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1
Expectation and Probability Theory

The purpose of this chapter is to establish my notation, and to
derive those results in probability theory that are most useful in
statistical inference: the Law of Iterated Expectation, the Law of
Total Probability, Bayes’s Theorem, and so on. I have not covered
independence and conditional independence. These are crucial
for statistical modelling, but less so for inference, and they will be
introduced in the chapters where they are needed.

What is a bit different about this chapter is that I have developed
these results taking expectation, rather than probability, as primi-
tive. Bruno de Finetti is my inspiration for this, notably de Finetti
(1937, 1972, 1974/75) and the more recent books by Lad (1996) and
Goldstein and Wooff (2007). Whittle (2000) is my source for many
details, although my approach is quite different from his. Grim-
mett and Stirzaker (2001) is a standard orthodox text on probability
theory. Bernardo and Smith (1994) is a standard Bayesian text on
probability theory and statistics.

Why expectation as primitive? This is not the modern approach,
where the starting point is a set, a sigma algebra on the set, and
a non-negative normalised countably additive (probability) mea-
sure; see, for example, Billingsley (1995) or Williams (1991). This
modern approach provides a formal basis for other less technical
theories, such as ours, in the sense that if the two were found to be
in conflict, then that would be alarming.

However, in the modern approach an uncertain quantity is a
derived concept, and its expectation doubly so. But a statistician’s
objective is to reason sensibly in an uncertain world. For such a per-
son (and I am one) the natural starting point is uncertain quantities,
and the judgements one has about them. Thus uncertain quantities
and their expectations are taken as primitive, and probability is de-
fined in terms of expectation. There are no explicit sigma algebras
and there is no measure theory, although the consistency of the two
approaches indicates that they are implicitly present. However, they
are not needed for day-to-day statistical inference.

The most daunting material in this introductory chapter comes
in the section on conditional expectation (Section 1.6). This is
because conditioning is a complicated operation, no matter what
one’s starting point. Most statistics textbooks fudge the issue of
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conditioning on ‘continuous’ quantities. But I think this leads to
confusion, and so I have presented a complete theory of condition-
ing, which, although a bit more complicated, is entirely consistent.

Some sections are starred—these can be skipped without loss of
continuity.

1.0 Conventions and notation

This section must be read carefully, in order to understand the
notation in the rest of this chapter.

A proposition is a statement which is either true or false. Thus,
‘the moon is made of cheese’ and ‘x ≤ 3’ are both propositions;
the truth of the latter is contingent on the value for x. When a
proposition p occurs in mathematical text, it must be read as ‘it is
true that p’. For example, ‘Since x ≤ 3 . . . ’ must be read as ‘Since it
is true that x ≤ 3 . . . ’, and ‘If x ≤ 3, then . . . ’ must be read as ‘If it
is true that x ≤ 3, then . . . ’.

Unfortunately, there is ambiguity in the use of the symbol ‘=’,
which is used for both propositions and assignments. I will treat it
as propositional, so that ‘x = 3’ is either true or false. I will use ‘:=’
to indicate the assignment of the righthand side to the label on the
lefthand side, as in f (x) := a + bx. After assignment, f (x) = a + bx,
interpreted as a proposition (i.e. ‘it is true that f (x) = a + bx’).
This important distinction is recognised in computing, for which
the propositional use of ‘=’ is represented by ���� or ��, to give
examples from FORTRAN and C. In computing, � usually indicates
assignment.

R. In the statistical computing environment R (R Development Core
Team, 2011), we have �� for propositions, � for assignment of functional
arguments, and �� or � for assignment. In the last case I prefer the former
but logically they are equivalent, since ��� � � in a functional argument
represents a promise to evaluate ��� �� � in the body of the function
before ��� is first used (‘lazy evaluation’ of arguments builds on this).

Occasionally I will want to restrict the value of a quantity. For
example, if x ≤ 3 then I might want to consider the particular case
when x = 2. In this case I write x ← 2. Think of this as a ‘local’
assignment.

Brackets. I avoid using the same bracketing symbol contiguously.
Where nesting of brackets is required I tend to use the ordering
[{(·)}] with the following exceptions:

1. Parentheses (round brackets) are always used around proposi-
tions (Section 1.4);

2. I have a preference for parentheses around functional arguments;
less so for operators such as E and Pr.

3. Sets are always denoted with {. . . }, and ordered tuples (usually
points in a subset of Euclidean space) with (. . . ).
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4. Intervals of the real numbers R are denoted using square brack-
ets or parentheses, depending on whether the endpoints are
closed or open.

Typeface conventions. Random quantities are denoted with capital
roman letters, while specified arguments and constants are denoted
with small roman letters. Collections of random quantities are
denoted with bold letters1 where it is necessary to emphasise that 1 Or an underscore in handwritten

material.they are not scalar; otherwise they are plain. Sets are denoted with
curly capital roman letters (‘caligraphic’ letters), plus the usual
notation for the set of real numbers (R). Statistical parameters
(which do not occur until later chapters) are denoted with small
greek letters. Operators and special functions are usually denoted
with sans-serif roman letters; other functions are denoted with
small roman letters. Expectation has no less than three symbols: E,
E, and E.

Definitions and equivalences. I use ‘exactly when’ to state definitions,
and ‘if and only if’ to state equivalences in theorems. Proofs of
equivalences such as ‘A if and only if B’ typically have an A-if-B
branch (⇐) and an A-only-if-B branch (⇒).

1.1 Random quantities

My starting-point is a random quantity. For me, a random quantity random quantity

is a set of instructions which, if followed, will yield a real value;
this is an operational definition. Real-valued functions of random operational definition

quantities are also random quantities.
It is conventional in statistics to represent random quantities

using capital letters from the end of the alphabet, such as X, Y,
and Z, and, where more quantities are required, using ornaments
such as subscripts and primes (e.g. Xi, Y�). Representative values of
random quantities are denoted with small letters. Thus X = x states
‘it is true that the operation X was performed and the value x was
the result’.

The realm of a random quantity is the set of possible values realm

it might take. I denote this with a curly capital letter, such as X
for the realm of X, where X is always a subset of R.2 If the realm 2 I have taken the word ‘realm’ from

Lad (1996); ‘range’ is also used.of a random quantity X is finite or countable, X is said to be a
discrete random quantity, otherwise it is said to be a continuous discrete random quantity

random quantity. I tend not to use these terms because, conceptually, continuous random quantity

there is a larger difference between a finite and a countable realm
than there is between a countable and a non-countable realm
(Section 1.8.1).

A random quantity in which the realm contains only a single
element is a constant, and typically denotes by a small letter from constant

the start of the alphabet, such as a, b, or c.
Below it will be necessary to make assertions about the realm of

X and about the joint realm of X and Y. I introduce the following
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notation for this. Let B be any binary relation, for example ‘≤’.
Then I write

�{X B Y}
exactly when x B y for every (x, y) in the joint realm of X and Y.
So, for example, �{X = 1} asserts that the realm of X is {1}, and
�{X ≤ Y} asserts that X will never exceed Y. These assertions
reflect the operational definitions represented by X and Y. Where
there is no ambiguity, statements such as “�{X B Y} and �{Y B Z}”
will be chained together as �{X B Y B Z}.

It is important to be clear that �{X ≤ Y} and X ≤ Y are quite
different. The first is an assertion about the joint realm of X and Y,
while the second is a proposition which may be true or false.

1.2 Expectations

With each random quantity I associate a real scalar expectation; the expectation

expectation of X is denoted E(X). Expectations are not arbitrary,
but are required to satisfy the following axioms.

Definition 1.1 (Axioms of expectation).

1. If �{X = 1} then E(X) = 1 (normalisation),

2. If �{X > 0} then E(X) > 0 (positivity),

3. E(X +Y) = E(X) + E(Y) (additivity).

The simplest interpretation of expectation is that of a ‘best guess’.
Then it follows that these axioms are justified as being self-evident.
For example, if X was the weight in ounces of a one-ounce weight,
then I would be foolish indeed not to assert E(X) = 1. Likewise, if
X was the weight in ounces of the orange I am holding in my hand,
then I would be foolish indeed not to assert E(X) > 0. Likewise,
if Y was the weight of a second orange, then I would be foolish
indeed not to assert that E(X +Y) = E(X) + E(Y).

‘Judgement’. We tend not to use ‘best guess’ in practice: the word ‘guess’
has negative connotations. Instead, the word judgement is used. Thus judgement
expectations represent my judgements about random quantities. The use
of ‘judgement’ captures the essentially subjective nature of expectation.
Expectations do not have any objective existence: they are a property of
the mind, and will vary from one person to another. Any given person,
however, would want their collection of expectations to satisfy the axioms,
insofar as these axioms are self-evident. Thus, were we to point out to a
person that his collection of expectations violated one of the axioms, we
would expect him to thank us, and to adjust his expectations accordingly.

The axioms in Definition 1.1 have some immediate implications,
which are also self-evident (or almost so). I will just pick out a few
of the really useful ones.

Theorem 1.1 (Immediate implications).

1. E(X1 + · · ·+ Xn) = ∑n
i=1 E(Xi) (finite additivity);
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2. For any constant a, E(aX) = a E(X) and E(a) = a (linearity);

3. If �{X ≥ 0} then E(X) ≥ 0 (non-negativity);

4. If �{X ≥ Y} then E(X) ≥ E(Y) (monotonicity);

5. inf{X} ≤ E(X) ≤ sup{X} (convexity);

6. |E(X)| ≤ E(|X|) (triangle inequality).

For convenience, it is helpful to lump additivity and linearity
together into

E(aX + bY) = a E(X) + b E(Y)

which I will term ‘linearity’. This result can be iterated to apply to
any finite sum.

Proof.

1. Follows by iterating additivity, starting with X := X1 and
Y := X2 + · · ·+ Xn.

2. Let i and j be integers. Then E(iX) = i E(X) by finite ad-
ditivity. But then E(X) = E(jX/j) = j E(X/j), and hence
E(X/j) = E(X)/j. So E{(i/j)X} = (i/j)E(X). The result then
follows by passing from the rationals to the reals.3 This result 3 Slightly subtle, see de Finetti (1974,

footnote on p. 75).and normalisation imply E(a) = E(a1) = a E(1) = a where a is
any constant.

3. Let �{X ≥ 0} and define Y := X − E(X). Suppose that E(X) < 0.
Then �{Y > 0} and E(Y) > 0 by positivity. But, by additivity
and linearity, E(Y) = E(X)− E(X) = 0, a contradiction. Hence
E(X) ≥ 0.

4. By non-negativity and linearity, since �{X −Y ≥ 0}.
5. By monotonicity and linearity, because �{inf{X} ≤ X ≤ sup{X}}.
6. By monotonicity and linearity, because �{−|X| ≤ X ≤ |X|}.

A less immediate implication is Schwarz’s inequality, which is Schwarz’s inequality

extremely important and used several times below (often to prove
things that are almost obvious).

Theorem 1.2 (Schwarz’s inequality).

{E(XY)}2 ≤ E(X2)E(Y2).

Proof. For any constant a, E{(aX + Y)2} ≥ 0, by non-negativity.
Expanding out the square and using linearity,

E{(aX +Y)2} = a2 E(X2) + 2a E(XY) + E(Y2).

This quadratic in a cannot have two distinct real roots, because that
would violate non-negativity. Then it follows from the standard
formula for the roots of a quadratic4 that 4 If ax2 + bx + c = 0 then

x =
−b ±

√
b2 − 4ac
2a

.
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{2E(XY)}2 − 4E(X2)E(Y2) ≤ 0,

or {E(XY)}2 ≤ E(X2)E(Y2), as required.

Note that there is another version of Schwarz’s inequality, which
comes from setting X ← |X| and Y ← |Y|,

{E(|XY|)}2 ≤ E(X2)E(Y2).

This is stronger because the triangle inequality implies that

{E(XY)}2 = |E(XY)|2 ≤ {E(|XY|)}2.

1.3* Do all random quantities have finite expectations?

Operationally-defined random quantities always have finite and
bounded realms and, from this point of view, there is no obligation
to develop a theory of reasoning about uncertainty for the more
general cases.5 This is an important issue, because theories of 5 A set is bounded if the distance

between any two elements is never
greater than some finite amount.

reasoning with non-finite and unbounded realms are a lot more
complicated. Debabrata Basu summarises a viewpoint held by
many statisticians.

“The author holds firmly to the view that this contingent and cogni-
tive universe of ours is in reality only finite and, therefore, discrete.
In this essay we steer clear of the logical quick sands of ‘infinity’ and
the ‘infinitesimal’. Infinite and continuous models will be used in the
sequel, but they are to be looked upon as mere approximations to the
finite realities.” (Basu, 1975, footnote, p. 4)

Lad (1996) is developed entirely in terms of finite and bounded
realms.

However, as Kadane (2011, ch. 3) discusses, it is convenient to be
able to work with non-finite and unbounded realms, to avoid the
need to make an explicit truncation. Likewise, it is convenient to
work with infinite sequences rather than long but finite sequences:
the realm of a countably infinite sum of random quantities with
finite and bounded realms is uncountable and unbounded.6 Finally, 6 Think of the Central Limit Theorem.

for the purposes of statistical modelling we often introduce aux-
iliary random quantities (statistical parameters) and these are
conveniently represented with non-finite and unbounded realms.

Therefore I will outline a more general treatment, which does not
insist that random quantities have bounded realms.7 The issue of 7 This material draws heavily on

Billingsley (1995, ch. 3).non-finite realms is discussed in Section 1.8.1.
Let X be a random quantity with possibly unbounded realm.

Define

X+ :=




0 X ≤ 0

X X > 0
and X− :=




−X X ≤ 0

0 X > 0

which are both non-negative quantities, and for which X = X+ − X−.
Then redefine the expectation as

E(X) := E(X+)− E(X−).
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This expectation should respect these self-evident rules:

E(X) =





finite both E(X+) and E(X−) finite

∞ E(X+) = ∞ and E(X−) finite

−∞ E(X+) finite and E(X−) = ∞

undefined both E(X+) and E(X−) infinite.

Then a weakening of the additivity axiom in Definition 1.1 gives

3�. If X and Y are non-negative, then E(X +Y) = E(X) + E(Y).

This includes E(X + Y) = ∞ if either E(X) = ∞ or E(Y) = ∞. If
E(X) is finite, X is said to be integrable. But because |X| = X+ + X−, integrable

where both terms are non-negative,

X is integrable ⇐⇒ E(|X|) is finite.

We then have, as an immediate implication, that if X and Y are both
integrable, then X +Y is integrable, and E(X +Y) = E(X) + E(Y).

Proof. The integrability of X +Y follows from

E(|X +Y|) ≤ E(|X|+ |Y|) = E(|X|) + E(|Y|) < ∞

by monotonicity and the non-negativity of |X| and |Y|. Now let
Z := X +Y. Then

Z+ − Z− = X +Y = X+ − X− +Y+ −Y−.

Rearrange this to give

Z+ + X− +Y− = Z− + X+ +Y+,

where all of the terms in each sum are non-negative. Taking expec-
tations of both sides and rearranging (using new Axiom 3�) shows
that

E(Z+)− E(Z−) = E(X+)− E(X−) + E(Y+)− E(Y−)

or E(Z) = E(X) + E(Y), completing the proof.

Therefore, this generalisation includes the original Additivity
axiom of Definition 1.1 as a special case which holds not just when
all realms are bounded, but for any integrable random quantities.
Reassuringly, it shows that the extension to random quantities with
unbounded realms does not cause any real difficulties, and that
infinities can be accommodated. However, I will let Bruno de Finetti
have the last word:

“. . . the unbounded X is a theoretical schematization substituted for
simplicity in place of an actual X, which is in reality bounded, but
whose bounds are very large and imprecisely known.” (de Finetti,
1974, p. 132)
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1.4 Probability

In the approach I am adopting, probability is defined in terms of
expectation. Consider any proposition A, such as X > a, which is
either false or true; the use of a capital letter indicates that its status
is uncertain to me. I follow de Finetti (1974, chapters 1 and 2) in
identifying false with zero and true with one, where propositions
occur in mathematical expressions.8 Often it is necessary to use 8 This is also the convention in pro-

gramming languages such as R.parentheses to delimit a proposition in mathematical expressions,
because many propositional relations have lower priority than other
relations. For example, sums and integrals over restrictions of their
domain can be represented as

∑
j∈J

aj = ∑j aj (j ∈ J).

As I identify propositions with their indicator functions, A := (X > a)
is a random quantity with realm {0, 1}. I refer to A as a random
proposition to emphasise that it is just a special case of a random random proposition

quantity. The effect of this convention is to turn logical statements
into mathematical ones. Thus if A and B are random propositions,

not A
A and B
A or B
A ⇒ B





becomes





1− A
AB

1− (1− A)(1− B)
A ≤ B

and so on.
The probability of a random proposition A is defined as

Pr(A) := E(A).

Thus there is no explicit reason to introduce another operator for
probability, if expectation is taken as primitive. But it can be useful
to do so, to remind the reader that the random quantity in the
argument is a proposition.

It is easy to see that elementary logical results follow immedi-
ately from this definition, with Pr(A) = 0 being synomymous with
‘it is false that A’ and Pr(A) = 1 being synomymous with ‘it is true
that A’. Hence, by monotonicity, Pr(A) = 1 and A ⇒ B imply that
Pr(B) = 1, and A ⇒ B and Pr(B) = 0 imply that Pr(A) = 0.

Some other simple results include Pr(AB) ≤ Pr(A), and if A ⇒ B
then Pr(A) ≤ Pr(B), both by monotonicity. And

Pr(A or B) = Pr(A) + Pr(B)− Pr(AB),

by linearity. This result can be extended to the disjunction of any
finite set of random propositions.

One useful notational convention is to write Pr(AB) as Pr(A, B).
For example, if A := (X = x) and B := (Y = y) then

Pr(AB) = Pr{(X = x)(Y = y)} = Pr(X = x,Y = y).
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This is a good convention, because it saves on parentheses, since the
comma has a lower priority than all binary relations. Just be clear,
though, that commas only occur in probability statements, never
in expectations. I will tend to write Pr(AB) for symbolic random
propositions, and Pr(X = x,Y = y) for explicit random propositions
involving binary relations.

An aside on the conventional definition. Probability is conventionally
considered to be a measure on subsets of some set Ω. For any A ⊂ Ω,
Pr(A) is defined as E(ω ∈ A), where ω is the ‘true but unknown state of
nature’. It is easy to verify that under this definition, ‘Pr’ satisfies the three
axioms of probability, namely:

1. Pr(A) ≥ 0; by non-negativity, since (ω ∈ A) ∈ {0, 1}.
2. Pr(Ω) = 1; by normalisation, since (ω ∈ Ω) = 1.

3. Pr(A ∪ B) = Pr(A) + Pr(B) whenever A and B are disjoint; by additivity,
since (ω ∈ A ∪ B) = (ω ∈ A) + (ω ∈ B) in this case.

1.5 The ‘Fundamental Theorem of Prevision’

The Fundamental Theorem of Prevision (FTP) is due to Bruno de Finetti Fundamental Theorem of Prevision
(FTP)(de Finetti, 1974, sec. 3.10).9 It provides a complete characterisation
9 I am following Lad (1996, ch. 2) in
using this particular name.of the set of expectations that are consistent with the axioms of

expectation given in Definition 1.1.
First it is necessary to define a partition. partition

Definition 1.2 (Partition). D :=
�
D1,D2, . . .

�
is a partition exactly

when each of the D’s is a random proposition, and ∑i Di = 1.

A partition divides up the world into a set of mutually exclu-
sive and exhaustive potential outcomes. The simplest partition is�

A, 1− A
�
for any random proposition A. More helpful, though, is

a sufficiently fine partition. sufficiently fine partition

Definition 1.3 (Sufficiently fine partition). A partition D is sufficiently
fine for a collection of random quantities S exactly when all real-valued
functions of the elements of S may be treated as deterministic functions of
D.

If I judge D :=
�
D1,D2, . . .

�
to be a sufficiently fine partition for

a collection of random quantities which includes X then I can write

X = ∑
i

xi Di for known x1, x2, · · · ∈ X.

This is the mathematical expression of “if outcome Di occurs, then
I know that X will be equal to xi”. Likewise, if, say,

�
X,Y,Z

�
⊂ S

then g(X,Y,Z) = ∑i g(xi, yi, zi)Di for any real-valued function g.
Here is the FTP. It asserts the equivalence of E being a valid ex-

pectation operator (i.e. satisfying the three axioms in Definition 1.1),
and a representation of E in terms of a sufficiently fine partition.
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Theorem 1.3 (FTP, finite case). Let D :=
�
D1, . . . ,Dm

�
be a finite

partition which is sufficiently fine for a collection of random quantities S.
Let X be any real-valued function of the elements of S. Then the following
two statements are equivalent.

1. E is a valid expectation operator.

2. there exists (p1, . . . , pm) with pi ≥ 0 and ∑i pi = 1 for which

E(X) =
m

∑
i=1

xi pi (1.1)

for all X, and pi = Pr(Di).

Proof. Note that in both branches of this proof, it is important
that D be a finite partition. This is either because sums must have
well-defined limits, or because the expectation is taken inside the
sum.

(1. ⇐ 2.) This is just a matter of checking that (1.1) satisfies the
three axioms.

1. (Normalisation) If �{X = 1} then xi = 1 for all i and E(X) =

∑i pi = 1 as required.

2. (Positivity) If �{X > 0} then xi > 0 for all i and E(X) > 0 as
required, since at least one of the pi must be positive, and none
can be negative.

3. (Additivity)

E(X) + E(Y) = ∑
i

xi pi + ∑
i

yi pi = ∑
i
(xi + yi)pi = E(X +Y)

as required.

To show that pj = Pr(Dj), write Dj = ∑i(i = j)Di, and then

Pr(Dj) = E(Dj) = ∑
i
(i = j)pi = pj,

as required.

(1. ⇒ 2.) Since X = ∑i xi Di so E(X) = ∑i xi Pr(Di) by linearity.
Set pi := Pr(Di). Since D is a partition, pi ≥ 0 (non-negativity) and
∑i pi = 1 (normalisation), as required.

Because it is ‘if and only if’, the FTP characterises every possible
valid relationship that can exist between expectations (including
probabilities). It will be used several times in the next few sections,
and is crucial in Section 1.8. It does not hold when D is a non-finite
partition: this is discussed and rectified in Section 1.8.1.

