APTS ASP Simple Exercises 2

1. Use the martingale property to deduce that

$$
\mathbb{E}\left[X_{n+k} \mid \mathcal{F}_{n}\right]=X_{n}, \quad k=0,1,2, \ldots
$$

2. Recall Thackeray's martingale: let Y_{1}, Y_{2}, \ldots be a sequence of independent random variables, with $\mathbb{P}\left[Y_{1}=1\right]=\mathbb{P}\left[Y_{1}=-1\right]=1 / 2$. Define the Markov chain M by

$$
M_{0}=0 ; \quad M_{n}= \begin{cases}1-2^{n} & \text { if } Y_{1}=Y_{2}=\cdots=Y_{n}=-1 \\ 1 & \text { otherwise }\end{cases}
$$

(a) Compute $\mathbb{E}\left[M_{n}\right]$ from first principles.
(b) What should be the value of $\mathbb{E}\left[\widetilde{M}_{n}\right]$ if \widetilde{M} is computed as for M but stopping play if M hits level $1-2^{N}$?
3. Consider a branching process Y, where $Y_{0}=1$ and Y_{n+1} is the sum $Z_{n+1,1}+\ldots+Z_{n+1, Y_{n}}$ of Y_{n} independent copies of a non-negative integer-valued family-size r.v. Z.
(a) Suppose $\mathbb{E}[Z]=\mu<\infty$. Show that $X_{n}=Y_{n} / \mu^{n}$ is a martingale.
(b) Show that Y is itself a supermartingale if $\mu<1$ and a submartingale if $\mu>1$.
(c) Let $H_{n}=Y_{0}+\ldots+Y_{n}$ be the total of all populations up to time n. Show that $s^{H_{n}} /\left(G(s)^{H_{n-1}}\right)$ is a martingale.
(d) How should these three expressions be altered if $Y_{0}=k \geq 1$?
4. Consider asymmetric simple random walk, stopped when it first returns to 0 . Show that this is a supermartingale if jumps have non-positive expectation, a submartingale if jumps have nonnegative expectation (and therefore a martingale if jumps have zero expectation).
5. Consider Thackeray's martingale based on asymmetric random walk. Show that this is a supermartingale or submartingale depending on whether jumps have negative or positive expectation.
6. Show, using the conditional form of Jensen's inequality, that if X is a martingale then $|X|$ is a submartingale.
7. Suppose that a coin, with probability of heads equal to p, is repeatedly tossed: each Head earns $£ 1$ and each Tail loses $£ 1$. Let X_{n} denote your fortune at time n, with $X_{0}=0$. Show that

$$
\left(\frac{1-p}{p}\right)^{X_{n}} \quad \text { defines a martingale. }
$$

8. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and cards are turned over one at a time. Let B_{n} denote the number of black cards left just before the $n^{\text {th }}$ card is turned over. Let

$$
Y_{n}=\frac{B_{n}}{r+b-(n-1)}
$$

(So Y_{n} equals the proportion of black cards left just before the $n^{\text {th }}$ card is revealed.) Show that Y is a martingale.
9. Suppose N_{1}, N_{2}, \ldots are independent identically distributed normal random variables of mean 0 and variance σ^{2}, and put $S_{n}=N_{1}+\ldots+N_{n}$.
(a) Show that S is a martingale.
(b) Show that $Y_{n}=\exp \left(S_{n}-\frac{n}{2} \sigma^{2}\right)$ is a martingale.
(c) How should these expressions be altered if $\mathbb{E}\left[N_{i}\right]=\mu \neq 0$?
10. Let X be a discrete-time Markov chain on a countable state-space S with transition probabilities $p_{x, y}$. Let $f: S \rightarrow \mathbb{R}$ be a bounded function. Let \mathcal{F}_{n} contain all the information about $X_{0}, X_{1}, \ldots, X_{n}$. Show that

$$
M_{n}=f\left(X_{n}\right)-f\left(X_{0}\right)-\sum_{i=0}^{n-1} \sum_{y \in S}\left(f(y)-f\left(X_{i}\right)\right) p_{X_{i}, y}
$$

defines a martingale. (Hint: first note that $\mathbb{E}\left[f\left(X_{i+1}\right)-f\left(X_{i}\right) \mid X_{i}\right]=\sum_{y \in S}\left(f(y)-f\left(X_{i}\right)\right) p_{X_{i}, y}$. Using this and the Markov property of X, check that $\mathbb{E}\left[M_{n+1}-M_{n} \mid \mathcal{F}_{n}\right]=0$.)
11. Let Y be a discrete-time birth-death process absorbed at zero:

$$
p_{k, k+1}=\frac{\lambda}{\lambda+\mu}, \quad p_{k, k-1}=\frac{\mu}{\lambda+\mu}, \quad \text { for } k>0, \text { with } 0<\lambda<\mu
$$

(a) Show that Y is a supermartingale.
(b) Let $T=\inf \left\{n: Y_{n}=0\right\}$ (so $T<\infty$ a.s.), and define

$$
X_{n}=Y_{n \wedge T}+\left(\frac{\mu-\lambda}{\mu+\lambda}\right)(n \wedge T)
$$

Show that X is a non-negative supermartingale, converging to

$$
Z=\left(\frac{\mu-\lambda}{\mu+\lambda}\right) T
$$

(c) Deduce that

$$
\mathbb{E}\left[T \mid Y_{0}=y\right] \leq\left(\frac{\mu+\lambda}{\mu-\lambda}\right) y
$$

12. Let $L\left(\theta ; X_{1}, X_{2}, \ldots, X_{n}\right)$ be the likelihood of parameter θ given a sample of independent and identically distributed random variables, $X_{1}, X_{2}, \ldots, X_{n}$.
(a) Check that if the "true" value of θ is θ_{0} then the likelihood ratio

$$
M_{n}=\frac{L\left(\theta_{1} ; X_{1}, X_{2}, \ldots, X_{n}\right)}{L\left(\theta_{0} ; X_{1}, X_{2}, \ldots, X_{n}\right)}
$$

defines a martingale with $\mathbb{E}\left[M_{n}\right]=1$ for all $n \geq 1$.
(b) Using the strong law of large numbers and Jensen's inequality, show that

$$
\frac{1}{n} \log M_{n} \rightarrow-c \text { as } n \rightarrow \infty .
$$

(c) Show that the result is still true even if the random variables are neither independent nor identically distributed.

