitzenmacher, M., and Sabeti, P. C., “Detecting novel associations in large data sets,” Science 334(6062),
1518–1524 (2011).

[18] Wilcoxon, F., “Individual comparisons by ranking methods,” Biometrics bulletin 1(6), 80–83 (1945).

[19] Kamburov, A., Wierling, C., Lehrach, H., and Herwig, R., “Consensuspathdba database for integrating
human functional interaction networks,” Nucleic Acids Research 37(suppl 1), D623–D628 (2009).

[20] Zalzali, H., Naudin, C., Bastide, P., Quittau-Prevostel, C., Yaghi, C., Poulat, F., Jay, P., and Blache,
P., “Ceacam1, a sox9 direct transcriptional target identified in the colon epithelium,” Oncogene 27(56),
7131–7138 (2008).



[21] Darido, C., Buchert, M., Pannequin, J., Bastide, P., Zalzali, H., Mantamadiotis, T., Bourgaux, J.-F.,
Garambois, V., Jay, P., Blache, P., et al., “Defective claudin-7 regulation by tcf-4 and sox-9 disrupts the
polarity and increases the tumorigenicity of colorectal cancer cells,” Cancer Research 68(11), 4258–4268
(2008).
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