It might appear as though the FTP depends on the choice of
sufficiently fine partition. That this is not true can be inferred
from the following result, in which the actual choice of D does not
matter.
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Theorem 1.4. Let X be any random quantity. If there is a finite suffi-
ciently fine partition for X then

E(X) = ∑
x∈X

x Pr(X = x).

Proof. Let D :=
�
D1, . . . ,Dm

�
be any finite sufficiently fine partition

for X, which implies that

X =
m

∑
i=1

xi Di

for some known (x1, . . . , xm) ∈ Xm. Now (X = x) is a real-valued
function of X for any given x ∈ X, and thus, by the FTP,

Pr(X = x) = ∑
i
(xi = x)pi

where pi = Pr(Di). And by the FTP again, using the identity
xi = ∑x∈X x(xi = x),

E(X) = ∑
i

xi pi

= ∑
i

∑
x∈X

x(xi = x)pi

= ∑
x∈X

x ∑
i
(xi = x)pi

= ∑
x∈X

x Pr(X = x)

as was to be shown.

1.6 Conditional expectation

Anyone who has done a first course in probability knows the
‘definition’ of a conditional probability. If A and B are propositions,
then

Pr(A | B) = Pr(AB)
Pr(B)

if Pr(B) > 0.

(Recollect that AB is the proposition ‘A and B’.) The underlying
definition of conditional expectation must be

E(X | B) := E(XB)
Pr(B)

if Pr(B) > 0,

from which the first expression follows after defining Pr(A | B) := E(A | B).
Note that XB is a well-defined random quantity, which takes the
value zero when B is false, and X when B is true. In both cases ‘· | B’
is read as ‘· given B’, and its meaning is ‘conditional on B being
true’.

The difficulty with this definition is that it does not accommo-
date a common situation, which is where Pr(B) = 0. This might
happen, for example, if Y was a random quantity with an uncount-
able realm, and B := (Y = y), where y is some element of the
realm of Y. It turns out to be very convenient to work with such
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random quantities. This difficulty was resolved by the great Soviet
mathematician Andrey Kolmogorov in his 1933 book Foundations
of the Theory of Probability.10 He provided a characterisation of the 10 According to Grimmett and Stirzaker

(2001, p. ???), Kolmogorov wrote this
book to pay for the repairs to the roof
of his dacha.

conditional expectation which worked in great generality, and
which implied the standard definitions above. I will not follow his
approach, but in Section 1.6.1 I will follow a very similar one.

A proper definition of E(X | B), from which the definition of
Pr(A | B) follows immediately, is given at the end of Section 1.6.1.
The expression for Pr(A | B) is given and developed in Section 1.7.

1.6.0 Preliminary concepts

Although I maintain that all operationally-defined random quan-
tities should have finite expectations, and likewise all real-valued
functions of them, I have not insisted on finite expectations (see
Section 1.3). But this section does require a restriction on the expec-
tations of random quantities.

Definition 1.4 (Square integrable). The random quantity X is termed
square integrable exactly when E(X2) is finite. square integrable

Square integrability has implications for other expectations as
well.

Theorem 1.5. If X and Y are square integrable, then E(XY) is finite.

Proof. Follows immediately from Schwarz’s inequality (Theorem 1.2).

As a special case, set X ← |X| and Y ← 1 to infer that if X is
square integrable, then E(|X|) and E(X) are finite.11 11 Or, in the term used in Section 1.3, X

is ‘integrable’.

The second important preliminary concept is that random quanti-
ties can be effectively the same, even though they are not identical.
Two random quantities X and Y are identical if the operations
described in X and those described in Y cannot lead to different
values. In this case I write �{X = Y}. This assertion is stronger
than a judgement.

More generally, however, it may be the case that while X and Y
have different definitions, in my judgement they are not materially
different. How might this be represented? not materially different

Definition 1.5 (Not materially different). X and Y are not materially
different exactly when

E{g(X) · Z} = E{g(Y) · Z}

for all real-valued g and all Z.

Informally, X and Y are not materially different for me if I could
substitute one for the other in an inference, and draw the same
conclusions. This will turn out to be equivalent to the following
property.
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Definition 1.6 (Mean-square equivalent). X and Y are mean-square
equivalent, written X ms

= Y, exactly when E{(X −Y)2} = 0. mean-square equivalent

There will be a lot of mean-square equivalence in the next few
subsections, and so it is helpful to be able to interpret this as the
more intuitive (for me) ‘not materially different’.

Theorem 1.6. Let X and Y be square integrable. Then X and Y are
mean-square equivalent if and only if they are not materially different.

Proof.
(⇐). Set g ← 1 and Z ← X − Y and it follows immediately that

X ms
= Y.
(⇒). In this branch I will assume the existence of a finite suffi-

ciently fine partition. Let X ms
= Y. According to the FTP, if D is a

finite sufficiently fine partition for
�
X,Y,Z

�
then

E{(X −Y)2} = ∑
i
(xi − yi)

2 pi = 0.

Thus X and Y must take the same value on elements of D which
have pi > 0. So when we consider E{(X − Y)Z} we have, again by
the FTP,

E{(X −Y)Z} = ∑
i
(xi − yi)zi pi = ∑

i
(xi − xi)zi pi = 0.

And hence E(XZ) = E(YZ). As Z was arbitrary, this holds for all Z,
and generalises immediately to any real-valued g.

1.6.1 Characterisation

Suppose that I wish to predict a random quantity X based on the
values of a set of random quantities Y := (Y1, . . . ,Yn). Let G be the
set of all real scalar functions of y := (y1, . . . , yn). Note for later
reference that G includes g’s for which g(Y) is square integrable,
such as g(y) = a where a is any constant. I would like to find the
‘best’ g in G, measured by the closeness of X to g(Y).

Now suppose I define ‘best’ in the following way:

ψ := argmin
g∈G

E
�
{X − g(Y)}2

�
. (1.2)

In other words, the best choice of g minimises my expectation of
the squared difference between X and the random quantity g(Y).
Why this objective function and not some other? The ideal choice
of g would have X ms

= g(Y), because in this case X and g(Y) would
be not materially different from each other, and I could use g(Y) in
place of X. So (1.2) is asserting that I would like my choice of g to
make g(Y) as close to ‘not materially different from X’ as possible.

Theorem 1.7. The optimisation problem (1.2) is well-posed if and only if
X is square integrable.
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Proof. Expanding out the objective function in (1.2),

E
�
{X − g(Y)}2

�
= E

�
X2 − 2Xg(Y) + g(Y)2

�
.

The optimisation is well-posed exactly when all three terms on the
righthand side have finite expectations for at least one element of G.

(⇐). There are elements of G for which g(Y) is square integrable.
Then if X is square integrable so is E{Xg(Y)}, by Theorem 1.5, and
hence all three terms are finite.

(⇒). If X is not square integrable then clearly the righthand side
is not finite for any g ∈ G.

So let X be square integrable. Without loss of generality redefine
G to be

G :=
�
g : Y → R, such that g(Y) is square integrable

�

Now we derive a necessary condition for ψ to be a solution to
(1.2).12 Consider a small perturbation ψ�(y) := ψ(y) + εg(y) for 12 The material leading up to

Theorem 1.8 draws heavily on Whittle
(2000, sec. 5.3).

arbitrary g ∈ G. Then

E
�
{X − ψ�(Y)}2

�
=

E
�
{X − ψ(Y)}2

�
+ 2ε E

�
{X − ψ(Y)}g(Y)

�
+ ε2 E{g(Y)2}

Hence
E
�
{X − ψ(Y)}g(Y)

�
= 0 for all g ∈ G (1.3)

is a necessary condition for ψ to be a minimum.
On the other hand, suppose that ψ satisfies (1.3). Set g(y) ← ψ(y)− g(y)

in (1.3) to deduce that

E
�
{X − ψ(Y)}{ψ(Y)− g(Y)}

�
= 0.

Now write X − g(Y) = X − ψ(Y) + ψ(Y)− g(Y) to deduce that

E
�
{X − g(Y)}2

�
= E

�
{X − ψ(Y)}2

�
+ E

�
{ψ(Y)− g(Y)}2

�
(1.4)

as the cross-term is zero. This is minimised over g at g = ψ. Thus,
(1.3) is sufficient for ψ to be a solution to (1.2).

Finally, assign g ← ψ� in (1.4) to conclude that if ψ and ψ� both
minimise E

�
{X − g(Y)}2

�
then ψ(Y) ms

= ψ�(Y). We have proved the
following theorem.

Theorem 1.8. Let X be square integrable. Then ψ is a solution to (1.2) if
and only if (1.3) holds; such a solution exists, ψ(Y) is square integrable,
and if ψ and ψ� are two solutions then ψ(Y) ms

= ψ�(Y).

1.6.2 Notation and definitions

Notation for conditional expectation is important enough to have
its own section! I will assume that all random quantities are square
integrable.

First, we need a container for all solutions to (1.3). Therefore I
write

E(X | Y) :=
�

ψ ∈ G : ψ solves eq. (1.3)
�
. (1.5)

Typical members of E(X | Y) will be denoted ψ, ψ� and so on. So
Theorem 1.8 might have been written:
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If X is square integrable, then E(X |Y) is non-empty. If ψ,ψ� ∈ E(X | Y),
then ψ(Y) is square integrable, and ψ(Y) ms

= ψ�(Y).

Now for the definition of conditional expectation. conditional expectation

Definition 1.7 (Conditional expectation). Let X be square integrable.
The conditional expectation of X given Y is

E(X | Y) := ψ(Y)

where ψ ∈ E(X | Y).

Thus the conditional expectation is a random quantity, and it
is mean-square unique.13 It is the random quantity which best 13 ψ(Y),ψ�(Y), . . . are termed versions

of the conditional expectation.represents X using only Y , according to the loss function in (1.2).
What about the conventional expectation, given at the start

of this section? This is a fundamentally different object, because
E(X | B) is a value, not a random quantity. Hence the need for two
different notations, E and E. But E is defined in terms of E.

Definition 1.8 (Conventional conditional expectation). If B is a
random proposition and Pr(B) > 0, then

E(X | B) := ψ(1) where ψ ∈ E(X | B).

This makes E(X | B) a value with the meaning ‘the expectation
of X conditional on B being true’. The definition might seem am-
biguous, given that E(X | B) may contain many elements, but for the
following result.

Theorem 1.9. Let ψ,ψ� ∈ E(X | B). Then Pr(B) > 0 is sufficient for
ψ(1) = ψ�(1).

Proof.
�
B, B

�
is a finite sufficiently fine partition for B and for

real-valued functions of B, where B := 1− B. Hence, by the FTP
(Theorem 1.3)

E[{ψ(B)−ψ�(B)}2] = {ψ(0)−ψ�(0)}2 Pr(B)+ {ψ(1)−ψ�(1)}2 Pr(B) = 0,

since ψ(B) ms
= ψ�(B). Therefore Pr(B) > 0 implies that ψ(1) = ψ�(1).

Therefore, the condition Pr(B) > 0 in the conventional defini-
tion ought to be recognised as the condition which ensures the
uniqueness of E(X | B): it has nothing to do with ‘dividing by zero’.

Here is a little table to keep track of the different E’s:

E(X | Y) : A set of functions of y, defined in (1.5),
E(X | Y) : A random quantity, defined in Definition 1.7,
E(X | B) : A value, defined in Definition 1.8.

Remember that E(X) and E(X | B) are two completely different
objects. The first is a ‘primitive’—a reflection of my judgements.
The second is a construction arising out of my judgements: it
comes ‘for free’ once I have specified certain of my expectations (see
Theorem 1.14).
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1.6.3 Properties of the conditional expectation

Here are the most important properties of the conditional expecta-
tion, all inferred from (1.3) via Theorem 1.8. I will assume that all
random quantities are square integrable, and for simplicity I will
just use scalar Y’s. The two main properties are that E is indeed an
expectation (justifying its name and its symbol), and the Law of the
Iterated Expectation. Then there are some useful special cases.

Theorem 1.10. E(· | Y) satisfies the axioms of expectation given in
Definition 1.1, in mean-square.

Proof. This is a matter of checking the three axioms one by one. In
each case we find a ψ ∈ E(X | Y) for which ψ(Y) has the required
property in mean-square; and then E(X |Y) must have the required
property in mean-square, according to Theorem 1.8.

1. Normalisation. Let �{X = 1}. If ψ(y) = 1 then ψ ∈ E(X | Y) and
the result follows immediately.

2. Positivity.14 Let �{X > 0} and ψ ∈ E(X |Y). Let g ← ψ− in (1.3), 14 This proof adapted from Whittle
(2000, section 5.3).where

ψ−(y) :=





ψ(y) ψ(y) ≤ 0

0 otherwise.

Then, from (1.3),

E{Xψ−(Y)} = E{ψ(Y)ψ−(Y)}.

But if �{X > 0} the lefthand side is non-positive. The righthand
side is non-negative, by construction. Hence E{ψ(Y)ψ−(Y)} = 0.
But since ψ(y)ψ−(y) = {ψ−(y)}2, so E[{ψ−(Y)}2] = 0, or
ψ(Y) > 0 in mean-square.

3. Additivity. If ψ ∈ E(X |Y) and ψ� ∈ E(X� |Y) then

ψ + ψ� ∈ E(X + X� |Y),

and the result follows immediately.

Having established that E is indeed an expectation, we now turn
to the very important Law of Iterated Expectation (LIE). A simpler Law of Iterated Expectation (LIE)

expression of the LIE is given below in (1.6), along with a brief
discussion.

Theorem 1.11 (Law of Iterated Expectation).

E(X | Z) ms
= E{E(X |Y,Z) | Z}.

Proof. (Whittle, 2000, section 5.3). Let

ψ1 ∈ E(X | Z) ψ2 ∈ E(X |Y,Z) φ ∈ E
�

E(X |Y,Z) | Z
�
.
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Then three applications of (1.3) gives

E
�
{X − ψ1(Z)}g1(Z)

�
= 0

E
�
{X − ψ2(Y,Z)}g2(Y,Z)

�
= 0

E
�
{ψ2(Y,Z)− φ(Z)}g3(Z)

�
= 0.

Now set g1, g2, and g3 to φ − ψ1, and subtract the second and third
equations from the first, to get

E
�
{φ(Z)− ψ1(Z)}2

�
= 0

or E{E(X |Y,Z) | Z} ms
= E(X | Z), as was to be proved.

The next result lists some useful special cases. The proofs are not
given, being straightforward: in each case one simply verifies that
there is a ψ ∈ E which satisfies the equality, and then mean-square
equivalence of E follows from Theorem 1.8.

Theorem 1.12 (Conditional expectation, special cases).

1. E(X | X)
ms
= X, and, by extension, E(X | X,Y) ms

= X.

2. If Y = a, some constant, then E(X |Y) ms
= E(X).

3. If the elements of E(X |Y,Z) are invariant to z, then E(X |Y) ms
= E(X |Y,Z).

4. E{g(Y)X |Y} ms
= g(Y)E(X |Y).

Parts (2) and (3) can be combined to provide a simpler represen-
tation of the LIE:

E(X) = E{E(X |Y)} (1.6)

(put Z = a, some constant). This states is that I can specify my
expectation for X by thinking about my conditional expectation for
X given Y, and then thinking about my expectation of this function
of Y. It is often the case that breaking an expectation down into
two or more steps is helpful, typically because one of the steps
will be easier to assess than the others. Often E(X | Y) is quite easy
(or uncontroversial) to assess, but Y itself is a random quantity
about which I have limited judgements. In this case the convexity
property of expectation asserts that I can bound my expectation for
X by the smallest and largest values of the realm of E(X |Y).

1.6.4 The special case of a finite realm

Now consider the special case where the realm of Y is finite. In this
case we can derive an explicit representation of ψ ∈ E(X | Y). I will
continue to assume that all random quantities are square integrable,
and, for simplicity, continue to use scalar Y’s.

Initially, consider a random proposition B. Note that in the
Theorem below I have written (B = bi) for clarity, where bi ∈

�
0, 1
�
,

but of course (B = 0) = 1− B and (B = 1) = B. Below I will define
B := 1− B, where B denotes the random proposition ‘B is false’ (or
‘not B’ for short).
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Theorem 1.13. Let X be square integrable. If B is a random proposition
and φ ∈ E(X | B) then

φ(bi) =
E{X(B = bi)}

Pr(B = bi)
if Pr(B = bi) > 0

and undefined otherwise, where bi ∈
�
0, 1
�
.

Proof. The realm of B is B :=
�
0, 1
�
. Let G be the set of all real-

valued functions defined on B: these can all be written as

g(b) = α0(b = 0) + α1(b = 1) for some α0, α1 ∈ R.

Let φ be written

φ(b) = β0(b = 0) + β1(b = 1) for some β0, β1 ∈ R.

We need to find values of (β0, β1) for which (1.3) is true for all
values of (α0, α1). Let B := 1− B. I will show that

β0 =
E(XB)
Pr(B)

if Pr(B) > 0

and β1 =
E(XB)
Pr(B)

if Pr(B) > 0.

Starting from (1.3) and substituting for g and φ, (β0, β1) must
satisfy

E
�
{X − (β0B + β1B)}(α0B + α1B)

�
= 0 for all α0, α1.

This is possible if and only if

E
�
{X − (β0B + β1B)}B

�
= 0

and E
�
{X − (β0B + β1B)}B

�
= 0.

Multiplying out and taking expectations then gives

E(XB)− β0 Pr(B) = 0

and E(XB)− β1 Pr(B) = 0

because E(BB) = 0, and E(B2
) = E(B) = Pr(B), and the same for

E(B2). Focusing on β0, if Pr(B) > 0 then there is a unique solution
for β0, as given above. Otherwise, if Pr(B) = 0 then Schwarz’s
inequality (Theorem 1.2) states that

{E(XB)}2 ≤ E(X2)E(B2
) = E(X2)Pr(B) = 0

and so the equation has the form 0 − β0 × 0 = 0. Hence β0 is
undefined in this case. An identical argument holds for β1.

Here is one immediate corollary of Theorem 1.13, which follows
directly from the definition of E(X | B) given in Definition 1.8. This
theorem is the basis for all of the standard results on conditional
probability that are presented in Section 1.7.
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Theorem 1.14. Let X be square integrable. If B is a random proposition,
then

E(X | B) = E(XB)
Pr(B)

if Pr(B) > 0

and undefined otherwise.

Proof. From the definition, E(X | B) = ψ(1) where ψ ∈ E(X | B).
Setting bi = 1 in Theorem 1.13 gives the result.

Finally, consider the more general case of conditioning on Y, a
random quantity with a finite realm.

Theorem 1.15. Let X be square integrable; let Y have a finite realm,
Y :=

�
y1, . . . , ym

�
; and let ψ ∈ E(X |Y). Then

ψ(yi) = E(X |Y = yi) if Pr(Y = yi) > 0

and undefined otherwise.

This theorem states that ψ ∈ E(X | Y) takes the same value at yi

as φi(1), where φi ∈ E(X |Y = yi), thinking of (Y = yi) as a random
proposition. Plugging in from Theorem 1.14 with B := (Y = yi),

ψ(yi) = E(X |Y = yi) =
E{X(Y = yi)}

Pr(Y = yi)
if Pr(Y = yi) > 0,

and undefined otherwise. This result is probably obvious (but reas-
suring!), but it can also be proved in the same way as Theorem 1.13.

1.7 Conditional probabilities

There is nothing new to say here! Conditional probabilities are
just conditional expectations. But this section presents some of
the standard results starting from Theorem 1.14 and the following
definition.

Definition 1.9 (Conditional probability). Let A and B be random
propositions. Then

Pr(A | B) := E(A | B) if Pr(B) > 0

and undefined otherwise.

Then by Theorem 1.14 we have

Pr(A | B) = Pr(AB)
Pr(B)

if Pr(B) > 0 (1.7)

and undefined otherwise, where AB is the proposition ‘A and B’.
Eq. (1.7) is often given as the definition of conditional probability,

as stated at the start of Section 1.6. It is important to understand
this is not the definition of conditional probability—it is a theorem.
Go back and have another look at the end of Section 1.6.2 if this is
not clear. As already explained there, the restriction to Pr(B) > 0
may look like ‘not dividing by zero’, but in fact its real purpose is
to make sure that E(A | B) is uniquely defined.
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There are some useful relations between conditional probabilities,
including ‘unconditional’ probability as a special case. The first one
states that conditioning on a conjunction B2B1 gives the same result
as conditioning on B1 and then conditioning on B2.

Theorem 1.16 (Sequential conditioning).

Pr(A | B2B1) =
Pr(AB2 | B1)

Pr(B2 | B1)
if Pr(B2B1) > 0

and undefined otherwise.

Proof. From Schwarz’s inequality, Pr(B2B1) > 0 implies that
Pr(B2) > 0 and Pr(B1) > 0. Then

Pr(A | B2B1) =
Pr(AB2B1)

Pr(B2B1)
=

Pr(AB2B1)

Pr(B1)

Pr(B1)

Pr(B2B1)
=

Pr(AB2 | B1)

Pr(B2 | B1)
.

The following result is an immediate extension. Its purpose is
constructive—often it is a lot easier to specify a single probability
over a conjunction by specifying a marginal probability and one or
more conditional probabilities.

Theorem 1.17 (Factorisation theorem).

Pr(B1 · · · Bn) = Pr(B1)
n

∏
i=2

Pr(Bi | B1 · · · Bi−1),

or zero if any of the terms in the product are undefined.

Proof. It suffices to set n = 3. Then

Pr(B1B2B3) = Pr(B1)Pr(B2B3 | B1) if Pr(B1) > 0

and zero otherwise, from (1.7). But by sequential conditioning
(Theorem 1.16),

Pr(B2B3 | B1) = Pr(B2 | B1)Pr(B3 | B1, B2) if Pr(B2 | B1) > 0

and zero otherwise. Combining these gives the result. For n > 3,
the result can be iterated.

Then there is the very useful Law of Total Probability (LTP), also Law of Total Probability (LTP)

known as the Partition Theorem. Partition Theorem

Theorem 1.18 (Law of Total Probability). Let D :=
�
D1, . . . ,Dm

�
be

any finite partition. Then

Pr(A) =
m

∑
i=1

Pr(A | Di)Pr(Di),

where terms with Pr(Di) = 0 are dropped.

Proof. As ∑i Di = 1, we have

A = A
� m

∑
i=1

Di

�
and Pr(A) =

m

∑
i=1

Pr(ADi).

