APTS ASP Simple Exercises 4

1. Recall that the total variation distance between two probability distributions μ and ν on \mathcal{X} is given by

$$
\operatorname{dist}_{\mathrm{TV}}(\mu, \nu)=\sup _{A \subseteq \mathcal{X}}\{\mu(A)-\nu(A)\} .
$$

Show that this is equivalent to the distance

$$
\sup _{A \subseteq \mathcal{X}}|\mu(A)-\nu(A)| .
$$

2. Show that if \mathcal{X} is discrete, then

$$
\operatorname{dist}_{\mathrm{TV}}(\mu, \nu)=\frac{1}{2} \sum_{y \in \mathrm{X}}|\mu(y)-\nu(y)| .
$$

(Here we do need to use the absolute value on the RHS!)
Hint: consider $A=\{y: \mu(y)>\nu(y)\}$.
3. Suppose now that μ and ν are density functions on \mathbb{R}. Show that

$$
\operatorname{dist}_{\mathrm{TV}}(\mu, \nu)=1-\int_{-\infty}^{\infty} \min \{\mu(y), \nu(y)\} d y
$$

Hint: remember that $|\mu-\nu|=\mu+\nu-2 \min \{\mu, \nu\}$.
4. Let X be a random walk on \mathbb{R}, with increments given by the standard normal distribution. Recall that any bounded set is small of lag 1 . Does there exist $k \geq 1$ such that the whole state space is small of lag k ?
5. Consider a Markov chain X with continuous transition density kernel. Show that it possesses many small sets of lag 1.
6. Consider a Vervaat perpetuity X, where

$$
X_{0}=0 ; \quad X_{n+1}=U_{n+1}\left(X_{n}+1\right)
$$

and where U_{1}, U_{2}, \ldots are independent $\operatorname{Uniform}(0,1)$ (simulated below).

Find a small set for this chain.
7. Recall the regeneration idea from lecture 7: suppose that C is a small set (with lag 1) for a ϕ-recurrent chain X, i.e. for $x \in C$,

$$
\mathbb{P}\left[X_{1} \in A \mid X_{0}=x\right] \geq \alpha \nu(A)
$$

Suppose that $X_{n} \in C$. Then with probability α let $X_{n+1} \sim \nu$, and otherwise let it have transition distribution $\frac{p(x, \cdot)-\alpha \nu(\cdot)}{1-\alpha}$.
(a) Check that the latter expression really gives a probability distribution.
(b) Check that X_{n+1} constructed in this manner obeys the correct transition distribution from X_{n}.
8. Define a reflected random walk as follows: $X_{n+1}=\max \left\{X_{n}+Z_{n+1}, 0\right\}$, for Z_{1}, Z_{2}, \ldots i.i.d. with continuous density $f(z)$,

$$
\mathbb{E}\left[Z_{1}\right]<0 \quad \text { and } \quad \mathbb{P}\left[Z_{1}>0\right]>0
$$

Show that the Foster-Lyapunov criterion for positive recurrence holds, using $\Lambda(x)=x$.
9. Define a reflected simple asymmetric random walk as follows: $X_{n+1}=\max \left\{X_{n}+Z_{n+1}, 0\right\}$, for Z_{1}, Z_{2}, \ldots i.i.d. with

$$
\mathbb{P}\left[Z_{1}=-1\right]=1-\mathbb{P}\left[Z_{1}=+1\right]>\frac{1}{2}
$$

Show that X is counting-measure-irreducible on the non-negative integers. (Check that this is the same as ordinary irreducibility for discrete state-space Markov chains.)

