
APTS Stat Comp Assessment 2013/14

The work provided here is intended to take up to half a week to complete. Students should talk to
their supervisors to find out whether or not their department requires this work as part of any formal
accreditation process (APTS itself has no resources to assess or certify students). It is anticipated that
departments will decide on the appropriate level of assessment locally, and may choose to drop some
(or indeed all) of the parts, accordingly. So make sure that your supervisor or local organizer of APTS
assessment has looked at the assignment before you start, and has told you which parts of it to do.
In order to avoid undermining institutions’ local assessment procedures the module lecturers will not
respond to enquiries from students about this assignment.

A generalized linear model (GLM) relates independent response variables, yi, to some predictors, via
the following structure

g(µi) = Xiβ where E(yi) = µi and yi ∼ exponential family

g is a known smooth monotonic ‘link function’, X is a model matrix, determined by the predictors (as in
a linear model) and β is a vector of unknown parameters to be estimated. A key feature of GLMs is that
the exponential family assumption implies that a known function V relates the variance and mean of yi
via var(yi) = V (µi)ϕ. In a likelihood framework GLMs are usually estimated by a version of Newton’s
method in which the expected Hessian of the log likelihood replaces the actual Hessian. This approach
gives rise to the method of iteratively re-weighted least squares (IRLS).

IRLS: Starting from initial guesses at µi and hence ηi[≡ Xiβ ≡ g(µi)], iterate the following steps to
convergence:

1. Using the current µi, ηi estimates, evaluate pseudodata zi = g′(µi)(yi−µi)+ηi and iterative weights
wi = g′(µi)

−1V (µi)
−0.5.

2. Find β̂ to minimize ∥diag(w)(z−Xβ)∥2. Obtain the next estimate of η as Xβ̂, and hence the next
µ estimate.

At convergence the final β̂ maximizes the likelihood of the model (which is equivalent to minimizing the

deviance defined as D = 2{ls − l(β̂)}, where ls is the saturated log-likelihood for the data, and l(β̂) is
the actual model log-likelihood).1

1. If X is n× p, what is the leading order operations count for the IRLS algorithm?

2. Would you recommend solving the weighted least squares problem at step 2 of the IRLS by a
Choleski related method or by a QR decomposition method? Explain.

3. When working with very large datasets (e.g. remote sensing data or gene expression data) and
complicated model structures, the computational cost and storage requirements of fitting by IRLS
can become burdensome. It would be advantageous to find fitting algorithms which had a lower
leading order cost than IRLS, and required only the evaluation of XTx for some n−vectors, x.
There are two obvious approaches.

(a) At each step of the Newton iteration the expected Hessian of the negative log likelihood
XTdiag(w)2X could be replaced by an estimate, nX̃ ˜diag(w̃)2X̃/M , where X̃ is a random
sample of M rows of X and w̃ is the corresponding set of rows of w. The full gradient vector
of the negative log likelihood is left un-modified at −XT(y − µ)/{g′(µ)V (µ)}. Of course M
should be much less than n.

(b) The Newton iteration could be replaced by a quasi-Newton iteration.

1Chapter 2 of Wood (2006) Generalized Additive Models:An Introduction with R, or McCullagh and Nelder (1989)
Generalized Linear Models contain more detailed information on GLMs.
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How would the cost of these two approaches depend on n and p? Why do we expect (a) to work
despite having only a rough approximation to the expected Hessian? Would using X̃ in place of
X in the gradient vector be likely to work? Suggest how you might find a starting Hessian for
approach (b).

4. By modifying the routine simple.glm.fit, given below, implement method (a) from part 3, in R
(M = 1000 is ok). Comment your routine properly, and test it (one test example is given below).

5. By modifying the routine simple.glm.fit, given below, implement method (b) from part 3, in R.
Again, comment your routine properly, and test it.

6. Comment on the relative merits of the 3 approaches in terms of efficiency, stability and reliability.

simple.glm.fit <- function(y,X,family,tol=1e-7) {

## y is response, X is model matrix, family is R family

## (see documentation for ‘glm’ for further info on family

## objects). tol is convergence tolerance.

nobs <- length(y)

variance <- family$variance ## extract variance function

dev.resids <- family$dev.resids ## function to get deviance (resids)

linkinv <- family$linkinv ## inverse link function

mu.eta <- family$mu.eta ## reciprocal of link derivative

eval(family$initialize) ## gets initial mu - mustart, using y

mu <- mustart;eta <- family$linkfun(mu)

dev0 <- sum(dev.resids(y,mu,rep(1,nobs)))

for (iter in 1:200) { ## main IRLS loop

mu.eta.val <- mu.eta(eta) ## reciprocal of link derivative

z <- eta + (y - mu)/mu.eta.val ## pseudodata

w <- sqrt(mu.eta.val^2/variance(mu)) ## iterative (sqrt) weights

## solve weighted least squares problem

Wz <- w*z;WX <- w*X

beta <- coef(lm(Wz~WX-1)) ## could do direct QR thing here

## Try out step...

d.eta <- as.numeric(X%*%beta) - eta ## the trial linear predictor step

ok <- FALSE

while(!ok) {

mu <- linkinv(eta+d.eta) ## try step

dev1 <- sum(dev.resids(y,mu,rep(1,nobs)))

if (iter >1&&(dev1>dev0)) { ## deviance increased

d.eta <- d.eta/2 ## so step half

beta <- beta.old + (beta-beta.old)/2 ## apply to beta too

} else ok <- TRUE

}

## step now ok....

eta <- eta + d.eta ## accepted linear predictor, eta

if (abs(dev0-dev1)<tol*dev0&&iter>2) break ## convergence?

dev0 <- dev1

beta.old <- beta

}

beta ## return coeffs

} ## end of simple glm fitter

## Simple polynomial fitting example...

set.seed(1) ## simulate some data ...

n <- 100000;x <- runif(n)

f <- 0.2 * x^11 * (10 * (1 - x))^6 + 10 * (10 * x)^3 * (1 - x)^10

mu <- exp(f/5); y <- rpois(mu,mu)

X <- model.matrix(~poly(x,6))

system.time(b <- glm(y~X-1,family=poisson))

system.time(b3 <- simple.glm.fit(y,X,family=poisson()))
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