If Pr(Di) = 0 then Pr(ADi) = 0 by Schwarz’s inequality (Theorem 1.2),
and so such terms can be dropped. For the other terms, Pr(ADi) =

Pr(A | Di)Pr(Di) by (1.7), and the result follows.
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The LTP plays the same role as the LIE (Theorem 1.11). In par-
ticular, in situations where it is hard to assess Pr(A) directly, it
is possible to bound Pr(A) using the lower and upper limits of
Pr(A | Di) taken over all Di ∈ D.

Finally, there is the celebrated Bayes’s Theorem. Bayes’s Theorem

Theorem 1.19 (Bayes’s Theorem). If Pr(B) > 0 then

Pr(A | B) =





0 Pr(A) = 0
Pr(B | A)Pr(A)

Pr(B)
otherwise.

Proof. Two cases are required, Pr(A) = 0 and Pr(A) > 0, because
Pr(B | A) is only defined in the latter case.

First, Pr(A) = 0 implies Pr(AB) = 0, by Schwarz’s inequality.
Then (1.7) shows that Pr(AB) = 0 implies Pr(A | B) = 0 when
Pr(B) > 0.

Now consider the case where Pr(A) > 0. But then both Pr(A)

and Pr(B) are non-zero, and

Pr(AB) = Pr(A | B)Pr(B) = Pr(B | A)Pr(A)

from (1.7). Rearranging gives the result.

The first branch of Theorem 1.19 is important enough to be given
its own name, due to Dennis Lindley (see, e.g., Lindley, 1985).

Theorem 1.20 (Cromwell’s Rule). Probabilities can never be raised from
zero by conditioning.

Thus if you choose to model the learning process as probabilistic
conditioning, then you should only use zero probabilities for propo-
sitions that are impossible, because if Pr(A) = 0 then no amount of
new information ‘B is true’ can change your judgement about A.

There are several other versions of Bayes’s Theorem. For exam-
ple, there is a sequential Bayes’s Theorem:

Pr(A | B2B1) =
Pr(B2 | A, B1)

Pr(B2 | B1)
Pr(A | B1)

if Pr(A) > 0 and Pr(B2B1) > 0. And there is Bayes’s theorem for a
finite partition, D :=

�
D1, . . . ,Dm

�
:

Pr(Di | B) =
Pr(B | Di)Pr(Di)

∑j Pr(B | Dj)Pr(Dj)
i = 1, . . . ,m

if Pr(A) > 0 and Pr(B) > 0, assuming for simplicity that Pr(Di) > 0
for all i. And there is Bayes’s Theorem in odds form,

Pr(Di | B)
Pr(Dj | B)

=
Pr(B | Di)

Pr(B | Dj)

Pr(Di)

Pr(Dj)

if Pr(Di),Pr(Dj) > 0, and Pr(B) > 0.

The logic of implication. It is reassuring that conditional probability
obeys the logic of implication. B implies A exactly when B ≤ A. But if B
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implies A then AB = B, and so Pr(A | B) = Pr(B)/Pr(B) = 1. Likewise, if B
implies ‘not A’ then Pr(A | B) = 0.

Bayes’s Theorem also gives an interesting result. Let A imply B. Then

Pr(A | B) = Pr(B | A)Pr(A)

Pr(B)
=

Pr(A)

Pr(B)
≥ Pr(A).

So if Pr(B) is small, then Pr(A | B) � Pr(A). Typically A is a theory which
implies a hypothesis B, and we are interested in the degree to which
confirming the hypothesis (i.e. ‘B is true’) strengthens our belief in the
theory. Naturally, this depends on how many other theories also imply
B. If Pr(B) is small, then not many other theories imply B and hence
observing B is strongly confirmatory for theory A. These kinds of results
are discussed in Bayesian Confirmation Theory; see, e.g., Howson and Urbach Bayesian Confirmation Theory
(2006).

1.8 Probability mass functions

Consider a set of random quantities
�
X,Y,Z

�
.15 Suppose initially 15 The extension of the results in this

section to any finite number of random
quantities is immediate.

that all three random quantities are discrete; i.e. that their realms
are finite or countable. One way to summarise my judgements
about these quantities is as a probability mass function (PMF). probability mass function (PMF)

Definition 1.10 (Probability mass function, PMF). The function fX,Y,Z

is a probability mass function for discrete random quantities {X,Y,Z}
exactly when

fX,Y,Z(x, y, z) := Pr
�
X = x,Y = y,Z = z

�
.

Conditional PMFs are defined below in (1.10). The support of fX,Y,Z is support

the set
�
x, y, z : fX,Y,Z(x, y, z) > 0

�
.

This notation, which includes both the labels of the random
quantities and their arguments, is a bit cumbersome. Many statis-
ticians would write f (x, y, z), in which the labels are inferred from
the symbols used for the arguments. But this can be ambiguous
and I prefer to play it safe. Less ink is used when the set of random
quantities is written as X :=

�
X1, . . . ,Xn

�
, for which fX(x) is a

compact way of writing fX1,...,Xn(x1, . . . , xn).
In the case where all random quantities have finite realms, the

FTP completely specifies the properties of the PMF. To see this, define
the random propositions

Dxyz := (X = x)(Y = y)(Z = z) for all x ∈ X, y ∈ Y, z ∈ Z.

Then
D :=

�

x,y,z

�
Dxyz

�

is a finite sufficiently fine partition for
�
X,Y,Z

�
, because it rep-

resents the outer product of the individual realms. Note that
fX,Y,Z(x, y, z) = Pr(Dxyz). The FTP states that E is a valid expec-
tation operator if and only if

fX,Y,Z(x, y, z) ≥ 0, ∑
x,y,z

fX,Y,Z(x, y, z) = 1 (1.8)
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and
E{g(X,Y,Z)} = ∑

x,y,z
g(x, y, z) fX,Y,Z(x, y, z) (1.9)

for all real-valued g.
The FTP implies that the marginal PMFs of subsets of

�
X,Y,Z

�
marginal PMFs

are deduced from fX,Y,Z. For example, by setting g(x, y, z) ← (x = x�)(y = y�)
in (1.9), it is easily seen that

fX,Y(x�, y�) = ∑
z

fX,Y,Z(x�, y�, z)

which is the standard rule for marginalising out Z.
For conditional probabilities, the definition is

fX,Y|Z(x, y | z) := Pr(X = x,Y = y | Z = z) (1.10)

and then Theorem 1.14 and (1.7) imply that

fX,Y|Z(x, y | z) =
fX,Y,Z(x, y, z)

fZ(z)
if fZ(z) > 0 (1.11)

and undefined otherwise. Because conditional expectations satisfy
the same axioms as expectations, conditional PMFs must have the
same properties as PMFs, for all z for which fZ(z) > 0. Thus they
must be non-negative, sum to one, marginalise, and condition. All
of these properties can be inferred from (1.11).

Modern statistical practice. This almost invariably starts by specifying
marginal and conditional PMFs, constructs a joint PMF using (1.11), and
then defines all expectations using (1.9). Typically the set of random
quantities is augmented by additional random quantities termed statistical
parameters. The specification of marginal and conditional PMFs over an statistical parameters
appropriately chosen set of random quantities and statistical parameters
is the subject of statistical modelling. This can be treated as distinct from statistical modelling
statistical inference, even though in practice the two are tightly related due
to the ease with which some types of inference can be applied to some
types of model.

1.8.1* Non-finite realms

The difficulty with non-finite realms is that the axiom of finite
additivity is not strong enough to prove the (⇒) branch of the
FTP, in situations where the number of terms in the partition is
infinite. In this subsection I outline a generalisation for this case.
But it is worth stressing, once again, that operationally defined
random quantities have finite realms, and the decision to treat
X as a random quantity with a non-finite realm is made for our
convenience. Therefore it should not introduce pathologies which
would not be present were X to be represented more realistically.

Note that non-finite realms may be unbounded, so that expecta-
tions may be infinite or undefined. This can be addressed using the
generalisation outlined in Section 1.3, and so I will not worry about
it here.
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Consider the case where the realm of X is non-finite but count-
able,

X :=
�
x1, x2, . . .

�

where the xi’s are ordered. This X can be approximated by a trun-
cated version

Xn := X(X ≤ xn) + xn(X > xn)

and hence

Dn :=
�
(X = x1), (X = x2), . . . , (X = xn), (X > xn)

�

is a finite sufficiently fine partition for Xn. By construction X1,X2, . . .
is a non-decreasing sequence of random quantities for which
limn Xn = X. The idea is to approach E(X) through the E(Xn)’s, but
there is nothing in our axioms to ensure that this is valid. Therefore
we need an additional restriction on the properties of E, which
extends finite additivity to countable additivity. countable additivity

Definition 1.11 (Countable additivity). Let X1,X2, . . . be a non-
decreasing sequence of random quantities with limit X. Let E be a valid
expectation operator. Then E is countably additive exactly when

E(X) = lim
n

E(Xn).

If I accept countable additivity as a reasonable property of my
expectations, then the (⇒) branch of the FTP becomes

E(X) = lim
n

E(Xn)

= lim
n

E
� n

∑
i=1

xi(X = xi) + xn(X > xn)
�

= lim
n

� n

∑
i=1

xi fX(xi) + xn Pr(X > xn)
�

=
∞

∑
i=1

xi fX(xi) (1.12)

as might be anticipated.16 Eq. (1.12) gives the FTP for countable 16 The final term in the third line may
have the form ∞ · 0 in the limit, but the
appropriate convention in this case is
∞ · 0 = 0.

realms.
Thus there is an FTP for random quantities with non-finite count-

able realms, but only if the three axioms given in Definition 1.1 are
augmented with a fourth axiom of countable additivity. However,
this fourth axiom has a very different character.17 It is a lot less self- 17 Countable additivity implies finite

additivity, but it is best to keep it as
a separate axiom, due to its different
character.

evident, because we have no practical experience of reasoning about
infinite sequences of random quantities—only our intuition. But if
we trusted our intuition on these matters, we would not need the
axioms of expectation and all their implications in the first place. In
fact, countable additivity is philosophically controversial. But it is
almost universally accepted as a pragmatic bridge to pass over into
the convenient world of random quantities with non-finite realms.

Once countable additivity is accepted, all of the finite realm
results of the previous sections hold for countable realms as well.
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Now consider the case where the realm of X is finite or count-
able, but where the operations used to determine X are more
precise than my judgements can discern. Define

FX(x) := Pr(X ≤ x)

termed the distribution function of X. Suppose that I specify a func- distribution function

tion fX with the property that
� xi

−∞
fX(x)dx = FX(xi) for all xi ∈ X.

Then, setting x0 := −∞, and using countable additivity,

E(X) =
∞

∑
i=1

xi
�
FX(xi)− FX(xi−1)

�

=
∞

∑
i=1

xi

� xi

xi−1

fX(x)dx

≈
∞

∑
i=1

� xi

xi−1

x fX(x)dx

=
� ∞

−∞
x fX(x)dx. (1.13)

The Riemann integral is approximating a sum over a realm with a
huge number of very finely spaced points, and the reason I accept
this approximation as valid is that my specified fX respects my
judgements on the countable X, and interpolates them smoothly
between the points in X. Effectively I am approximating X with a
a convex subset of R. Eq. (1.13) gives the FTP for an uncountable
realm.

Formally, the definition of fX is

fX(x)dx := Pr
�
X ∈ [x, x + dx)

�

termed the probability density function of X, where dx is a differential probability density function

element. Going back to
�
X,Y,Z

�
, and defining fX,Y,Z in the obvi-

ous way, the FTP states that E is a valid expectation operator if and
only if

fX,Y,Z(x, y, z) ≥ 0 and
���

fX,Y,Z(x, y, z)dx dydz = 1.

The marginalisation result is

fX,Y(x�, y�)dx dy =
� �

fX,Y,Z(x�, y�, z)dz
�
dx dy.

And the conditioning result is

fX,Y|Z(x, y | z)dx dy =
fX,Y,Z(x, y, z)dx dydz

fZ(z)dz

=
fX,Y,Z(x, y, z)

fZ(z)
dx dy if fZ(z) > 0

and undefined otherwise.
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Thus valid PMFs and PDFs follow the same rules, with the only
difference being the replacement of sums with integrals, and the
inclusion of the differential elements dx dydz where appropri-
ate.18 This justifies the use of the same notation in both cases (even 18 The extension to a mixture of

discrete and continuous random
quantities is straightforward.

though the units are different). There is a more formal justification
for the use of the same notation within the unifying treatment of
Measure Theory, but this is part of the formal mathematical the-
ory of probability, rather than the practical statistical theory of
expectation and probability.

Hybrid random quantities. Just occasionally it is useful to specify a ran-
dom quantity X with an uncountable realm but with an atom of probability
of size pa at some location xa. Such a random quantity is not discrete, but it
does not have a continuous PDF. The usual way to represent X in this case
is

X = Axa + (1− A)Y

where A is a random proposition, Pr(A) = pa, Y is a continuous random
quantity, and E(AY) = E(A)E(Y). This construction can be extended to a
countable set of atoms, using a partition.



2
Making decisions

We all appreciate that actions have consequences. What interests
statisticians are those situations where the consequences are not
known at the point where the action must be chosen. We can
formalise this as follows:

• There is set of actions termed the action set, denoted A with action set

typical element a, for ‘action’.

• The consequence of an action depends on a vector of random
quantities X ∈ X, termed the state of nature. This is a conventional state of nature

label going back over half a century—it does not necessarily
connote anything ‘natural’.

• The conjunction of an action and the state of nature is repre-
sented as a scalar real-valued loss function loss function

L : A×X → R;

the value L(a, x) is the loss that is incurred on choosing action a
if the state turns out to be x.

I will treat both A and X (and Y below) as finite. Many of the
following results have analogues for non-finite sets, but these
typically require additional technical conditions (Section 2.2.2).

The two main players in a decision analysis are the statistician
(whom I will take to be male) and the client (female—although
sometimes the statistician is his own client). A third player, not
present but who must be borne in mind, is the client’s auditor.
Together the statistician and the client determine A, X, and L,
and other quantities below, to best represent the client’s needs.
The auditor is typically not present during this process, but may
critically evaluate its technical aspects, for example when reviewing
the decision/report. In many situations, the client is the agent for a
group of stakeholders, who appoint an auditor to keep an eye on her.

Smith (2010, chapter 1) provides a good introduction to decision
analysis, and to modern developments in applied decision analysis.
Cox and Hinkley (1974, ch. 11) is a helpful one-chapter summary
of the traditional theory. Berger (1985) has most of the technical
material, and there are more recent references in Robert (2007). For
foundational aspects, including why it is appropriate to minimise
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the expected loss (Section 2.1), Savage (1954) and DeGroot (1986,
notably ch. 7) are both classics.

Some sections of this chapter are starred—these can be skipped
without loss of continuity.

2.1 No-data decision analysis

In this simple analysis the client needs to choose an action without
access to any further information. There are two cases to distin-
guish. In the first, the client feels able to specify fX , her distribution
for the unknown state of nature; but in the second she does not, or
would rather not.

In the first case, it is possible to construct a complete ordering
over the elements of A, in which

a � a� exactly when E{L(a,X)} ≥ E{L(a�,X)}.

In other words, a is no better than a� exactly when the expected loss expected loss

from choosing a is at least as large as that from choosing a�. Thus
we can define the Bayes action, as the best action according to this Bayes action

ordering.

Definition 2.1 (Bayes action). Action a∗ ∈ A is a Bayes action exactly
when

a∗ = argmin
a∈A

E{L(a,X)}.

Note that a Bayes action may not be unique. Here I am treating
fX as invariant to the choice of action, for simplicity; the generalisa-
tion is discussed in Section 2.3.

The second case is more tricky, because there is no complete
ordering over the actions, and so no way to define an action as
‘best’. However, it is at least possible to rule out bad choices, which
are actions that are dominated by other actions.

Definition 2.2 (Inadmissible actions). Action a is dominated by action
a� exactly when L(a, x) ≥ L(a�, x) for all x, and L(a, x) > L(a�, x) for
at least one x. Action a is inadmissible exactly when it is dominated by inadmissible

another action. Action a is admissible exactly when it is not inadmissible. admissible

If the loss function has been carefully considered, then recom-
mending an inadmissible action is simply a mistake, and cannot be
defended. Suppose it was possible to establish whether any action
was admissible or inadmissible. In this case, the auditor could quite
reasonably insist that the statistician prove that the recommended
action is admissible. And this indeed this is possible, as I now
show.

First, it is necessary to broaden the set of available actions. An
action in A is termed a pure action. But it is also possible to have pure action

mixed actions, which are random combinations of the actions in A.
Let Sm−1 be the unit (m − 1)-simplex unit (m − 1)-simplex
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Sm−1 := {w ∈ Rm : wi ≥ 0, ∑
i

wi = 1}.

If A is of size m and w ∈ Sm−1, then w · a is a mixed action where mixed action

action ai is randomly selected with probability wi. The loss for a
mixed action is

L(w · a, x) = ∑
i

wi L(ai, x),

which is the expected loss over the random choice of action. With
this broader set of actions, pure actions can be dominated by mixed
actions even if they are not dominated by other pure actions; see
Figure 2.1. For us, mixed actions are just a device. The statistician
would not tell the client, “You should randomly select action ai

with probability wi”—see the end of this section.

Loss in state 1
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Figure 2.1: The pure action a3 is
dominated by some mixtures of a1 and
a2.

Now it is possible to prove that Bayes actions are admissible
actions, and vice versa.

Theorem 2.1 (Bayes actions and admissible actions). Let A and X be
finite.

1. If the support of fX is X, then a Bayes action is admissible.

2. Allowing for mixed actions, every admissible action is a Bayes action
for some fX with support X.

Proof. Recollect that the support of fX is the set
�
x ∈ X : fX(x) > 0

�
.

So in both parts of this proof, we have fX(xj) > 0 for all xj ∈ X.

1. This proof holds for general A and X, subject to the condition
that A is restricted to those elements for which E{L(a,X)} is finite.
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Figure 2.2: The set of pure actions, the
convex hull of mixed actions, and the
admissible actions.

Suppose, that a Bayes action a∗ is inadmissible, being dominated
by some other pure action a�. But in this case

E{L(a�,X)} = ∑
j

L(a�, xj) fX(xj)

< ∑
j

L(a∗, xj) fX(xj) because a� dominates a∗

= E{L(a∗,X)},

where the inequality is strict because the support of fX is X. Hence
a∗ could not be a Bayes action because a� has a smaller expected
loss: a contradiction. Thus the Bayes action must be admissible.

2. This proof uses concepts from convex analysis; see Whittle (2000, convex analysis

section 15.2). In particular, the characterisation of boundary points
is the supporting hyperplane theorem. Both A and X must be finite. supporting hyperplane theorem

Let L be the (m × n) matrix with ij component L(ai, xj), and
denote one row of L as Li. Here Li ∈ Rn represents the loss vector
for action i. Allowing for mixed actions, the set of all possible loss
vectors is

[L] :=
�
� ∈ Rn : � = ∑i wi Li for some w ∈ Sm−1

�
,

termed the convex hull of
�
L1, . . . , Lm

�
. See Figure 2.2. The admis- convex hull
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sible actions are all those actions with losses on the southwest
boundary of this convex hull. Now � is on the boundary of [L] if
and only if there is a p ∈ Rn such that

p · � = c, where c := inf
��∈[L]

p · ��.

For � to be on the southwest boundary, p · (�+ d�) > c for all d� > 0,
which in turn implies that p � 0.1 Thus if w · a is an admissible 1 Notation. If x and y are vectors, then

(i) x > y exactly when xi ≥ yi for all
i and xi > yi for some i; (ii) x � y
exactly when xi > yi for all i.

action with loss vector �, and w� · a is any action with loss vector ��,
then there is a p � 0 for which

∑
j

pj L(w · a, xj) ≤ ∑
j

pj L(w� · a, xj).

And hence w · a is a Bayes action for fX(xj) := pj
�

∑j� pj� , where the
support of fX is X.

If the client specifies an fX with support on the whole of X, then
the first part of the theorem shows how the statistician can ensure
that the recommended action is admissible by choosing a Bayes
action. The second part of the theorem shows that all admissible
actions can be represented this way. In other words, there is always
an fX implicit in the choice of an admissible action. So the auditor
can say to the statistician,

“Prove to me that the action you have recommended is admissible, by
providing an fX under which it is the Bayes action.”

And even if the statistician can produce such an fX his ordeal is still
not over, because now the auditor can ask him to defend this choice
of fX as a reasonable representation of the client’s judgements.
Therefore if admissibility is taken to be a minimal requirement for
any defensible action, there is really no evading eliciting an fX from
the client.

Finally, just to clear up the situation with mixed actions, the
following theorem shows that it is never necessary to recommend a
mixed action, on the basis of minimised expected loss.

Theorem 2.2. Suppose that w · a is an admissible mixed action. Let fX
be the distribution under which this is a Bayes action; such a distribution
must exist according to Theorem 2.1. For this fX there is an admissible
pure action with the same expected loss as w · a.

Proof. Admissible mixed actions lie in the interior of facets of the
convex hull of the rows of the loss matrix. Every point on the facet
is admissible and has the same expected loss; this includes the
corner points, which are pure actions.

2.2 With-data decision analysis

Suppose that the client will know the value of some observations observations

Y at the time when the choice of action must be made. For this
section I will assume that the client is able to specify the conditional
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distribution fY|X. For many types of observation this would be
reasonable; for example, Y might be imperfect measurements on
a subset of X, or a subset of the population represented by X, or
causally dependent on X. The more general case is discussed in
Section 2.5.

The dependence of the choice of action on the value of the
observations is represented as a decision rule decision rule

δ : Y → A.

Hence if δ(y) = a then δ is a rule that says “choose a when Y= y”.
Rather than looking for the optimal action, now we look for the
optimal rule. The space of all rules is denoted D. We can have pure
rules and mixed rules.

Happily, it will turn out that this analysis is analogous to the
no-data analysis. First, it is necessary to define some terms.

Definition 2.3 (Risk function). R : D× X → R is a risk function risk function

exactly when
R(δ, x) = E

�
L(δ(Y), x) | X = x

�
.

In a risk function, the expectation is taken over Y conditional
on X = x. The risk function is like the loss function, except with
a rule instead of an action. An admissible rule is one which is not admissible rule

dominated by any other rules.
If the client is able to specify fX, her distribution for X, then we

can also define the integrated risk. This is like the expected loss,
except with a rule instead of an action.

Definition 2.4 (Integrated risk). R : D → R is the integrated risk integrated risk

exactly when
R(δ) = E

�
L(δ(Y),X)

�
.

The expectation in the integrated risk is over the joint distribu-
tion of {X,Y}. The risk function and the integrated risk are related
through the LIE (Theorem 1.11 and eq. (1.6)):

R(δ) = E
�
L(δ(Y),X)

�

= E
�

E{L(δ(Y),X) | X}
�

by the LIE

= E
�
R(δ,X)

�
,

where the expectation in the final line is over the client’s distribu-
tion for X.

Finally, the Bayes rule is like the Bayes action, except that it min-
imises the integrated risk instead of the expected loss. Computing
the Bayes rule is discussed in Section 2.2.1.

Definition 2.5 (Bayes rule). δ∗ : Y → A is a Bayes rule exactly when Bayes rule

δ∗ = argmin
δ∈D

R(δ).
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Precisely the same reasoning as before, with δ instead of a and
R(δ, x) instead of L(a, x), gives the following theorem (the analogue
of Theorem 2.1). Note that the space of all possible pure rules is
finite, if A and Y are finite.

Theorem 2.3 (Bayes rules and admissible rules). Let A, X, and Y be
finite.

1. If the support of fX is X, then a Bayes rule is admissible.

2. Allowing for mixed rules, every admissible rule is a Bayes rule for some
fX with support X.

The analogous result that every mixed rule can be replaced by
a pure rule with the same integrated risk also holds (Theorem 2.2).
And the same conclusions hold: if the statistician is going to rec-
ommend a rule to the client, it might as well be a Bayes rule for
a defensible choice of fX. More general situations, with the same
conclusion, are outlined in Section 2.2.2.

* * *
A decision rule is like a playbook. Before knowing the value of playbook

the observations, the client is able to say how she would act for
each possible outcome in Y. Thus, a decision rule is about being
prepared. If the client is responsible for real-time risk management,
then she can respond rapidly to the observations as they come in,
as the Bayes action has already been computed (see Section 2.2.1).

Of course it is rarely that simple in practice, as the actual obser-
vations will tend not to be precisely the ones that were anticipated,
and not a superset of them either. In this situation the decision rule
is more about guidance: the client might find a y in the playbook
that is sufficiently like the actual observations that δ(y) is a rea-
sonable candidate for a good action. And presumably the process
of computing the decision rule, involving specifying an action set
and a loss function and thinking about uncertainty, also equips the
client to make better decisions under pressure.2 2 “Plans are worthless, but planning is

everything.”, Dwight D. Eisenhower,
1957.

In other situations, where a rapid response is not required,
decision rules are important in experimental design (Section 2.3),
but less so in choosing between actions. If the observations are
already known, say Y = yobs, then there is little reason to compute
the decision rule for any value of y other than yobs. Generally, it is
helpful to distinguish between a pre-data analysis, where Y is known pre-data analysis

but the value of Y is not, and a post-data analysis, where Y is known post-data analysis

to take the value yobs. Chapter 4 is all about post-data analysis.

2.2.1 Computing the Bayes rule

Computing the Bayes rule looks like a difficult problem, because
the minimisation is over the space of functions which map Y to A,
which might be a very inconvenient space to work with. But in fact
there is a celebrated result which shows that this problem is much
easier than it appears.
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Theorem 2.4 (Bayes rule theorem). The Bayes rule is

δ∗(y) = argmin
a∈A

E{L(a,X) | Y=y} for each y ∈ Y. (†)

In other words, one simply minimises the expected loss condi-
tional on Y = y to find the optimal action δ∗(y).

Proof. Let δ be any rule. For any y,

E[L(δ(y),X) | Y=y] ≥ min
a

E[L(a,X) | Y=y]

= E[L(δ∗(y),X) | Y=y]

using the definition in (†). Hence, using the LIE and the monotonic-
ity property of expectations, if δ is any rule, then

R(δ) = E{L(δ(Y),X)}
= E{E[L(δ(Y),X) | Y]}
≥ E{E[L(δ∗(Y),X) | Y]}
= E{L(δ∗(Y),X)}
= R(δ∗)

showing that δ∗ is an optimal rule, as its integrated risk is the lower
bound of all possible rules.

Thus the Bayes rule can be deduced from the client’s A, L, fY|X,
and fX . The statistician’s role is:

1. Helping the client to quantify her judgements for A, L, fY|X , and
fX ;

2. Computing fX|Y from fX and fY|X , by Bayes’s Theorem (Theorem 1.19);

3. Minimising E{L(a,X) | Y = y} over a to find δ∗(y).

If there is a line to be drawn between statistical inference and
decision theory it lies between inferring fX|Y, which is statistical in-
ference, and recommending an action, which additionally requires
an action set and a loss function. Conceivably, the same statistical
inference could serve many different clients, if all clients were to
agree on fY|X and fX .

2.2.2* Complete class theorems

The results presented in Theorem 2.3 hold for finite A, X, and Y.
As discussed in Chapter 1, notably Section 1.3 and Section 1.8.1,
there will be times when the statistician wants more general results,
covering the cases where these sets are non-finite, and possibly
non-bounded. The mathematics is complicated, but there are some
general conclusions which emerge.3 3 This material borrows heavily from

Berger (1985, ch. 8).It is helpful to classify sets of rules in the following way.
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Definition 2.6 (Complete class). The set of rules C ⊂ D is complete complete

exactly when every δ �∈ C is dominated by a δ� ∈ C. The set C� is minimal
complete if it is the smallest possible complete class. minimal complete

It is easy to check that if C is complete and δ �∈ C, then δ is
inadmissible; that there can be δ� ∈ C which are also inadmissi-
ble (dominated by other members of C); and that if C� is minimal
complete it is exactly the class of admissible rules. Therefore the
simplest guideline for favouring admissible rules is only to select
rules from a complete class. In this way the statistician will not al-
ways find an admissible rule (unless his class is minimal complete)
but at least he has the possibility of finding an admissible rule. Once
he strays outside a complete class, he has no possibility of finding
an admissible rule. In other words, being in a complete class is a
necessary condition for admissibility.

Now it is possible to give a more general result for the case
where both A and X are finite. If the loss function is bounded below,
then the set of Bayes rules is a complete class, and the set of admissible
Bayes rules is a minimal complete class (Berger, 1985, sec. 8.2.3). This
generalises Theorem 2.3 because it does not require fX to have
support on the whole of X; see Figure 2.3. A very similar result is
available for the case where A is non-finite. Loss in state 1
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ss

 in
 s
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 2

Figure 2.3: Admissible Bayes rules
(solid line) form a minimal complete
class. The dashed line shows Bayes
rules which are not admissible.

However, the extension to non-finite X is more complicated. In
this case it turns out that Bayes rules do not form a complete class,
and it is necessary to introduce a more general type of rule. I will
treat X as a continuous random quantity with an uncountable
realm, as this is the common case.

A real-valued function gX on R for which gX(x) ≥ 0 and�
gX(x)dx = ∞ is said to be an improper PDF if taken as a PDF improper PDF

for X. Nevertheless, the conditional distribution of X given Y,

fX|Y(x | y) ∝ fY|X(y | x) gX(x)

may still be a proper PDF, if the first term on the righthand side
has sufficiently tight tails as a function of x for given y. The use of
improper PDFs for X allows for more general Bayes rules.

Definition 2.7 (Generalised Bayes rule). δ∗ is a generalised Bayes
rule exactly when it is a Bayes rule for an improper PDF for X. generalised Bayes rule

The general result is that, in many situations, the union of Bayes
rules and generalised Bayes rules forms a complete class (Berger, 1985,
sec. 5.8). Or, to put it another way,

“. . . all admissible procedures are approximately Bayes. [. . . ] So not
much is lost by confining attention to Bayes procedures.” (Diaconis
and Freedman, 1986, p. 10)

Improper PDFs are often limits of proper PDFs,4 and therefore the 4 Here is the most common instance.
Let φ be the PDF of a standard Normal
random quantity. Then φ(x/σ)/σ is
the PDF of a Normal random quantity
with expectation zero and variance σ2,
and limσ→∞ φ(x/σ)/σ is the improper
uniform distibution on the whole of R.

set of generalised Bayes rules can be thought of as the boundary of
the set of Bayes rules, and the union of Bayes rules and generalised
Bayes rules can be thought of as the closure of the set of Bayes
rules.
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2.3* More complicated decisions

The two complications we need to analyse are where the client’s fX
depends on her choice of action, and where multiple decisions must
be made sequentially. Here I consider a classic situation where
an experiment is chosen and performed, and then an action is
chosen: termed experimental design. This was first analysed in detail experimental design

by Raiffa and Schlaifer (1961, chapter 1); generalisations to finite
sequences of decisions are straightforward, although the notation
gets intense (see, e.g., Bernardo and Smith, 2000, sec. 2.6).

A sequential decision analysis can be effectively represented
in terms of a rollback tree (see Smith, 2010, ch. 2, which also dis- rollback tree

cusses other types of decision tree). This is a type of graph termed
a rooted tree5 in which actions are represented with square vertices, 5 A connected graph with no cycles,

and a designed root which in our
case represents the first decision to be
made.

and random quantities with round ones. The actions and random
quantities are represented sequentially, so that any action or ran-
dom quantity in the path from the root to a vertex has the capacity
to affect that vertex, either by being known at the time where the
decision is made, or by having an effect on the outcome.

●

●

Choice of
experiment, e

Measurement, Y Choice of
action, a

State, X   Loss

  L(e, a, x)

Figure 2.4: Rollback tree for experimen-
tal design.One path through the rollback tree for experimental design is

shown in Figure 2.4. Initially, an experiment is chosen from a finite
set E := {e0, e1, . . . , ek}. Then observations Y ∈ Yi are made, where
Yi is the realm for experiment i. Then an action a ∈ Ai is chosen,
where the action space might also depend on the experiment. The
loss incurred depends on the experiment, the action, and the state
of nature, X; hence the loss function has the form L(e, a, x).6 6 I am simplifying here by treating

the loss as invariant to the value of
Y, but allowing this would cause no
additional difficulties.

The two random quantities in this analysis are X and Y, and the
client’s uncertainty is represented in a joint distribution fX,Y(x, y; e, a).
The presence of e and a indicate that this joint distribution depends
on the experiment that was done (because this determines the
realm of Y), and also on the action chosen. Thus e and a are control
parameters, not random quantities, and by convention they are
included as arguments after a semicolon.

It is quite common that a distribution for the state of nature X
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will depend on a. For example, climate change mitigation strategies
such as geo-engineering are designed to alter future weather. More
local interventions have the same intention. For example, building
a levee does not change the weather, but it does change the impact
of a flood following a storm. In both of these examples some un-
certain thing in the future (X) will change as a result of the client’s
choice of action (a), and so the client’s distribution for the thing
should depend on the chosen action.

From the joint distribution for {X,Y} we can derive the client’s
conditional and marginal distributions, notably fX|Y(x | y; e, a),
fY(y; e, a), and fX(x; e, a). The second of these has the property

fY(y; e, a) = fY(y; e),

that is, any distribution for the outcome of a experiment is invariant
to the chosen action, which happens subsequently.

There is an attractive way to process a rollback tree, which is to
start from the final decision and work backwards, termed backward
recursion. This implements Bellman’s principle of optimality. backward recursion

Bellman’s principle of optimality
Definition 2.8 (Bellman’s principle of optimality). When making any
choice, assume that all future choices will be made optimally.

So, starting at the end of the rollback tree, the first step is to
decide on the optimal choice of action, for a given experiment and
observations. For this simple analysis, we can just use a Bayes rule,
which is

δ∗(ei, y) := argmin
a∈Ai

E{L(ei, a,X) | Y=y; ei, a}.

The minimised risk at this point is then

R∗(ei, y) := E
�
L(ei, δ∗(ei, y),X) | Y=y; ei, δ∗i (ei, y)

�
.

We ought not to call it the Bayes risk (just yet), so instead call it the
CJO risk, where CJO stands for current judgement optimal (Smith, current judgement optimal

2010, sec. 2.5).
Now we have to choose the experiment. Bellman’s principle is to

select the experiment with the smallest CJO risk, now treating Y as
unknown. The CJO risk for experiment i is

R∗(ei) := E{R∗(ei,Y); ei},

where there is no a in the arguments of the expectation because the
marginal distribution of Y is invariant to a. Then the optimal exper-
iment is e∗ := argmine R∗(e). The CJO risk of the whole decision
analysis is R∗ := R∗(e∗).

There is no doubt that backward recursion will result in a strat-
egy {e∗, δ∗}. What is not at all obvious is that {e∗, δ∗} is a Bayes
rule; nevertheless, it is true under very natural conditions (Whit-
tle, 1996, Appendix B). The proof is trickier than you might think,
because of the mixture of random quantities and optimisation, and
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simple proofs tend to ignore the important possibility that (e, a) can
affect the client’s distribution for X.

In the case where the experiment is fixed but the choice of action
affects the client’s uncertainty about the state of nature, the Bayes
rule is easily seen to be

δ∗(y) := argmin
a∈A

E{L(a,X) |Y = y; a},

applying a simple generalisation of Theorem 2.4.

2.3.1* Influence diagrams

Rollback trees are thorough but they involve a lot of branching.
Influence diagrams are more helpful in the early stages of structuring Influence diagrams

and visualising a decision analysis (Clemen, 1996, chapter 3). The
influence diagram for the no-data analysis in Section 2.1 is��������X

��
a ��

�� ���� ��Loss

Rectangles represent choices, circles represent random quantities,
and rounded rectangles represent consequences. Edges indicate
either relevance or sequence; edges into random quantities or con-
sequences represent relevance, while edges into actions represent
sequence, showing what is known at the point where the choice is
made.

The influence diagram for the with-data analysis (Section 2.2) is��������Y

��

��������X��

��
a ��

�� ���� ��Loss

The edge from X to Y shows that the value of X is relevant for the
value of Y, and the edge from Y to a shows that Y will be known
when a is chosen.

The influence diagram for the experimental design analysis of
this section is ��������Y

��

��������X��

��

e ��

����������

����������������� a

���������� �� ���� ��Loss

The edge from e to ‘Loss’ represents the additional costs incurred
in performing the experiment. It is tempting to add an edge from
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a to X, to show that the action affects judgements about the state
of nature. But this would create a closed loop, which is logically
invalid. Instead, X can be split into ‘past and current X’, say Xp,
which affects Y, and ‘future X’, say Xf , which can be affected by a:��������Xp

����
��

��
��

��

���
��

��
��

��
�

��

��������Y

��

��������Xf

����
��

��
��

��
��

��
��

e ��

����������

����������������� a

����������

��������������������

�� ���� ��Loss

2.4* Valuing information

Someone trustworthy7 claims to know the actual value of Y—how 7 Unstrustworthy is another interesting
problem.much should the client pay for this information? The obvious point

to make is that it depends on her action set and her loss function.
For simplicity, I will assume in this section that the client’s loss
function is expressed in currency.

It helps to consider some extreme cases. First, suppose that the
client does without the information. In that case, her expected loss
would be

R∗ := argmin
a∈A

E{L(a,X)}.

Second, suppose that the information is free. In the special case
where the information completely determined X, her expected loss
would be

R∗∗ := E{min
a∈A

L(a,X)},

because X would be known before the action was chosen. In the
more general case, her expected loss would be R(δ∗), the min-
imised integrated risk. These three expected losses must satisfy the
inequalities

R∗∗ ≤ R(δ∗) ≤ R∗,

the first inequality because Y cannot be more than perfectly infor-
mative, and the second because ignoring Y is a possible rule.

Now suppose that the client is contemplating paying p for the
information. Clearly she would be happy with p = 0, but what is
the most that she would pay? Adding p to the loss function, the
largest acceptable value of p satisfies

R(δ∗) + p ≤ R∗.
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Hence she would pay p < pmax, where pmax := R∗ − R(δ∗). But
finding pmax involves computing the Bayes rule. An upper bound
on pmax can be found using

pmax = R∗ − R(δ∗) ≤ R∗ − R∗∗.

This final term R∗ − R∗∗ is the Expected Value of Perfect Information
(EVPI). Expected Value of Perfect Information

(EVPI)The EVPI is quick to compute, because it is not necessary to
introduce Y at all. Its value depends on the richness of the client’s
action set, and on the sensitivity of the loss function to different
actions. It is a very good recommendation that a client contem-
plating a decision should first compute her EVPI. Then she will
have a much clearer idea about how much she should pay for the
observations Y, and whether or not she should hire a statistician to
compute the Bayes rule and the minimised integrated risk.

2.5 Statistical parameters

This section is in some ways an iteration of Section 2.2, being a
repackaging of the with-data analysis in the same way that the
with-data analysis was a repackaging of the no-data analysis. The
difference is that we are about to introduce new quantities, sta-
tistical parameters, which are extremely subtle and interpreted in statistical parameters

different ways by different tribes of statisticians.
The objective of introducing statistical parameters is to constrain

the set of distributions in which fX,Y lies. The two interpretations
are as follows.

1. The client judges that her distribution for {X,Y} lies in some
parametric class. This class is defined by a parameter space Ω and parameter space

a family of statistical models fX,Y;θ . Her judgement is statistical models

There exists a θ ∈ Ω such that

Pr(X = x,Y = y) = fX,Y;θ(x, y; θ)

for every {x, y} in X× Y.

It is traditional in this interpretation to separate the {x, y} and θ

arguments in the statistical model with a semicolon, to empha-
sise that θ is not a random quantity but an index.

2. The client finds it helpful to structure her distribution for {X,Y}
using a set of auxiliary random quantities θ ∈ Ω, a family of
statistical models fX,Y|θ , and a prior distribution πθ for which

Pr{θ ∈ [t, t + dt)} := πθ(t)dt.

Her judgement is

fX,Y(x, y) =
�

fX,Y|θ(x, y | t)πθ(t)dt.

In this interpretation θ are random quantities, whose role is to
help the client structure her judgements. The statistical model is
a conditional probability distribution.
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No matter what the interpretation, the parameter space Ω is
usually finite-dimensional and convex, and I will take Ω to be a
convex subset of Rd. I will also settle on the notation

statistical model := fX,Y|θ(x, y | t)

because whether or not θ is a random quantity, it is definitely not
a control variable, and I think it is a useful convention to use a
semicolon to identify control variables (as in Section 2.3).

The formal effect of introducing parameters into the distribution
of {X,Y} is to replace X with θ. Hence the risk function becomes

R(δ, t) := E
�
L(δ(Y),X) | θ = t

�
,

where the expectation is taken over {X,Y} | (θ = t). If a prior
distribution πθ is specified, the integrated risk becomes

R(δ) := E
�
L(δ(Y),X)

�

= E
�

E{L(δ(Y),X) | θ}
�

by the LIE

= E{R(δ, θ)},

where the final expectation is taken over πθ . All of the previous
results regarding admissibility and Bayes rules still hold, except
with θ rather than X and πθ rather than fX. So, for the record
(and taking Ω to be finite—the generalisation was discussed in
Section 2.2.2),

Theorem 2.5 (Bayes rules and admissible rules again). Let A, Y, and
Ω be finite.

1. If the support of πθ is Ω, then a Bayes rule is admissible.

2. Allowing for mixed rules, every admissible rule is a Bayes rule for some
πθ with support Ω.

The analogous result that every mixed rule can be replaced by a
pure rule with the same integrated risk also holds (Theorem 2.2).

* * *

There is, however, a difference in interpretation. In Section 2.1
and Section 2.2 the client may have been reluctant to specify a
distribution for X, but at least she acknowledged that X was a
random quantity. But now the situation is not so clear: θ is not
operationally defined. In the first interpretation it is a manifestation
of the client’s difficulty in making a precise statement about {X,Y};
in the second, it is a device to structure fX,Y. This is the point at
which statisticians split into different tribes. Bayesian statisticians are Bayesian statisticians

prepared to provide a πθ , but Frequentist statisticians are reluctant Frequentist statisticians

to provide a πθ for something which they do not consider to be a
random quantity.

Unfortunately, Frequentist statisticians are trapped by Theorem 2.5,
if they want to avoid inadmissible rules. There are two possible
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responses. The first is to agree that admissibility is a minimal re-
quirement for any defensible rule, and so to use a prior distribution
over Ω, even though θ is not thought of as a random quantity. Ac-
cording to the duck test8 these statisticians are effectively Bayesian, 8 If it looks like a duck, swims like a

duck, and quacks like a duck, then it is
probably a duck.

although they can be identified by their strong preference for choos-
ing the prior distribution according to a rule.9 Recently this practice 9 See Kass and Wasserman (1996) for a

review of possible rules.has acquired the label ‘objective Bayes analysis’—in contrast to
‘subjective Bayes analysis’, where πθ is an opportunity for the
client to incorporate her judgements into the decision analysis. Of
course ‘objective’ is hardly appropriate, given the amount of judge-
ment that must go into the statistical model (and the loss function).
Berger (2006) and Goldstein (2006) put the contrasting viewpoints.

The second response is to abandon admissibility. This is not
terra incognito, because a large amount of statistical theory was
developed before admissibility and the complete class theorems
were properly understood; this theory is mostly inadmissible, but
its methods are often cheap, where they are applicable, and it
has endured. The idea is to replace θ in the risk function with an
estimator of θ based on y. Armed with an estimator, say θ̃ : Y → Ω, estimator

the optimal rule becomes

δ̃(y) := argmin
a∈A

R
�
a, θ̃(y)

�
for each y ∈ Y,

which I will term the plug-in rule. plug-in rule

In general there is no reason at all for the plug-in rule δ̃ and the
Bayes rule δ∗ to agree, since not only are the objective functions
different in the two cases, but one depends on the choice of estima-
tor, θ̃, and the other depends on the choice of prior distribution, πθ .
The plug-in rule is unlikely to be admissible. But in some circum-
stances, some estimators give rise to plug-in rules which are very
similar to Bayes rules, and are therefore effectively admissible. Esti-
mators are covered in more detail in Chapter 5, and admissibility of
the plug-in rule in Section 5.4.

2.6 Choosing between two hypotheses

This is one of the most studied situations, and it has a complete
answer. The decision is to choose between two hypotheses, tradi-
tionally termed H0 and H1. We can treat θ ∈ Ω := {0, 1} as the
index of the two hypotheses, and the action set is also A = Ω. The
client’s loss function can be written

L(a, t) =
t = 0 t = 1

a = 0 c00 c01
a = 1 c10 c11

where making a mistake causes a larger loss, so that c00 < c10 and
c11 < c01. Observations are available, with distributions

H0 : Y ∼ f0 and H1 : Y ∼ f1
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under the two hypotheses. It is the fact that f0 and f1 are differ-
ent under the two hypotheses that allows us to use Y to choose
between them.

Now suppose that the client has prior probabilities

Pr(θ = 0) = π0 and Pr(θ = 1) = π1

where there is no necessity for π0 + π1 = 1, because H0 and H1 may
be just two of a large collection of possible hypotheses. The Bayes
rule solves

δ∗(y) = argmin
a∈Ω

E{L(a, θ) | Y = y}

(Theorem 2.4). Thus the Bayes rule will select H0 when the condi-
tional expected loss for choosing H0 is less than that for choosing
H1,

c00 fθ|Y(0 | y) + c01 fθ|Y(1 | y) < c10 fθ|Y(0 | y) + c11 fθ|Y(1 | y),

or, after rearranging,

fθ|Y(0 | y)
fθ|Y(1 | y)

> c where c :=
c01 − c11
c10 − c00

> 0. (†)

But Bayes’s Theorem states

fθ|Y(t | y) =
ft(y)πt

fY(y)
for t = 0, 1,

and so (†) can be written

f0(y)
f1(y)

> c� where c� := c
π1

π0
> 0.

Following exactly the same reasoning for when the Bayes rule will
select H1 gives the result:

δ∗(y) =





0 f0(y)
f1(y)

> c�

toss a coin f0(y)
f1(y)

= c�

1 f0(y)
f1(y)

< c�.

for some c� > 0. (2.1)

According to Theorem 2.5, this is precisely the form of all possible
admissible rules, and we summarise this in the following result.

Theorem 2.6 (Choosing between two hypotheses). A rule for choosing
between two hypotheses H0 and H1 is admissible if and only if it has the
form f0(y)/ f1(y) ≷ c for some c > 0.

* * *

The ratio f0(y)/ f1(y) has acquired several different names. If f0
and f1 are both directly specified distributions then it is termed the
likelihood ratio for H0 versus H1. When parameters are involved, so likelihood ratio

that
f0(y) =

�
fY|ψ(y | v)πψ(v)dv
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and possibly similarly for f1 (with a different statistical model and
parameter space) then it is termed the Bayes factor for H0 versus H1. Bayes factor

I will refer to f0(y)
�

f1(y) as the odds ratio for H0 versus H1: odds ratio

odds ratio for H0 versus H1 :=
f0(y)
f1(y)

=
Pr(Y = y | H0)

Pr(Y = y | H1)
.

The term ‘odds’ refers to a ratio of probabilities. Thus π0/π1 is
the prior odds for H0 versus H1, and fθ|Y(0 | y)

�
fθ|Y(1 | y) is the

posterior odds. Applying Bayes’s Theorem in odds form (see after
Theorem 1.19),

fθ|Y(0 | y)
fθ|Y(1 | y)� �� �
posterior
odds

=
f0(y)
f1(y)� �� �
odds
ratio

× π0

π1����
prior
odds

and hence f0(y)
�

f1(y) is the ratio of the posterior odds to the prior
odds, hence ‘odds ratio’.

If the odds ratio is greater than one, then the observations y
have changed the balance of probabilities between H0 and H1 in
favour of H0. An odds ratio greater than one does not mean that
H0 is more probable than H1. For example, if the prior odds for H0

versus H1 is 0.1 and the odds ratio is 2 then the posterior odds is
0.2, and H1 is still five times more probable than H0. But if the odds
ratio is, say, larger than 100, the posterior odds will favour H0 for
any reasonably balanced prior odds, and hence a large odds ratio
is often taken as strongly supportive of H0 over H1. Of course this
does not mean that the client should choose H0. She should also
consider the costs of making a mistake, captured in c. But if these
costs are also reasonably balanced, then a large odds ratio for H0

versus H1 would suggest choosing H0 over H1.
Exactly the same reasoning applies in reverse if the odds ratio

is small, say less than 0.01, which would suggest choosing H1 over
H0.

Several authors, notably Jeffreys (1961, App. B), have proposed
a scale for the odds ratio with conventional labels indicating the
strength of evidence. Thus the statistician might report to the client
that there is ‘very strong evidence’ for H0 over H1, rather than
saying that the odds ratio for H0 versus H1 is, say, 55 (2 sf).10 But 10 ‘Very strong evidence’ indicating an

odds ratio of between 103/2 and 102.the odds ratio is not a very complicated concept, and I think it
would be better to present the value itself. In this way the client can
assess her posterior odds for a range of prior odds, and her choice
between H0 and H1 for a range of possible costs.

Lindley (1991) presents an interesting application of this decision
analysis, where H0 and H1 represent the innocence or guilt of a
defendant in a court of law. Each piece of evidence is summarised
in terms of its odds ratio, and the combined odds ratio for all of the
evidence is the product of the odds ratios for each piece. Lindley
also discusses prior probabilities, and society’s loss function.
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2.6.1* The Neyman-Pearson approach

What happens in the situation where the client feels unable to
provide a c� in (2.1). There is a theory for this situation, associated
with the statisticians Jerzy Neyman and Egon Pearson, and known
as the Neyman-Pearson (NP) approach. For each possible value of c�, Neyman-Pearson (NP) approach

compute

α(c�) := Pr

�
f0(Y)
f1(Y)

< c�
��� H0

�
and β(c�) := Pr

�
f0(Y)
f1(Y)

> c�
��� H1

�

where α and β are termed the Type 1 and Type 2 error levels, re- Type 1 and Type 2 error levels

spectively. That is, α(c�) is the probability of incorrectly choosing
H1, and β(c�) is the probability of incorrectly choosing H0. Then,
among all the possible values of

�
α(c�), β(c�)

�
, choose that c� which

gives the best trade-off between the two errors. No further guidance
is possible about what constitutes a good trade-off. The conven-
tion is to make the status quo hypothesis H0, and set c� so that
α(c�) ≈ 5%; although a very large β(c�) in this situation might
prompt an increase in c� (giving a larger α and a smaller β).

In the special case where it is also possible to control n, the num-
ber of observations, one can go further, and find the smallest value
of n for which there exists a c� satisfying α(c�) ≤ α0 and β(c�) ≤ β0.
Common values from medical science would be α0 = 5% and
β0 = 20%.11 These are purely conventional values. 11 Still trying to track down a source

for these values.There is no doubt that one could adopt the NP approach to de-
ciding between H0 and H1. But it seems self-evident that decisions
ought to take account of costs of errors, and of existing informa-
tion about which of the two hypotheses is more probable, a priori.
Conventional thresholds for α and β completely ignore these fac-
tors. Moreover, were I the client, I expect I would find it easier to
specify c and π0/π1 than to specify which point on

�
α(c�), β(c�)

�
I

prefer. Savage et al. (1962, pages 63–67) provides a more detailed
discussion on this issue.

Rothman et al. (2008, ch. 10) provides a non-technical assessment
of hypothesis testing (and related methods) in epidemiology.
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Statistical modelling

This chapter defines the notion of conditional independence, and
explains how it is the cornerstone of statistical modelling (Sec-
tion 3.1 and Section 3.3). Two general classes of statistical models
are developed, to serve as exemplars for the chapters than fol-
low: Markov random fields (Section 3.2) and hierarchical models
(Section 3.4). This chapter is not about the practice of statistical
modelling and statistical computing; see, e.g., Davison (2003).

3.1 Conditional independence

Informally, two sets of random quantities are probabilistically
independent for me, if knowledge of one set has no implications for
my judgements about the other set. Judgements of independence
are very strong—too strong to be useful, because I can only learn
about the predictands X using the observations Y if there is some
dependence between them. On the other hand, a situation where
every random quantity directly affects my judgement about every
other random quantity is too complicated to be elicited, for real-
world analyses. Somewhere in the middle we have the very useful
notion of conditional independence. conditional independence

Because independence is a special case of conditional inde-
pendence, I will just explore conditional independence in this
section. In the material below, independence results can be recov-
ered simply by dropping the conditioning on Z (this follows from
Theorem 1.12).

Now may be a good time to review Section 1.6. I will write X, Y ,
and Z as boldface to emphasise that all three represent collections
of random quantities. Here is a formal definition of conditional
independence.1 1 One possible definition, because there

are several equivalent ones, as shown
immediately below.Definition 3.1 (Conditional independence). Let X, Y , and Z be

collections of random quantities. Then X is conditionally independent of Y
given Z exactly when, for all g, there is a ψg ∈ E{g(X) | Y , Z} which is
invariant to y. This is denoted X ⊥⊥ Y | Z.

Informally, this states that the optimal prediction of any function
of X which is based on both Y and Z is no better than that based
on Z alone. That is not to say that Y is uninformative about X,
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but simply that it does not bring any information about X which
is not already present in Z. Definition 3.1 appears to be asym-
metric with respect to X and Y , but the following equivalence
theorem shows that X and Y are symmetric in this definition, so
that X ⊥⊥ Y | Z ⇐⇒ Y ⊥⊥ X | Z.

Theorem 3.1 (Conditional independence, equivalencies). Let X, Y ,
and Z be collections of random quantities. The following are equivalent:

1. X ⊥⊥ Y | Z.

2. fX|Y ,Z(x | y, z) = fX|Z(x | z) whenever fY ,Z(y, z) > 0.

3. fX,Y |Z(x, y | z) = fX|Z(x | z) · fY |Z(y | z) whenever fZ(z) > 0.

Proof. I’ll dispense with the bold symbols.

(1. ⇒ 2.) If fY,Z(y, z) > 0 then fX|Y,Z(x | y, z) is well-defined. Setting
g(x) ← (x = x�), (1.) then implies that fX|Y,Z(x� | y, z) is invariant to
y, or fX|Y,Z(x� | y, z) = fX|Z(x� | z) according to Theorem 1.12.

(2. ⇒ 3.) It is always true that

fX,Y|Z(x, y | z) = fX|Y,Z(x | y, z) · fY|Z(y | z) (†)

whenever fZ(z) > 0. This is because fY,Z(y, z) = 0 if and only
if fY|Z(y | z) = 0, since fZ(z) > 0. But if fY|Z(y | z) = 0 then
fX,Y|Z(x, y | z) = 0, and hence (†) has the form 0 = fX|Y,Z(x | y, z) · 0,
and the ambiguity of fX|Y,Z(x | y, z) if fY,Z(y, z) = 0 is immaterial.
The result follows immediately.

(3. ⇒ 1.) In general, if ψg ∈ E{g(X) | Y,Z} and fY,Z(y, z) > 0,

ψg(y, z) = E{g(X) | Y = y,Z = z} = ∑
x∈X

g(x) fX|Y,Z(x | y, z)

by the FTP (Theorem 1.3 and Section 1.8). By (†)

fX|Y,Z(x | y, z) =
fX,Y|Z(x, y | z)

fY|Z(y | z)
.

If (3.) holds,

fX|Y,Z(x | y, z) =
fX|Z(x, |z) · fY|Z(y | z)

fY|Z(y | z)
= fX|Z(x | z)

i.e. invariant to y, hence ψg(y, z) is invariant to y.

* * *

Finally, the following special case of conditional independence is
frequently used, for reasons that will be explained in Section 3.4.

Definition 3.2 (Mutual conditional independence). Let X := (X1, . . . ,Xm),
and let XA and XB be disjoint subsets of X. Then X is mutually condi-
tionally independent given Z exactly when XA ⊥⊥ XB | Z for all A and mutually conditionally independent

B.
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It follows immediately from Theorem 3.1 that X is mutually
conditionally independent given Z if and only if

fX|Z(x | z) =
m

∏
i=1

fXi |Z(xi | z), (3.1)

which may be written as

X1, . . . ,Xm | Z ind∼ fXi |Z.

A stronger version of this property holds if fXi |Z = fX|Z; i.e. the
same for all i. This venerable statistical model is also expressed as
X is independent and identically distributed (IID) given Z, which may independent and identically dis-

tributed (IID)be written as
X1, . . . ,Xm | Z iid∼ fX|Z. (3.2)

This is a cornerstone of modelling using exchangeability (Sec-
tion 3.3).

3.2 Modelling using conditional independence

Conditional independence is a representation of judgements about
the structure of the relationship between random quantities (Cowell
et al., 1999; Smith, 2010). In this section I consider some of the more
theoretical aspects of conditional independence judgements, and
the practical issue of computation.

Consider a thought experiment in which all the of random quan-
tities are taken two at a time, and in each case I ask whether, in
my judgement, the pair X and Y are conditionally independent
given all of the other quantities. One might not think that pairwise
judgements of this nature could be sufficient to completely charac-
terise all possible conditional independence relationships, which
may often involve more than two random quantities at a time. But
surprisingly and gratifyingly, this is exactly what happens.

Let X := {X1, . . . ,Xm}. For C ⊂ {1, . . . ,m} let

XC :=
�

i∈C
{Xi} and X−C :=

�

i �∈C

{Xi}

be subsets of X. The probability distributions

fXi |X−i
i = 1, . . . ,m

are known as the full conditionals of fX . The following result links full conditionals

fX to its full conditionals.

Theorem 3.2 (Brook’s lemma). Let x and x� be two points in the support
of fX . Then

fX(x) = fX(x�)
m

∏
i=1

fXi |X−i
(xi | x1, . . . , xi−1, x�i+1, . . . , x

�
m)

fXi |X−i
(x�i | x1, . . . , xi−1, x�i+1, . . . , x

�
m)

.
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Proof. It suffices to give this proof for m = 3.

fX(x) = fX1,X2,X3(x1, x2, x3)

= fX3|X1,X2
(x3 | x1, x2) fX1,X2(x1, x2)

=
fX3|X1,X2

(x3 | x1, x2)
fX3|X1,X2

(x�3 | x1, x2)
fX1,X2(x1, x2) fX3|X1,X2

(x�3 | x1, x2)

=
fX3|X1,X2

(x3 | x1, x2)
fX3|X1,X2

(x�3 | x1, x2)
fX1,X2,X3(x1, x2, x

�
3).

Now iterate on the final term, starting with

fX1,X2,X3(x1, x2, x
�
3)

= fX2|X1,X3
(x2 | x1, x�3) fX1,X3(x1, x

�
3)

=
fX2|X1,X3

(x2 | x1, x�3)
fX2|X1,X3

(x�2 | x1, x�3)
fX1,X3(x1, x

�
3) fX2|X1,X3

(x�2 | x1, x�3)

=
fX2|X1,X3

(x2 | x1, x�3)
fX2|X1,X3

(x�2 | x1, x�3)
fX1,X2,X3(x1, x

�
2, x

�
3)

and so on.

This result shows something quite remarkable—that the distri-
bution fX is completely determined by its full conditionals. This
is because x� can be set to any value in the support of fX , and
then the initial term fX(x�) is just the normalising constant which
ensures that ∑x fX(x) = 1.2 2 I am not sure that the name ‘Brook’s

lemma’ is standard, but this is the
name given in Rue and Held (2005,
sec. 2.2).

Now consider any one of the full conditionals,

fXi |X−i
(xi | x1, . . . , xi−1, xi+1, . . . , xm).

If this probability distribution is invariant to the value of xj for
some j �= i, then Xi ⊥⊥ Xj | X−ij, according to Theorem 3.1. If this
probability distribution is not invariant to xj, then write Xi ∼ Xj

to denote “Xi is a neighbour of Xj”. Because conditional inde-
pendence is symmetric, this relationship is reflexive. Were we to
perform this operation for every pair of random quantities, making
m(m − 1)/2 judgements in all, we could construct a graph on the
vertices X, where there is an edge between Xi and Xj exactly when
Xi ∼ Xj. Denote this graph as G; it encodes the following property.

Definition 3.3 (Pairwise Markov property (P)). Xi ⊥⊥ Xj | X−ij

exactly when there is no edge between Xi and Xj in G.

Now it does not seem likely that arbitrary choices for the full
conditionals which respect G will automatically give rise to a valid
fX , as is apparent from Theorem 3.2—there is clearly a very compli-
cated relationship between the full conditionals of X and fX itself.
The following very famous result completely characterises proba-
bility distributions that respect (P). In this result, a clique is either a clique

single Xi or a subset of X with a full set of edges.3 3 Below I write ‘ fX (x) > 0 for all
x ∈ X’, but what I mean is the
slightly more complicated statement
that fX (x1, . . . , xm) > 0 whenever
fXi (xi) > 0 for i = 1, . . . ,m.
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Theorem 3.3 (Hammersley-Clifford theorem). If fX(x) > 0 for all
x ∈ X then fX satisfies the pairwise Markov property of G if and only if
there is a set of positive functions {GC} for which

z := ∑
x∈X

∏
C∈C

GC(xC) < ∞

and
fX(x) =

1
z ∏

C∈C
GC(xC) (F)

where C is the set of cliques of G.

Proof.
(⇐) Starting from eq. (F),

fXi |X−i
(xi | x−i) =

fX(x)
fX−i (x−i)

=
∏C GC(xC)

∑x�i ∏C GC(x�Ci
)

where

x�Ci
:=




{x�i} ∪ xC\i Xi ∈ C

xC otherwise.

Now divide the cliques in C into two types: those that contain Xi,
denoted Ci, and those that do not. Then continue with

fXi |X−i
(xi | x−i) =

∏C∈Ci
GC(xC) · ∏C �∈Ci

GC(xC)

∑x�i ∏C∈Ci
GC(x�Ci

) · ∏C �∈Ci
GC(xC)

=
∏C∈Ci

GC(xC)

∑x�i ∏C∈Ci
GC(x�Ci

)
.

If there is no edge from Xi to Xj in G then Xj is not in any of the
sets in Ci, and hence fXi |X−i

(xi | x−i) is invariant to xj, as required.
(⇒) See Besag (1974) for a beautiful and insightful proof.

However, this is not the end of the story. Now consider a second
possible property of G.

Definition 3.4 (Global Markov property (G)). Let A, B, and C be
non-intersecting subsets of

�
1, . . . ,m

�
. Then XA ⊥⊥ XB | XC whenever

every path from A to B in G passes through C.

It is easy to see that
(G) =⇒ (P)

and, following the same pattern as the (⇐) branch of Theorem 3.3,
to show that

(F) =⇒ (G).

But since Theorem 3.3 asserts that (F) ⇐⇒ (P), we have

(G) ⇐⇒ (P).

In other words, the pairwise conditional independence graph G

embodies the complete set of conditional independence judgements
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about X (at least, when fX(x) > 0 for all x ∈ X). This is the
surprising and gratifying result mentioned at the start of this
section. Therefore we are fully justified in referring to G as the
conditional independence graph (CIG) for fX . conditional independence graph (CIG)

* * *

Many statistical applications deal with large collections of ran-
dom quantities, which have a rather natural neighbourhood struc-
ture, represented by G. For example: the pixels in an image, where
each pixel’s neighbours might be the eight pixels adjacent to it (i.e.
including diagonals). Or the regions of a spatial map, where each
region’s neighbours might be the regions with which it shares a
common boundary. Models that are built around conditional inde-
pendence graphs are termed Markov random fields (MRFs); see, for Markov random fields (MRFs)

example, Cressie and Wikle (2011).
MRFs have a crucial property, that will be relevant several times

in the chapters that follow. Except in trivial cases and special cases,
it is not possible to evaluate fX(x) explicitly for specified x, due to
the intractable z term in Theorem 3.3. If X represented the 64 pixels
in an 8× 8 two-tone image, the sum over X for computing z would
include 264 ≈ 2× 1019 terms—quite out of the question.

By extension, it is not possible to evaluate the marginal distri-
bution fXA(xA) for A ⊂ {1, . . . ,m}, which also contains z, plus a
sum over X−A. And nor is it possible to evaluate the conditional
distribution fXA |XB

(xA | xB), which does not contain z, but which
contains sums over XC and XA∪C, where A ∪ B ∪ C = {1, . . . ,m}.
The only probability distributions that can be easily evaluated are
fXi |XBi

where Bi is any superset of the neighbours of Xi. In this case

fXi |XBi
(xi | xBi ) ∝ ∑

C∈Ci

GC(xC),

as shown in the proof of Theorem 3.3; the normalising constant
involves a one-dimensional sum.

Naturally, there has been a lot of interest in non-trivial special
cases, where a careful choice of G and the GC functions makes it
possible to evaluate marginal and conditional distributions. One
very useful special case is Gauss Markov random fields, which is a Gauss Markov random fields

rapidly-developing area (see Rue and Held, 2005; Lindgren et al.,
2011). More generally, there are advantages to choosing the GC

functions so that fX is a member of the exponential family of
distributions (see, e.g., Davison, 2003, sec. 5.2).

3.2.1* Introducing parameters

As outlined in Section 2.5, there are two viewpoints regarding
parameters. The Frequentist viewpoint is that they are an index
within a family of distributions. Thus they may occur as arguments
to the probability distribution of the X’s. From the Hammersley-
Clifford theorem (Theorem 3.3), they must therefore occur as argu-
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ments to the GC functions, to give

fX|θ(x | t) = 1
z(t) ∏

C∈C
GC(xC, t).

I note for later reference that, as explained immediately above, the
function fXA |θ(xA | t) cannot be evaluated as a function of t for
given xA, except in trivial cases and special cases, because of the
computational cost of z(t) and of summing over X−A.

The Bayesian viewpoint is that parameters are random quantities
in their own right. Therefore they can be represented as additional
vertices in a larger CIG, for which the joint distribution now be-
comes

fX,θ(x, t) =
1
z ∏

C∈C
GC([x, t]C).

Precisely how the parameters are included in the CIG is explained
in Section 3.4.1.

3.2.2* Gibbs sampling

Statistical models based around conditional independence may
seem rather intractable, according to the analysis at the end of
Section 3.2. The reason that statistics has not ground to a halt in the
face of increasing model size and complexity is that although it is
hard to evaluate fX and its marginal and conditional distributions,
it is often very easy to sample from fXA , and also from fXA |XB

(· | xB).
This is due to the Gibbs sampler; see Cowell et al. (1999), Robert and Gibbs sampler

Casella (2004), Gelman et al. (2003) or Lunn et al. (2013).
In the simplest implementation, the Gibbs sampler is (setting

m = 4 for convenience):

initialise
x0 ← (x01, x

0
2, x

0
3, x

0
4), some point in X with fX(x0) > 0

j ← 0
repeat

Sample xj+1
1 ∼ fX1|X2,X3,X4

(· | xj
2, x

j
3, x

j
4)

Sample xj+1
2 ∼ fX2|X1,X3,X4

(· | xj+1
1 , xj

3, x
j
4)

Sample xj+1
3 ∼ fX3|X1,X2,X4

(· | xj+1
1 , xj+1

2 , xj
4)

Sample xj+1
4 ∼ fX4|X1,X2,X3

(· | xj+1
1 , xj+1

2 , xj+1
3 )

j ← j + 1
until j is sufficiently large

Thus, the Gibbs sampler cycles repeatedly through the full
conditionals, simulating and updating one component of X at
each step. Under very general conditions,4 the random process 4 But fX (x) > 0 for all x ∈ X is

sufficient.constructed in this way converges in distribution to fX . Gibbs
samplers have to be spun up, in order to forget the initial value x0, spun up

which might be in an improbable or inaccessible part of the realm
of X; details are given in, e.g., Gelman et al. (2003).

This process simulates the whole of X; but if only a margin XA

is required, then the rest can be discarded. For simulating X−B
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conditionally on (XB = xB), simply set XB ← xB throughout,
and the Gibbs sampler cycles through the full conditionals of X−B.
As explained in Section 3.2.1, the set of random quantities X may
include parameters, if a Bayesian approach has been adopted.
Otherwise (Frequentist approach), the Gibbs sampler is used to
simulate from fX|θ(· | t) for specified t.

A simple example of a Gibbs sampler including parameters and
conditioning is given in Section 3.4.2.

* * *
The Gibbs sampler breaks the problem of simulating all of the

uncertain elements of X down into a set of one-dimensional sim-
ulations from the full conditionals. Furthermore, when the CIG G

is sparse (i.e. is missing lots of edges) each of these full condition-
als can be expressed in terms of the small set of neighbours on G.
A careful choice of G and the GC functions can result in many of
the full conditionals being standard distributions, for which there
exist fast algorithms for simulation. Otherwise, there are generic
algorithms for simulating a one-dimensional random quantity
from a distribution known up to proportionality (see Robert and
Casella, 2004). Consequently Gibbs sampling has been packaged
into software such as the powerful and ubiquitous BUGS (Bayesian
inference Using Gibbs Sampling, see Lunn et al., 2013).

3.3 Exchangeability

In many situations X1, . . . ,Xm represent the same operational
definition, applied to m different units; for example, m different
children in a classroom. One possibility in this case is to treat
the unit labels, the i’s on the Xi’s, as uninformative. For children
in a classroom, where the labels might be names, this would be
inappropriate for the class teacher, but appropriate for the Schools
Inspector. If the labels are treated as uninformative then the X’s are
exchangeable random quantities. exchangeable random quantities

Definition 3.5 (Exchangeable random quantities). X1, . . . ,Xm is an
exchangeable sequence exactly when

fX1,...,Xm(x1, . . . , xm) = fX1,...,Xm(xπ1 , . . . , xπm)

where (π1, . . . ,πm) is any permutation of (1, . . . ,m).

If X1, . . . ,Xm are treated as exchangeable, then there are two
ways to represent fX1,...,Xm . The first is to use a mixture of hypergeo-
metric distributions, if m is finite and the realm of the X’s is finite.5 5 See Schervish (1995, ch. ch1) and Lad

(1996, ch. 5).The other method is far more popular. This is to introduce random
quantities θ ∈ Ω for which the X’s are IID given θ (see (3.2)). Then

fX1,...,Xm(x1, . . . , xm) =
� m

∏
i=1

fX|θ(xi | t)πθ(t)dt (3.3)

for some specified model fX|θ and specified prior distribution πθ .
Clearly this fX1,...,Xm is invariant to permutations of the x’s, but,
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equally clearly, X1, . . . ,Xm are not mutually independent, because
fX1,...,Xm does not factorise into an m-fold product—this would only
occur if πθ were a Dirac delta function πθ(t) = δ(t − θ0) for some Dirac delta function

specified θ0.
In (3.3), each choice of statistical model fX|θ and prior distri-

bution πθ specifies an exchangeable distribution for X1, . . . ,Xm.
De Finetti’s Representation Theorem asserts that if X1,X2, . . . is an infi- De Finetti’s Representation Theorem

nite sequence for which every finite sequence is exchangeable then
(3.3) is the only way to represent the distribution of any finite subset.
And furthermore, if X1, . . . ,Xm is a finite exchangeable sequence
but m is large, then there exists a fX|θ and πθ for which (3.3) is close
to fX1,...,Xm . For this reason, (3.3) is the natural way to represent
judgements of exchangeability, except in the case where m is small.

The mathematics of the Representation Theorem is hard. The
original conception was due to de Finetti (1937). There is a simple
half-proof in Heath and Sudderth (1976), a beautiful complete proof
in Kingman (1978), and a useful summary in Schervish (1995, ch. 1).

The dominant position of exchangeable distributions in statistical
inference is really down to two factors. First, exchangeability rep-
resents our qualitative judgement that the elements of X1, . . . ,Xm

are like each other, without insisting that they are identical. More
generally, it allows us to introduce element-specific information, but
not to have to assert that this information exhausts the systematic
differences between one element and another (see Section 3.4).

But this would be only theoretically attractive were it not for
the second factor, which is that the representation in (3.3) is so
tractable. All it requires is a model fX|θ and a prior distribution
πθ—given these two, we immediately have a joint distribution
over exchangeable X1, . . . ,Xm for any finite m. As Section 4.5 will
discuss, the product form of the statistical model is particularly
tractable for approximations.

3.4 Hierarchical models

As explained in Section 3.3, if X := (X1, . . . ,Xm) is IID conditional
on some parameter θ, then X is exchangeable. A distribution of this
type has two ‘levels’, typically written as

X1 . . . ,Xm | θ
iid∼ fX|θ

θ ∼ πθ ,

see (3.2) and (3.3). The first level is the statistical model, and the
second is the prior distribution. This is the simplest example of a
hierarchical model. hierarchical model

This simple template can be expanded either upwards or
downwards. Upwards, to provide a richer description of the
operationally-defined quantities, and downwards to provide a
richer description of the parameters. It is easiest to explain this with
an illustration.
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Suppose that Xi was the number of paid hours worked per week
by person i. If all we knew were the X’s then we would be forced,
through ignorance, to assert that X was exchangeable, if we wanted
make inferences about unobserved X’s on the basis of a sample of
observed ones. In this case we would necessarily make the same
inference about every unobserved X.

We would like to do much more than this, and make inferences
that differ, one person to another, in the same way that people differ
one to another. Typically we have additional information about
each person, in the form of covariate information, vi say, a p-vector
of relevant information such as gender, age, family size, education,
and so on, for each i. By incorporating this information we can
make inferences about policy-relevant quantities, such as whether
there is a difference between male and female working practices,
after allowing for other factors.6 6 Although it is obligatory to insert

the warning that causal inference from
observational data is hard; see Pearl
(2000).

A simple hierarchical model for {X1, v1}, . . . , {Xm, vm} might be
expressed in terms of additional random quantities B := {β1, . . . , βm}
and µ := (µ1, . . . , µp), in the general form

fX,B,µ(x, b,m) = fX|B,µ(x | b,m) fB|µ(b | m) fµ(m) (3.4)

which is always valid, according to the factorisation theorem
(Theorem 1.17). A natural implementation of the righthand side
of (3.4) for the illustration would be

X | B, µ ind∼ N(vT
i βi, s

2
x)

B | µ
iid∼ Np(µ, Sβ)

µ ∼ Np(0, Sµ),

(3.5)

where Np indicates a p-dimensional Normal distribution with
specified expectation and variance. X are operationally-defined
quantities, at the top of the hierarchy; B are the parameters; and
µ are termed hyperparameters, because they are parameters in the hyperparameters

distribution of the parameters. For the moment, treat the three
variance terms sx, Sβ, and Sµ as specified.

The generality of this type of hierarchical model can be appreci-
ated by considering the special case where Sβ = 0, which implies
that βi = µ for all i. This is known as a regression analysis. In a re- regression analysis

gression analysis, the only difference between two people with the
same covariates would be in the residual term, which has variance
s2x. If we think there might be more systematic differences between
these two people, then this is captured by Sβ > 0, which allows two
different people to have different β’s. But the attraction of the re-
gression analysis is that there are only p (hyper) parameters; while
the hierarchical model has mp parameters and p hyperparameters,
when there are only m observations.

3.4.1* Conditional independence in hierarchical models

Hierarchical models such as (3.5) are extremely common in modern
statistical inference. They are typically treated using the Gibbs
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sampler, and for this we need to know their CIG. This involves a
two-stage procedure. First, the hierarchical model is represented in
terms of its directed acyclic graph (DAG, see immediately below),
and then this DAG is transformed into its CIG. The construction
of the DAG is very similar to that of Section 3.2, except that the
conditioning is different.

Let X := (X1, . . . ,Xm) be a set of random quantities in a pre-
scribed ordering. Then the factorisation theorem (Theorem 1.17)
allows us to write

fX(x) = fX1(x1)
m

∏
i=2

fXi |X1,...,Xi−1
(xi | x1, . . . , xi−1).

It will be convenient below to write X1:i := (X1, . . . ,Xi) and
X1:i

−j := (X1:i)−j = (X1, . . . ,Xj−1,Xj+1, . . . ,Xi). In this notation
the factorisation is written

fX(x) = fX1(x1)
m

∏
i=2

fXi |X1:(i−1) (xi | x1:(i−1)).

Now consider any one of these conditional distributions,

fXi |X1:(i−1) (xi | x1:(i−1))

If this probability distribution is invariant to xj, where j < i, then

Xi ⊥⊥ Xj | X1:(i−1)
−j , according to Theorem 3.1. If this probability

distribution is not invariant to xj then write Xj → Xi to denote
“Xi is a child of Xj”. Were we to perform this operation for every
pair of random quantities, m(m − 1)/2 judgements in all, we could
construct a directed graph, termed a directed acyclic graph (DAG). directed acyclic graph (DAG)

The absence of an edge from Xi to Xj would either be because j ≥ i,

or because j < i and Xi ⊥⊥ Xj | X1:(i−1)
−j .

For the model in (3.5), the natural ordering (from the bottom) is
µ, β1, . . . , βm,X1, . . . ,Xm. From the middle level,

βi ⊥⊥ β1:(i−1) | µ i = 2, . . . ,m.

From the top level,

X1 ⊥⊥ β2:m, µ | β1

Xi ⊥⊥ X1:(i−1), β1:m
−i , µ | βi i = 2, . . . ,m.

Thus the DAG for (3.5) is simply

X1 X2 · · · Xm

β1

��

β2

��

· · · βm

��

µ

����������

�� ������������������

(†)

A DAG is not a CIG, because the conditional distributions in
the factorisation are not full conditionals, but conditionals taken se-
quentially along an ordering of the random quantities. But there is
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a simple algorithm to convert a DAG into a CIG. First, ‘marry’ any
pairs of vertices that have a common child, by joining them with an
undirected edge. Second, turn all directed edges into undirected
edges. This procedure is quaintly known as moralising the DAG,
and the resulting moral graph of the DAG is its CIG. Cowell et al. moral graph

(1999, App. B) justifies this algorithm (it is quite intuitive).
The moral graph for (3.5) is the same as its DAG except without

the arrows, because there are no pairs of vertices with a common
child:

X1 X2 · · · Xm

β1 β2 · · · βm

µ

��������

����������������

(‡)

Using the global Markov property (Definition 3.4) we can immedi-
ately infer from (‡) that the X’s are mutually conditionally indepen-
dent given µ, because every path from Xi to Xj passes through µ.
Thus

fX|µ(x | m) =
m

∏
i=1

fXi |µ(xi | m). (3.6)

This factorisaton property has two advantages. First, the distribu-
tion fXA |µ for any set A can be found very quickly, without having
to jointly sum over X−A. Generally, it is the hyperparameters (µ in
this case) which describe the population, and so this type of model
is extremely effective for making inferences about a population
based on a sample, A. Second, the product structure of fXA |µ is
very attractive computationally, as discussed further in Section 4.5.
Note that it may not be possible to evaluate fXi |µ(xi | m), but this
does not matter: it is the product structure itself that is important.

* * *

So far we have treated the three variances s2x, Sβ and Sµ as spec-
ified. What happens if we treat them as random quantities (i.e. as
additional hyperparameters) and prepend them to µ, treating all
four as mutually independent? The DAG would become

X1 X2 · · · Xm s2x������

β1

��

β2

��

· · · βm

��

S2β������

µ

����������

�� ������������������ Sµ��

Now there are many pairs of vertices that share a common child,
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and so the CIG acquires some extra edges after moralisation:

X1 X2 · · · Xm s2x

��
��

��
��

β1 β2 · · · βm S2β

µ

��������

���������������� Sµ

The main reason to draw this CIG is to make the point that addi-
tional hyperparameters that are common across the components
of the model that vary with i induce lots of extra edges, and ex-
tra complication in the sampling. But it is also interesting to note
that the X’s are still mutually conditionally independent given the
(augmented) hyperparameters, and so the advantages of (3.6) still
hold.

3.4.2* Gibbs sampling for DAGs

Here is the Gibbs sampler for models with the same DAG as (†) on
p. 59. Suppose that the first n components of X have been observed,
and write, therefore, X := (yobs, Z) where yobs := (yobs1 , . . . , yobsn )

and Zi := Xn+i for i = 1, . . . ,m − n. The intention is to sample from
fZ|X1:n(· | yobs), and to do this we sample from

fZ,B,µ|X1:n(· | yobs)

and then ignore the B and µ components.

initialise
{z0, B0,m0} ← {0, 0, 0}
x0 ← (yobs, z0)
j ← 0

repeat
Sample µj+1 ∼ fµ|B(· | Bj)

for i ← 1 to m do
Sample β

j+1
i ∼ fβi |Xi ,µ(· | x

j
i , µ

j+1)

end
for i ← 1 to m − n do

Sample zj+1
i ∼ fXn+i |βn+i

(· | β
j+1
n+i)

end
xj+1 ← (yobs, zj+1)

j ← j + 1
until j is sufficiently large

In the initialisation I have used 0 for all random quantities. The
constraint is that the intial point must have positive probability
conditional on (X1:n = yobs), but a sensible choice is helpful here,
to reduce the time spent spinning up.
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The sampling distributions can all be inferred from the model. In
the case of (3.5), an experienced statistician would see immediately
that fµ|B is multivariate Normal, because (µ, B) is multivariate
Normal, and fβi |Xi ,µ is multivariate Normal because (βi,Xi) | µ is
multivariate Normal. So all three of the sampling distributions in
this case are multivariate Normal—this is an extremely tractable
model! Things would get messier with the inclusion of s2x, Sβ, and
Sµ, but there are tractable choices for the marginal distributions of
these too (inverse Gamma for s2x and and inverse Wishart for Sβ

and Sµ).



4
Bayesian inference

The complete class theorems outlined in Section 2.2.2 state that be-
ing a Bayes rule or a generalised Bayes rule is a necessary condition
for a decision rule to be admissible—precise results for the finite
case were given in Theorem 2.3 and Theorem 2.5. And the Bayes
Rule Theorem (Theorem 2.4) states that the Bayes rule minimises
the expected loss with respect to the conditional probability distri-
bution of the ‘state of nature’ given the values of the observations.

Bayesian inference is about this distribution: how it is formulated
(Section 4.1), computed (Section 4.2), summarised and communi-
cated (Section 4.3), checked (Section 4.4), and some of its interesting
and useful properties (Section 4.5).

Some sections of this chapter are starred—these can be skipped
without loss of continuity.

4.1 Prior, posterior, and predictive distributions

The object of Bayesian inference is to infer a predictive distribution predictive distribution

fX|Y(x | y) := Pr(X = x |Y = y)

where X are the random quantities which are influential on the
outcome of a decision (the ‘state of nature’ in Chapter 2) , and Y are
observations relevant to X. I will refer to X as the predictands and Y predictands

as the observations. observations

From a formal Bayesian point of view, the client, assisted by the
statistician and her experts, either specifies fX|Y directly, or, if it is
easier, specifies fX,Y, possibly in the form of fY|X and fX. In this
second case, where fX|Y is not specified directly, the statistician can
compute fX|Y from the given distribution(s), using Bayes’s Theorem
(Theorem 1.19).

In practice, however, none of these distributions is specified
directly, but indirectly through the introduction of statistical pa-
rameters θ ∈ Ω, where I will take Ω to be a convex subset of Rd.
The purpose of introducing statistical parameters is to simplify
the specification of the joint distribution fX,Y; see Section 2.5 and
Chapter 3. Statistical parameters are not required, but experience
suggests that they are invaluable.
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Having introduced statistical parameters, the client’s joint distri-
bution over

�
X,Y, θ

�
is expressed as

fX,Y,θ(x, y, t)dt = fX,Y|θ(x, y | t)πθ(t)dt (4.1)

where both distributions on the righthand side must be specified.
fX,Y|θ is termed the statistical model and πθ the prior distribution. statistical model

prior distributionEq. (4.1) is an example of the factorisation theorem (Theorem 1.17):
the statistician and his client find it easier to specify a joint distri-
bution for X and Y by specifying a conditional distribution fX,Y|θ
and a marginal distribution πθ ; if θ is not needed in the decision
analysis it can be integrated out.

From the statistical model and the prior distribution we can
immediately deduce the marginal distribution of the observations marginal distribution

fY(y) = ∑
x

�
fX,Y,θ(x, y, t)dt, (4.2a)

the predictive distribution (of the predictands) predictive distribution

fX|Y(x | y) =
� fX,Y,θ(x, y, t)

fY(y)
dt, (4.2b)

and, if we need it, the posterior distribution of the parameters posterior distribution

fθ|Y(t | y)dt = ∑
x

fX,Y,θ(x, y, t)
fY(y)

dt. (4.2c)

These distributions are expressed for arbitrary y, and as such
they represent a pre-data analysis. In a post-data analysis the
statistician will have access to actual observations, denoted yobs. For
these actual observations I write the posterior distribution as

π∗
θ (t)dt := fθ|Y(t | yobs)dt.

The value of the marginal likelihood is termed the evidence, evidence

evidence := fY(yobs),

and −2 log(evidence) is termed the deviance. deviance

One very common statistical modelling approach is to specify a θ

for which the client judges that X and Y are conditionally independent conditionally independent

given θ. In this case the statistical model factorises as

fX,Y|θ(x, y | t) = fY|θ(y | t) fX|θ(x | t);

see Section 3.4. This has the following simplifying effects:

fY(y) =
�

fY|θ(y | t)πθ(t)dt (4.3a)

fθ|Y(t | y)dt =
fY|θ(y | t)πθ(t)

fY(y)
dt (4.3b)

fX|Y(x | y) =
�

fX|θ(x | t) fθ|Y(t | y)dt. (4.3c)
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4.2 Bayesian computation

Ultimately, the objective of a Bayesian analysis is to compute the
expected loss conditional on the hypothetical (pre-data) or actual
(post-data) observations. Formally, this requires a lot of summing
and integrating:

E∗ �L(a,X)
�
= ∑

x
L(a, x) f ∗X(x)

= ∑
x

L(a, x) fX|Y(x | yobs)

= ∑
x

L(a, x)
� fX,Y,θ(x, yobs, t)

fY(yobs)
dt

= ∑
x

L(a, x)
�

fX,Y,θ(x, yobs, t)
∑x�
�

fX,Y,θ(x�, yobs, t�)dt�
dt.

But, as noted in Section 3.2, in many cases it is not possible to eval-
uate fX,Y,θ(x, yobs, t) explicitly, and even if it is possible, then the
sums and integrals may be over huge spaces, and completely infea-
sible. As a result, only the smallest and most tractable inferences
are now treated formally; everything else is done using simulation,
and sequential simulation in particular. sequential simulation

At the heart of a sequential simulation is the notion of what I
will call a sufficiently random sequence (SRS). In the definition below sufficiently random sequence (SRS)

I write the sequence with its index in the superscript, because X
will often be a vector, and I might want to write Xi

j to be the jth
component of the ith element of the sequence.1 1 For the following definition, recollect

from Section 1.4 that (Xi = x) is a
random proposition. If necessary,
consult Section A.4 for the definition of
P−→, ‘convergence in probability’.

Definition 4.1 (Sufficiently random sequence, SRS). X1,X2, . . . is a
sufficiently random sequence for fX exactly when

m−1
m

∑
i=1

(Xi = x) P−→ fX(x) for all x ∈ X. (4.4)

The value of an SRS is that it can be used to compute the expec-
tation of any real-valued function of X to arbitrary accuracy, subject
only to having enough CPU cycles.

Theorem 4.1. If X1,X2, . . . is an SRS for fX then

m−1
m

∑
i=1

g(Xi)
P−→ E{g(X)} for all real-valued g.

Proof. For fixed m,

m−1
m

∑
i=1

g(Xi) = m−1
m

∑
i=1

∑
x

g(x)(Xi = x) = ∑
x

g(x)
�

m−1
m

∑
i=1

(Xi = x)
�
.

And then, because X1,X2, . . . is an SRS,

∑
x

g(x)
�

m−1
m

∑
i=1

(Xi = x)
�

P−→ ∑
x

g(x) fX(x) = E{g(X)},

using Theorem A.10.



66

To understand how an SRS is used, consider the post-data deci-
sion analysis in which Y = yobs, and now a Bayes action from A

must be chosen. Suppose the statistician can generate a long SRS
for f ∗X(·) := fX|Y(· | yobs). From this one sequence he can compute
the expected posterior loss E∗{L(a,X)} for each action a ∈ A, by
taking the sample mean of L(a,X) over the SRS for f ∗X. Hence he
can identify a Bayes action for the client. So the main computing
preoccupation of the statistician is to generate a long enough SRS
for f ∗X: after that, everything is straightforward. In practice, the
statistician will typically generate an SRS for f ∗X,θ , and then simply
ignore the θ component, there being no θ in the loss function.

The simplest type of SRS is an independent random sample.
This is an SRS according to the Weak Law of Large Numbers (see
Theorem A.9), because the elements of an independent random
sequence are mutually uncorrelated.

The most popular approach to generating an SRS is Markov chain
Monte Carlo (MCMC); see for example, Besag et al. (1995), Robert Markov chain Monte Carlo (MCMC)

and Casella (2004), Gelman et al. (2003), or Lunn et al. (2013). Gibbs
sampling, mentioned in Chapter 3, is an example of an MCMC
algorithm. Gibbs sampling takes advantage of the conditional
independence structure of the collection {X,Y, θ} to break the
problem of generating an SRS for f ∗X,θ down into a sequence of
much simpler sampling tasks.

Sometimes it is helpful to have individual candidates from an
SRS, which behave like an independent random sample. In this
case these candidates need to be well-spaced in the sequence to
minimise the effect of autocorrelation. ‘Thinning’ the SRS is a possi-
bility: this involves keeping only, say, every hundredth element (or
some other number sufficiently large that the autocorrelation coef-
ficient after thinning is small, say less than 0.05). Thinning is never
recommended for computing expectations (since the discarded
elements still contain relevant information), but might be necessary
if computer memory is limited, or if a short SRS is more helpful to
the client.

Finally, an obvious point, but an important one: the propor-
tionate histogram of an SRS for f ∗X,θ approximates the posterior
distribution of {X, θ}. This is because, for any A ⊂ X× Ω,

m−1
m

∑
i=1

({Xi, θi} ∈ A)
P−→ E∗ �({X, θ} ∈ A)

�
= Pr∗({X, θ} ∈ A)

if {Xi, θi} is an SRS for f ∗X,θ . Again, it would be better not to thin
the SRS before computing the histogram.

4.2.1* Computing the evidence from an SRS

As discussed in Section 2.6.1, admissible methods for choosing
between hypotheses require the value of the ‘evidence’, fY(yobs),
for each of the competing hypotheses. An approximation to this
value is given in Section 4.5.3. Here, I outline how an arbitrarily
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exact value can be computed from an SRS for π∗
θ , the posterior

distribution, using an approach suggested by Gelfand and Dey
(1994).

Let L be the likelihood function, L(t) := fY|θ(yobs | t). Note that,
according to Bayes’s Theorem

{ fY(yobs)}−1 =
π∗

θ (t)
L(t)πθ(t)

for any t ∈ Ω.

Therefore, if h is any proper distribution on Ω,

{ fY(yobs)}−1 =
� h(t)

L(t)πθ(t)
π∗(t)dt = E∗

� h(θ)
L(θ)πθ(θ)

�
,

where E∗ indicates the expectation with respect to the posterior
distribution. Consequently Gelfand and Dey suggest the estimator

�fY(yobs) :=
�

m−1
m

∑
j=1

h(θ j)

L(θ j)πθ(θ j)

�−1

where θ1, θ2, . . . is an SRS for π∗
θ .

The distribution h can be chosen to approximate the posterior
distribution π∗

θ . Such a choice is helpful for stabilising the terms in
the sum, and reducing the variability of the estimator, which means
that a smaller m is required for a given accuracy. The obvious
choice in this case is the Normal approximation given in (4.5)
below.

4.3* Summarising distributions

In a modern post-data Bayesian analysis, the physical outcome
of the inference is an SRS for fX,θ|Y(· | yobs). Think of this as a
spreadsheet of numbers, with one column for each component of X
and θ, and one row for each element of the SRS. We might denote
this table as the matrix T. It would not be unusual for T to have
a thousand or a million rows. Naturally, the statistician will think
about summarising T in some way, if possible. He may indeed
be under pressure to produce very short summaries, for example
when the Minister says “Don’t bamboozle me with a spreadsheet,
just give me a number!”

However, the statistician must be careful. If there is a chance
that the summary will subsequently be used in place of T, he must
take care not to suppress any information in the columns of T
which could affect the choice of actions. And, in the absence of an
explicit action set A and loss function L, he would be wise not to
suppress any information at all. The only compression of T that
is completely acceptable is to ignore the ordering of the rows in T,
because any permutation of an SRS is also an SRS.

In the absence of any specific action set and loss function, the
statistician ought to be sensitivity to two properties of serious
decision analysis (i.e. the kind of analysis where the client pays
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serious money to hire an applied statistician). First, losses tend to
depend jointly on several predictands. For example, an industrial
accident tends to occur when several things go wrong at the same
time. Weather hazards tend to depend jointly on sequences of
temperature and precipitation (see, e.g., Edwards and Challenor,
2013). Our future climate depends on economics, demographics,
and technology. Therefore low-dimensional summaries, focusing
on one or two predictands, may misrepresent the distribution of the
loss.

Second, the loss function is often convex at the top end, meaning
that extreme outcomes of some of the predictands result in dispro-
portionate losses. So the loss from, say, an outcome for X at the
95th percentile can be far less severe than one at the 99th percentile.
In addition, in many natural hazards like earthquakes, floods, and
volcanoes, the observed frequency/magnitude relationship is well
fitted by a power law (see, e.g. Woo, 2011; Rougier et al., 2013). The
95th percentile for the magnitude of an earthquake is much smaller
than the 99th percentile. Summarising X by its 95th percentile
seems very misleading, if the actions are about managing losses.

Therefore, the statistician should resist simple summaries of his
SRS unless it is clear from the client’s action set and loss function
that (i) only one or two of the predictands are involved in the loss
function, and (ii) the loss function is approximately linear.
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times of the first event in a generalised
Poisson process, with some quantiles
indicated.

In the case where only one predictand is important the statis-
tician might provide a histogram of the SRS for that predictand,
with helpful quantiles indicated (these can be hard to assess from
a histogram).2 See Figure 4.1. If the loss function is approximately 2 R users should use the ��������

function from the ���� package, see
Venables and Ripley (2002, sec. 5.3).

linear in the predictand he might provide a simple interval sum-
mary, such as the 5th and 95th percentiles—this is termed a 90%
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equi-tailed credible interval. credible interval

In the case where only two predictands are important he might
provide a scatter plot of the SRS, with one predictand on each axis.
Rather than showing the individual points, this could be coloured
by the density of points, but my preference would be to use convex
peeling to colour the plot using helpful percentiles, with extreme convex peeling

outliers shown individually: see Figure 4.2 for an example. This
approach works best when the cloud of points is roughly elliptical,
and this might be improved by a transformation.
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Figure 4.2: Convex peeling to show
quantiles of two random quantities. In
this case, these are the arrival times of
the first two events in a generalised
Poisson process.

* * *

Clearly, this section is not the conventional “here’s the definition
of a credible set, here’s the definition of a high posterior density
region” section that might be anticipated in lecture notes—for
this you should consult, e.g., Tanner (1996). It is a plea that we
recognise the complexity of modern decision analysis, and don’t
over-simplify. Obviously the client is busy, and I expect she would
prefer the statistical inference to come in a small and tidy package;
perhaps with a colourful image for the front of the report. But if she
is serious about making the right decision then she will understand
the need to think hard about her action set and her loss function,
and what they imply for effective summaries of the predictands.

4.4 Visualisation and diagnostics

A model is a device for organising our knowledge and judgements.
This is true of all models, including statistical models, which are a
device for organising the knowledge and judgement of the client
and her experts, including her statistician. Thus the client and her
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experts should concur that the distribution for {X,Y}

fX,Y(x, y) =
�

fX,Y|θ(x, y | t)πθ(t)dt

is a reasonable reflection of their knowledge and judgements.3 3 There is always a difficulty in repre-
senting the collective judgement of a
group of people. According to Prof.
Willy Aspinall, who is very experi-
enced in group elicitation (Aspinall,
2010; Aspinall and Cooke, 2012), a
common response from an individual
expert is that while the collective
assessment fX,Y(x, y) would not repre-
sent his personal judgement, he would
not disagree with it as a representation
of the judgement of a well-informed
person.

As shown, this distribution usually arises as an implication of the
choice of a statistical model for {X,Y} and a prior distribution
for the parameter θ. Often θ can be rather abstract, which makes
specifying πθ challenging; but X and Y are operationally defined
and Y is observed.

The purpose of visualisation and diagnostics is for the client and
her experts to satisfy themselves (and the auditor, in the narrative
of Chapter 2) that their distribution for {X,Y} is reasonable, by
comparing the marginal distribution of Y with the value of the
observations, yobs. There are several approaches, some of which are
outlined below.

In each approach the objective is to compare the actual observa-
tions with a distribution implied by the statistical model and the
prior distribution. In most cases the distribution will be most easily
represented as an SRS (Section 4.2). Candidates drawn from the
SRS can be used in a Turing test. A number (say 15) of candidates Turing test

are randomly drawn from the SRS. These candidates plus yobs are
shuffled, and all 16 are displayed to the client and her experts, in
whatever format seems most appropriate (e.g. as a map, as a time-
series, as a table). If the statistical model and the prior distribution
are an adequate representation of Y then it will be hard to spot yobs

among the candidates. Statistical summaries can also be computed
(Chapter 6).

1. Prior predictive diagnostics, in which the value yobs is compared Prior predictive

with the marginal distribution fY (Box, 1980). However, this
approach tends to be uninformative when πθ is diffuse, and is
not applicable at all if πθ is improper.

2. cross-validation diagnostics (Stone, 1974). Leave-one-out (LOO) is cross-validation
Leave-one-out (LOO)the simplest and most popular approach: each yi is compared

with its predictive distribution based on the other n − 1 observa-
tions. This is the gold-standard but it is expensive because the
inference needs to be repeated n times. Generalisations tend to
go by the name k-fold cross validation, where the observations are k-fold cross validation

divided into k subsets, and one is used to update the predictive
distribution for the other k − 1 (so LOO is n-fold cross validation).
If the yi’s are ordered, then prequential diagnostics are another prequential diagnostics

variant (Dawid, 1984; Cowell et al., 1999).

3. posterior predictive diagnostics Rubin (1984).4 In this approach the posterior predictive
4 See also Meng (1994) and Gelman
et al. (2003, ch. 6).

observations are ‘cloned’ into an identical set Ypre, defined by the
joint distribution

fYpre,Y(ypre, y) =
�

fY|θ(y
pre | t) fY|θ(y | t)πθ(t)dt.

In other words, Ypre is a set of observations that we might have
got had we been able to duplicate the experiment represented by
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the statistical model. An application of Bayes’s Theorem gives

f ∗Ypre(·) := fYpre|Y(· | yobs) =
�

fY|θ(· | t)π∗
θ (t)dt

where π∗
θ is the posterior distribution, as usual. This distribution

describes the set of candidates for Y that the statistical model
and the prior distribution imply as reasonable alternatives to the
actual value yobs.

There is no equivalent check for fX,Y, because X is not observed.
But candidates can be randomly sampled from the posterior predic-
tive distribution f ∗X(·) := fX|Y(· | yobs), and the client and her experts
can at least satisfy themselves that the individual candidates look
plausible, and that summary measures of the joint distribution are
consistent with their judgements. Ideally, X and Y would be judged
sufficiently alike that successfully representing Y will be taken as
confirmatory of the joint distribution over {X,Y}.

4.5 Bayesian asymptotics

Consider the task of assessing the posterior distribution of the
parameters,

π∗
θ (t)dt := Pr(θ ∈ [t, t + dt) | Y = yobs)

where θ ∈ Ω and Ω is a convex subset of Rd, and Y := (Y1, . . . ,Yn).
For a decision analysis, interest resides in the predictands rather
than the parameters. But a direct interest in the posterior distribu-
tion arises in three situations:

1. When θ is decision-relevant in its own right (in which case we
can take θ and X to be synonymous).

2. When X and Y are treated as conditionally independent given θ;
see (4.3) and Section 4.5.2.

3. For posterior predictive diagnostics; see Section 4.4.

This section considers the case where n, the number of observations,
is large, the so-called asymptotic case. The Bayesian approach has asymptotic

no particular need of asymptotic arguments. But it can be useful
to have a tractable approximation to the posterior distribution (e.g.
to approximate the evidence, see Section 4.2.1), and asymptotic
arguments can provide this. Asymptotics also address an interest-
ing regularity, which is that very often the margins of a posterior
distribution appear to be approximately Normal, and not to depend
on the prior distribution.

First, a quick review of the Normal distribution. Let X ∈ Rm have Normal distribution

a multivariate Normal distribution with expectation µ and non-
singular variance matrix Σ, denoted X ∼ Nm(µ,Σ). The PDF of X
is

φm(x; µ,Σ) := |2πΣ|− 1
2 exp

�
− 1

2 (x − µ)TΣ−1(x − µ)
�
.
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Let Y := a + BX, where a and B are specified; a is an n-vector and B
is an n × m matrix. Then Y ∼ Nn(a + Bµ, BΣBT) provided that BΣBT

is non-singular. Full details are given in Mardia et al. (1979, ch. 3).

The formal result for the asymptotic behaviour of the posterior
distribution is as follows (the terms will be defined below).

Theorem 4.2 (Asymptotic Normality of the posterior distribution).
Suppose that (Y1, . . . ,Yn) := Yn ∼ fYn |θ(· | θ0) for some θ0 in the interior
of Ω. Then, under suitable regularity conditions on the behaviour of fYn |θ
with respect to n and the choice of prior distribution, θ̂(Yn)

P−→ θ0, Ĵ(Yn)

increases without limit, and

Ĵ(Yn)
1
2 {θ − θ̂(Yn)} D−→ Nd(0, I)

as n increases. Here θ̂ is the maximum likelihood estimator and Ĵ is the
observed Fisher Information matrix.

This is a statement about the random quantities on the lefthand
side, which is a d-vector involving both observations and parame-
ters. But by conditioning on the observations and rearranging for θ

we get, under the same regularity conditions,

π∗
θ (t) ≈ φd

�
t; θ̂(yobs

n ), Ĵ(yobs
n )−1� (4.5)

for large n; i.e. the posterior distribution is approximately multivari-
ate normal, and concentrates around the ‘true’ value θ0, no matter
where in the interior of Ω this value happens to be.

In the asymptotic limit, the prior distribution drops out of the
posterior distribution. Thus two statisticians who agree on fYn |θ will
also agree, a priori, that their posterior distributions will be more-or-
less the same regardless of their choices of prior distributions, for a
sufficiently large number of observations.

4.5.1* More details

The proof of Theorem 4.2 is very technical, and there are several
versions of the regularity conditions. Here I will reproduce the
heuristic argument of Bernardo and Smith (2000, sec. 5.3.2), which
is insightful about the interplay of the statistical model and the
prior distribution. The crucial feature (assumed implicitly above)
is that it must be possible to increase the number of observations
without increasing the number of parameters.

In general, Bayes’s Theorem states that the conditional distribu-
tion of the parameters given the observations is

log fθ|Y (t | y) = c + log fY |θ(y | t) + logπθ(t) (†)

where c := − log fY (y). Let

θ̂(y) := argmax
t∈Ω

log fY |θ(y | t)

m0 := argmax
t∈Ω

logπθ(t)
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(formally these both solve the first-order conditions). θ̂ is termed
the maximum likelihood estimator (MLE), and m0 is the mode of the maximum likelihood estimator (MLE)

prior distribution. Then expand each of the terms in (†) as a Taylor
series around its maximum to give

log fY |θ(y | t) = log fY |θ
�
y | θ̂(y)

�
− 1

2
{t − θ̂(y)}T Ĵ(y){t − θ̂(y)}+ Rn

logπθ(t) = πθ(m0)−
1
2
{t − m0}TH0{t − m0}+ R0

where

Ĵ(y) := −∇2 log fY |θ
�
y | θ̂(y)

�

H0 := −∇2πθ(m0)

and ∇2 denotes the matrix of second partial derivatives with re-
spect to the components of t. Ĵ is termed the observed Fisher Infor-
mation. The regularity conditions ensure that these derivatives observed Fisher Information

exist, that Ĵ(y) is positive definite, and that the remainder terms Rn

and R0 can be ignored for sufficiently large n. Then, collecting all
additive constants together in c and dropping the remainder terms,

log fθ|Y (t | y) ≈ c − 1
2

�
{t − θ̂(y)}T Ĵ(y){t − θ̂(y)}+ {t − m0}TH0{t − m0}

�

= c − 1
2

�
{t − mn(y)}THn(y){t − mn(y)}

�

after completing the square in t, where

Hn(y) := Ĵ(y) + H0 (4.6a)

mn(y) := Hn(y)−1� Ĵ(y)θ̂(y) + H0 m0
�
. (4.6b)

Thus the conditional distribution is approximately Normal,

fθ|Y (t | y) ≈ φd
�
t;mn(y), Hn(y)−1�

where the expectation and the variance have contributions from
both the statistical model (the MLE and the observed Fisher Infor-
mation) and from the prior distribution (m0 and H0).

The regularity conditions ensure that Ĵ(y) increases without limit
in n, the number of observations in y. And hence Ĵ(y)−1H0 → 0,
implying that

Hn(y) → Ĵ(y) and mn(y) → θ̂(y)

as n increases, which is the asymptotic result given in (4.5). It
will usually speed up convergence to a Normal distribution if the
parameters are transformed so that Ω = Rd.

4.5.2* Hierarchical models

Section 3.4 introduced exchangeable hierarchical distributions
for a vector of random quantities. These have exactly the right
property, that the number of hyperparameters is constant, once
the parameters themselves have been integrated out, and that Ĵ
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is linear in n. Typically, the hyperparameters are given very flat
prior distributions, so that H0, which measures the curvature of
the prior around its mode, is small or zero. In this situation the
posterior distribution of the hyperparameters will often converge
quite rapidly to a Normal distribution.

However, this does not mean that the posterior distribution
of the parameters will converge to a Normal distribution. For
example, if

β1, . . . , βp | µ
iid∼ fβ|µ(b | m)

in the second level of (3.5), then, for sufficiently large n, the hyper-
parameter µ would be effectively known, say µ̂. In this case, the
posterior distribution of βi would be proportional to

f ∗βi
(bi) ∝ φ(yobsi ; vT

i bi, s2x)× fβ|µ(bi | µ̂)

and there is no reason at all for f ∗βi
to be Normally distributed if,

say, fβ|µ is non-normal.
As implemented in this example, when n is sufficiently large,

little is lost by ‘plugging in’ the posterior expectation (or the maxi-
mum likelihood estimate) for the hyperparameters and effectively
removing the bottom level from the hierarchical model. This ap-
proximation is known as parametric empirical Bayes (Morris, 1983). It parametric empirical Bayes

is not necessary, but it can lead to helpful simplifications, as well
as avoiding the difficulty of specifying a prior distribution for the
hyperparameters. It is ‘almost admissible’ according to the analysis
of Section 5.4.

4.5.3* Evidence and model choice

As one example of the use of Theorem 4.2, here is an approximation
to the ‘evidence’, fY (yobs). Recall from Section 2.6 that this is the
crucial quantity in admissible rules for choosing between compet-
ing hypotheses. An approach to computing the evidence from an
SRS for π∗

θ was outlined in Section 4.2.1. The approximation given
here is quicker, and also illuminating.

Theorem 4.3 (Evidence approximation). Under approximately asymp-
totic conditions,

fY (yobs) ≈ L(θ̂)πθ(θ̂) (2π)
d
2 | Ĵ−1| 12 ,

where L is the likelihood function, L(t) := fY |θ(yobs | t), θ̂ is the ML
estimate of θ, and Ĵ is the observed Fisher information.5 5 I am dropping the yobs argument on

these two functions to avoid clutter.
Proof. A rearrangement of Bayes’s Theorem (also used in Sec-
tion 4.2.1) gives

fY (yobs) =
L(t)πθ(t)

π∗
θ (t)

for any t ∈ Ω, (†)

where L(t) is the likelihood function, and π∗
θ is the posterior distri-

bution. Set t ← θ̂ and note that

π∗
θ (θ̂) ≈ φd(θ̂; θ̂, Ĵ−1) = |2π Ĵ−1|− 1

2 , (‡)
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using the asymptotic approximation to the posterior distribution
given in (4.5). Then, combining (†) and (‡)

fY (yobs) =
L(θ̂)πθ(θ̂)

π∗
θ (θ̂)

≈ L(θ̂)πθ(θ̂)

|2π Ĵ−1|− 1
2
,

and the result follows from a simple re-arrangement.

The approximation in Theorem 4.3 is very useful in clarify two
of the properties of fY , and in turn clarifying when one hypothesis
is favoured over another according to yobs. First, the logarithm of
the evidence decomposes into a goodness of fit term and a model
complexity penalty:

log fY (yobs) ≈ log L(θ̂) + logπθ(θ̂)� �� �
Goodness of fit

− 1
2
�
log| Ĵ| − d log 2π

�
� �� �

complexity penalty

.

Here model complexity is indexed by the number of parameters,
d. For fixed n, log| Ĵ| is increasing in d, because Ĵ is a d × d positive-
definite matrix.6 This decomposition of the evidence into ‘goodness 6 Hence log| Ĵ| = ∑d

i=1 logλj, where
λj > 0 is the jth eigenvalue of Ĵ.of fit less complexity penalty’ is the basis for the claim that the

Bayesian approach automatically implements the principle of Oc-
cam’s Razor—which asserts that unnecessary complexity should be Occam’s Razor

avoided. Thus a more complex model might improve the goodness
of fit, but not by enough to increase the evidence, given the increase
in penalty caused by the additional parameters.

Second, when choosing between hypotheses the prior distribu-
tion πθ cannot be ignored: in particular, it cannot be replaced by an
improper prior. To illustrate, suppose that πθ(t; σ2) = φd(t; 0, σ2 I),
for which

lim
σ2→∞

πθ(θ̂; σ2) = (2πσ2)−
d
2 ,

the (improper) uniform distribution on Rd. Then the log evidence
becomes, for large σ2,

log fY (yobs) ≈ �(θ̂)− d
2 log σ2 − 1

2 log| Ĵ|,

which is decreasing without limit in σ2. A hypothesis with an
improper prior distribution for its parameters has a log evidence
of −∞, and so its evidence is smaller than any hypothesis with a
proper prior distribution for its parameters. And, by extension, a
hypothesis with a diffuse prior distribution will often have smaller
evidence than one with a concentrated prior distribution. So when
comparing hypotheses using the evidence (which is the only admis-
sible approach), the choice of prior distribution for the parameters
within each hypothesis matters.

This is in contrast to the posterior distribution within a given
hypothesis, where the choice of prior distribution is often washed
out by large numbers of observations, according to (4.5).





5
Estimators

As described in Section 2.5, there is an approach to decision analy-
sis which does not require a prior distribution on the parameters of
the statistical model, but which replaces the parameters in the risk
function by an ‘estimator’ based on the observations. I termed the
resulting rule the ‘plug-in’ rule. This chapter is about estimators,
and the final section (Section 5.4) is about the admissibility of the
plug-in rule.

The theory of estimators has been a core part of statistics for
nearly a century. More details are available in textbooks such as
Cox and Hinkley (1974), Schervish (1995), and Casella and Berger
(2002).

Some sections are starred—these can be skipped without loss of
continuity.

5.1 Estimators and decision analysis

An estimator is a function of the observations which is designed
to be like the ‘true’ parameter values. If the statistical model is fY|θ
and the parameter space is Ω, then an estimator for θ is a function

θ̃ : Y → Ω

where, one hopes,

θ̃(Y) ≈ θ0 when Y ∼ fY|θ(· | θ0), for all θ0 ∈ Ω.

But we need a more formal criterion than this, if we are to distin-
guish good estimators from bad ones. Hence, estimation is treated
as a decision analysis (Chapter 2).

In this treatment the action set is A := Ω, and the loss function
L(a, θ0) quantifies the consequence of choosing θ = a when in fact
θ = θ0. An estimator θ̃ is simply a rule, with risk function

R(θ̃, θ0) := E
�
L
�
θ̃(Y), θ0) | θ0

�
= ∑

y
L
�
θ̃(y), θ0

�
fY|θ(y | θ0).

At the very least, inadmissible estimators ought to be avoided—these inadmissible estimators

are clearly bad estimators, because they are dominated by other
estimators. The complete class theorems of Section 2.2.2 suggest
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that we focus on estimators which are Bayes rules, which will be
discussed in Section 5.2.

However, before getting ahead of ourselves, we should contem-
plate the loss function. A estimator is admissible or inadmissible
with respect to a specific loss function, and if the loss function is
inappropriate then there is no reason to think that an inadmissible
estimator is poor. The difficulty is that the parameters are typically
not operationally defined, and the client’s actual decision analysis
depends not on the parameters themselves, but on the ‘state of
nature’ (or ‘predictands’), denoted X in previous chapters. So a loss
function for estimating the parameters may not be something that
the client has any particular judgement about.

Now this could be taken as an argument for abandoning esti-
mators and plug-in decision rules, and doing the decision analysis
‘properly’ according to Section 2.5. But an alternative is to propose
a generic loss function for parameter estimation. The most popular
choice is the quadratic loss function. quadratic loss function

Definition 5.1 (Quadratic loss function). L is a quadratic loss function
for parameter estimation exactly when

L(a, θ0) = (a − θ0)
T A(a − θ0)

where A is any d × d symmetric non-negative definite matrix.1 1 That is, a symmetric matrix for which
all the eigenvalues are non-negative, so
that L(a, θ0) ≥ 0 for all a, θ0 ∈ Ω.It is necessary to allow for a matrix A to account for the fact

that the parameters may have different units and ranges. A can
rescale the loss function to put all of the parameters on the same
footing, or it can be used to prioritise particular linear combinations
of parameters, including single parameters.

The simplest justification for a quadratic loss function arises from
the defensible assertion that the loss function is a differentiable
convex function of a− θ0, with a minimum L(0) = 0 (see, e.g. Savage,
1954, ch. 15). In this case a Taylor series expansion gives

L(a, θ0) = L(a − θ0)

= L(0) + (a − θ0)
T∇L(0) + 1

2 (a − θ0)
T∇2L(0)(a − θ0) + h.o.t.

= 1
2 (a − θ0)

T∇2L(0)(a − θ0) + h.o.t.

where h.o.t. are higher-order terms. Hence A = 1
2∇2L(0) in this

justification.2 Dropping the higher-order terms imposes symmetry 2 A is always symmetric, and A is
non-negative definite because L is
convex.

with respect to negative and positive values of a − θ0. This symmetry
is one of the weak features of the quadratic loss function. Another
is that it is unbounded above for unbounded parameter spaces,
which is hardly realistic because if losses really were unbounded
then we would all be paralysed into inaction.

There is another justification for a quadratic loss function, based
on our aspiration for an estimator. If θ were a scalar, then the best
possible outcome for an estimator θ̃ would be that θ̃(Y) and θ0 were
not materially different when Y ∼ fY|θ(· | θ0); see Section 1.6.0. This not materially different

would be true if and only if

E{
�
θ̃(Y)− θ0)

2 | θ0} = 0.
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If the loss function were the quadratic loss L(a, θ0) = (a − θ0)
2, the

lefthand side would be the risk function, R(θ̃, θ0). Therefore, the
quadratic loss function represents our aspiration that the estima-
tor be not materially different from the parameters, in the sense
that smaller risks are closer to the ideal situation, where the risk is
zero.3 The quadratic loss function in Definition 5.1 is a generalisa- 3 A similar argument was used to

justify the squared loss function in
the characterisation of conditional
expectation in Section 1.6.1.

tion of this to a d-dimensional parameter vector.

5.2 The Bayes estimator

If we want to avoid inadmissible estimators, then at the very least
we should satisfy the necessary condition that our estimator is a
Bayes rule or a generalised Bayes rule. This involves specifying a
prior distribution πθ . The Bayes rule for the quadratic loss function
is termed the Bayes estimator; it has a very simple form. Bayes estimator

Theorem 5.1 (Bayes estimator). The Bayes estimator is

θ∗(y) := E{θ |Y = y}.

In other words, the Bayes estimator is the conditional expectation
of the distribution of θ given (Y = y). For a post-data analysis,
the Bayes estimator is the posterior expectation. Theorem 5.1 is
an immediate consequence of a more general result, that expected
quadratic loss is minimised at the expected value.

Theorem 5.2. If L is quadratic loss, then

argmin
m

E{L(m,X)} = E(X).

Proof. let X be any vector of square integrable random quantities
with m̄ := E(X). Then

(m − X)T A(m − X)

= [(m − m̄) + (m̄ − X)]T A[(m − m̄) + (m̄ − X)].

Multiplying out and taking expectations gives

E{(m − X)T A(m − X)}
= (m − m̄)T A(m − m̄) + E{(m̄ − X)T A(m̄ − X)},

as the two cross-product terms have zero expectation. Minimising
with respect to m gives m = m̄ if A is non-negative definite.

There is a different Bayes estimator for each choice of prior distri-
bution πθ , although, as noted in Section 4.5, the prior distribution
will often play only a small role in the posterior distribution when
the number of observations is large. Following Section 2.2, the
Bayes estimator is admissible if πθ is proper and its support is the
whole of the parameter space Ω.
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One feature of the Bayes estimator which will be relevant below
is that it is not transformation-invariant, because the expectation
is not transformation-invariant. For example , if E(X) = m̄ and
Y = g(X), then

E(Y) = ∑x g(x) fX(x) �= g
�
∑x x fX(x)

�
= g(m̄).

The expectation only transforms correctly if g is linear, or if the
support of fX is a single value (in which case fX(m̄) = 1). So if
g : θ �→ ψ then the Bayes estimator for ψ cannot be found simply by
applying g to the Bayes estimator for θ. Transformation-invariance
is discussed in Section 5.3.1.

5.3 The Maximum Likelihood estimator

In this chapter I will focus on one particular ‘non Bayes estimator’,
the maximum likelihood estimator (MLE). The MLE is by far the most maximum likelihood estimator (MLE)

popular estimator in practice. To complement the MLE, there is a
large theory of likelihood-based inference, which I will not address;
see, e.g., Pawitan (2001). The main alternative to the MLE is based
on estimating functions (for which the MLE is a special case); see
Jesus and Chandler (2011) for a recent review.

Definition 5.2 (MLE). θ̂ : Y → Ω is a maximum likelihood estimator
(MLE) exactly when

θ̂(y) = argmax
t∈Ω

fY|θ(y | t) for every y ∈ Y.

With this definition there are issues of both existence and unique-
ness. Existence, because Ω may not be a closed set, and uniqueness
because for a given y there may be more than one maximising value
of t. However, these are rarely a problem in practice (due in part to
judicious choices for statistical models).

Sometimes it is necessary to refer to the MLE of a component of
θ, say θ1. In that case, the MLE of θ1 is denoted as θ̂1, and defined
as the first component of θ̂.

When the value of the observation yobs is the argument, the
value θ̂(yobs) is termed the maximum likelihood estimate. It should maximum likelihood estimate

always be clear whether one is talking of the MLE (a function) or
the ML estimate (a value in Ω).

* * *

One very important caveat. In order to compute the ML estimate
for observations yobs, we must be able to evaluate

Lik(t) := fY|θ(y
obs | t)

at any specified t ∈ Ω, up to a multiplicative constant that does
not depend on t. This is a strong restriction, and rules out many of
the statistical models that are regularly used in modern inference,
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such as Markov random fields—see Section 3.2 for more details. In
this situation a somewhat ad hoc alternative is to replace the likeli-
hood function with a tractable approximation, termed a composite
likelihood; see Varin et al. (2011). composite likelihood

Alternatively, finding the Bayes estimate in this situation is con-
ceptually straightforward. The parameters are treated as random
quantities along with X and Y and added to the joint distribu-
tion, and the conditional independence graph (CIG). Then Gibbs
sampling is used to generate a sufficiently random sequence (SRS,
see Section 4.2) for f ∗X,θ . The sample mean of the θ components of
the SRS gives the Bayes estimate θ∗(yobs). See Chapter 3 for more
details on Gibbs sampling.

5.3.1 Transformation invariance

In a parametric model the parameter simply indexes a family of
distributions. Any injective function of an index is also an index.4 4 The function g is injective exactly

when g(x) = g(x�) implies that
x = x�. So there exists a g−1 such that
g−1g(x) = x for any x.

So, formally, there is no special index, even though some choices
may seem more natural than others. Sometimes the choice of index
will be made by the statistician, because some parameterisations are
more convenient for one thing, and some for another. For example,
for the multivariate Normal distribution, a variance parameter
is more convenient for marginalisation, but an inverse variance
parameter is more convenient for conditioning (see, e.g., Rue and
Held, 2005).

However, even though the index may change, the family stays
the same. Let g : θ �→ ψ be an injective function. Then the statistical
model can be written in terms of θ, or it can be written in terms of
ψ, and the two must be related as

fY|ψ(y | v) = fY|θ
�
y | g−1(v)

�
. (5.1)

An estimator θ̃ is transformation invariant exactly when ψ̃(y) = transformation invariant

g(θ̃(y)) for all y ∈ Y. This is an attractive property precisely because
the choice of index is arbitrary. However, it should not be over-sold.
In particular, it should not be prized above admissibility, particu-
larly if there is a parameterisation which seems more natural.

Theorem 5.3. The MLE is transformation invariant.

Proof. Follows from (5.1) because, for each y,

max
v

fY|ψ(y | v) = max
v

fY|θ
�
y | g−1(v)

�
= max

t
fY|θ
�
y | t
�
.

Hence, for any y, g−1(ψ̂) = θ̂, or ψ̂ = g(θ̂), as was to be shown.
Here I am assuming that the maximum is unique for each y. Statis-
tical models with this property are termed identifiable. identifiable

5.3.2* Computing the ML estimate

As explained at the start of Section 5.3, the MLE is only applicable
in cases when the statistical model fY|θ(yobs | t) can be evaluated as a
function of t; so we must assume this from here on.
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There are several points to be made. In principle the ML estimate
can be found in any post-data analysis by maximising the log-
likelihood function, log-likelihood function

�(t) := log fY|θ(y
obs | t).

Taking logarithms is precautionary for numerical reasons, because
fY|θ(yobs | t) can vary over several orders of magnitude as t varies;
but it is also theoretically attractive, as explained below.

However, there is no reason for an arbitrary log-likelihood to
be a well-behaved function, with a single global maximum. Possi-
bly there is a dominant maximum and then some foothills: these
foothills are annoying computationally, but they are not inferen-
tially worrying. But possibly it’s all foothills. In this case there is
very little reason to favour the MLE, because it is likely to be highly
sensitive to the addition or deletion of a single observation.

So evidence that your numerical optimiser is struggling to find a
global maximum of the log-likelihood is not simply a reason to buy
a larger computer. It is telling you that the observations alone are
not very helpful for making inferences about the parameters.

Happily, the log-likelihood tends to be well-behaved when the
number of observations is much larger than the number of pa-
rameters. This follows directly from Theorem 4.2. If the posterior
distribution is approximately Normal, then the log-likelihood
function must be approximately quadratic. In this case, an opti-
miser which can exploit this knowledge will move rapidly to the
global maximum, once it has got clear of the foothills. As noted
in Section 4.5, a bijective transformation of the parameter space
from Ω to Rd speeds up the convergence, and because the MLE is
transformation invariant, this is perfectly acceptable.

Numerical optimisation of smooth functions that are fairly
quadratic is a very well-studied problem; see, e.g., Nocedal and
Wright (2006). Practically speaking, you can almost certainly do
better than just plugging � into the R function �����. In particular,
if it is possible to evaluate �(t) then it is often possible to compute
the gradient vector ∇�(t). Access to this function can dramati-
cally shorten the time needed to find a global maximum. A good
optimiser will report an approximation to the observed Fisher in-
formation Ĵ(yobs), which is sequentially approximated during the
optimisation. Multiple starting points are always a good idea, as
there will usually be foothills.

5.3.3 The MLE and admissibility under quadratic loss

In general the MLE is inadmissible with respect to a quadratic
loss function. This is because it does not represent a conditional
expectation with respect to some prior distribution πθ ; therefore it
fails the necessary condition of being a Bayes rule or generalised
Bayes rule. However, under the same conditions that hold for
Theorem 4.2, for large numbers of observations the MLE can be
nearly a generalised Bayes rule and even, in the limit, nearly a



estimators 83

Bayes rule.
I assume that Ω has been bijectively transformed to Rd, to make

best possible use of the results in Section 4.5. Under the conditions
of that section, the conditional expectation of θ given (Y = y) is
approximately given by mn(y) in (4.6), which I repeat here:

Hn(y) := Ĵ(y) + H0

mn(y) := Hn(y)−1� Ĵ(y)θ̂(y) + H0 m0
�
.

Ĵ(y), the observed Fisher Information, increases without limit in n,
the number of observations in Y. H0 is invariant to n, describing the
curvature of the prior distribution around its mode m0. Therefore,
under the appropriate conditions,

θ̂(y) −→ mn(y),

and convergence is accelerated when πθ is an improper prior
distribution (for which H0 is small or even zero).

This relationship θ̂ ≈ mn is only a valid approximation under
certain conditions on the statistical model and the prior distribution.
But where these conditions hold, and where the number of obser-
vations is sufficiently large, the MLE is effectively the conditional
expectation, and in this case it satisfies the necessary condition for
admissibility under quadratic loss.

* * *

Here is a cautionary tale about the MLE and admissibility, the
Stein paradox. Consider the statistical model Stein paradox

Y := (Y1, . . . ,Yn) ∼ Nn(θ, I)

where θ := (θ1, . . . , θn) ∈ Rn and I is the n × n identity matrix; in
other words, there is a parameter for each observation. A sensible
estimator of θ would seem to be

θ̃(y) := y (5.3)

which is also the MLE. It is also a generalised Bayes rule under
quadratic loss, with an improper prior distribution πθ(t) ∝ 1.
But, to the surprise and consternation of statisticians, Stein (1956)
showed that (5.3) was inadmissible for n ≥ 3. Stein’s paradox is
carefully analysed in Cox and Hinkley (1974, sec. 11.8), and there
is an insightful and non-technical summary in Efron and Morris
(1977).

This example illustrates the point made in Section 2.2.2, that
the union of Bayes and generalised Bayes rules forms a complete
class but not a minimal complete class. That is to say, there are
some generalised Bayes rules that are admissible (here, in the case
n ≤ 2), so that Bayes rules on their own are not a complete class.
But there are some generalised Bayes rules that are inadmissible, so
that the union of Bayes and generalised Bayes rules contains some
inadmissible rules (here n ≥ 3).
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More pragmatically, though, it warns us against the MLE when
the number of observations is not substantially larger than the num-
ber of parameters: in Stein’s paradox, n = d. In this situation the
Bayes estimator offers the opportunity to augment the observations
with additional judgements about θ, as represented by a proper
prior distribution πθ .

5.4* Plug-in estimators and admissibility

Now return to the primary decision analysis, described in Chap-
ter 2. The risk function for rule δ is

R(δ, t) := E
�
L
�
δ(Y),X

�
| θ = t

�
.

The Bayes rule δ∗ minimises the integrated risk R(δ) := E{R(δ, θ)}
with respect to some prior distribution πθ . The necessary condi-
tion for any rule δ to be admissible is that it is a Bayes rule or a
generalised Bayes rule (which allows for πθ to be improper).5 5 In this section I will write ‘Bayes rule’

for ‘Bayes rule or generalised Bayes
rule’.

Section 2.5 introduced the ‘plug-in rule’, which was not a Bayes
rule, but which was simple and tractable. Bayes rules have the form

δ∗(y) = argmin
a∈A

E
�
L(a,X) |Y = y

�
,

for some prior distribution πθ . The plug-in rule has the form

δ̃(y) = argmin
a∈A

E
�
L(a,X) | θ = θ̃(y)

�
,

for some estimator θ̃. Not being a Bayes rule, the plug-in rule is
inadmissible. Perhaps, however, there are conditions under which
the plug-in rule is almost a Bayes rule? This would require that

E
�
L(a,X) | Y = y

�
≈ E

�
L(a,X) | θ = θ̃(y)

�
.

The following result gives the conditions. It might be a good idea to
revisit Section 1.6 first.

Theorem 5.4. If X and Y are conditionally independent given θ, and the
regularity conditions of Theorem 4.2 hold, and n is sufficiently large, then
the plug-in rule with the MLE for θ approximates the Bayes rule.

Proof. Let ψa ∈ E{L(a,X) | θ,Y}. Definition 3.1 states that if X and
Y are conditionally independent given θ then ψa(t, y) = φa(t) for
some φa; that is, ψa is invariant to y. Recollect from Theorem 1.12
that φa ∈ E{L(a,X) | θ}. Then

E{L(a,X) | Y = y} = E
�

E{L(a,X) | θ,Y = y} |Y = y
�

by the LIE

= E
�
ψa(θ, y) | Y = y

�

= E
�
φa(θ) | Y = y

�
by conditional independence

≈ φa
�

E[θ |Y = y]
�

(†)

= E
�
L(a,X) | θ = θ∗(y)

�

≈ E
�
L(a,X) | θ = θ̂(y)

�
(†)
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where θ∗ is the Bayes estimator, and θ̂ is the MLE. The approxima-
tions at (†) require that Y approximately determines θ and that
θ∗(y) ≈ θ̂(y). In other words, that the regularity conditions of
Theorem 4.2 hold, with sufficiently large n.6 6 A more elegant proof would make

a second-order approximation at
the first (†), rather than a first-order
approximation.* * *

Section 3.4 discussed hierarchical models, which are often used
for drawing inferences about populations from samples; e.g. in
epidemiology (Rothman et al., 2008). In hierarchical models, the
predictands are often mutually conditionally independent given
the hyperparameters θ, and the observations are a subset of the
predictands. Thus if we write X := {XA, XB} and Y := XA then
XB ⊥⊥ Y | θ. Hierarchical models tend to satisfy the regularity
conditions of Theorem 4.2, see Section 4.5.2. And it is often pos-
sible to collect quite large samples (large n). Thus the conditions
in Theorem 5.4 are satisfied. And so it is not surprising that the
plug-in rule has endured: it is a good approximation to the Bayes
rule in this situation, and so satisfies the necessary condition for
admissibility.

But for a more complex decision analysis, conditional indepen-
dence may not be appropriate, the conditions of Theorem 4.2 may
not hold, or n may not be sufficiently large. In this case the plug-
in rule is inadmissible. So to conclude, the plug-in decision rule of
Section 2.5 is only (approximately) admissible under restrictive condi-
tions on the joint distribution of the predictands, the observations, and
the parameters. In particular, its common usage in some areas of
statistical inference should not be taken to imply that it is generally
defensible.





6
Signficance levels and confidence sets

A significance level measures the concordance between a set of
observations y and judgements about Y, the latter represented in
terms of a probability distribution, or a family of distributions. It
takes the form of a p-value—one of the two most misunderstood
concepts in statistical inference. This chapter covers the definition,
computation, and choice of a p-value (Section 6.1, Section 6.2, and
Section 6.3). P-values can be used to construct confidence sets for
the parameters (Section 6.4 et seq.)—the other most misunderstood
concept in statistical inference.

Some sections are starred—these can be skipped without loss of
continuity.

6.0 Preamble

The length of this chapter is a testament not so much to the impor-
tance of significance levels and confidence sets (although they are
ubiquitous), but to the errors that are made in interpreting them. In
order that there can be no confusion, let me stress at the very out-
set that significance levels and confidence sets should not be used
for making decisions that involve choosing between options. The
correct tool for this is Decision Analysis (Chapter 2). Any choices
that are not derived within the framework of Decision Analysis
are likely to be inadmissible, and indefensible. I deliberately avoid
writing ‘signficance test’, as a p-value should not be used, formally,
to test a theory, as will be explained in Section 6.1.

But it is a moot question whether the many intermediate choices
that are made by the client and her experts (including the statisti-
cian) during the course of a statistical inference must also be de-
rived within the framework of Decision Analysis. Ideally, yes—but
in practice there are so many choices, that one looks for informal
guidance in order to make some progress. In particular, one looks
for ‘sanity checks’ to ensure that the analysis is proceeding in the
right direction; most notably, not drifting too far from a path which
is concordant with the observations yobs. Thus a significance level
is a type of alarm bell, which rings when the drift has become wor-
ryingly large. Likewise, it is a crude screening device, allowing
a first-stage selection of promising paths. The crucial feature of
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such informal guidance is that it must require much less effort to
implement than the formal guidance—otherwise what is the point?!

The crucial feature of a significance level is that it involves only
a single hypothesis, conventionally denoted H0, the null hypothesis, null hypothesis

without the explicit requirement for any alternative hypothesis.
Thus the statistician asks: “I am currently assuming H0 about
{X,Y}—am I on the right path?”, and it seems intuitive that this
question will sometimes have a clear answer based on H0 and
yobs alone, without any reference to other paths. Likewise the
domain expert might ask “I would like to use process model H0 to
represent {X,Y}—did it do a good job of representing yobs?”

In statistical inference H0 takes the form of a family of distribu-
tions for Y, written generically as

H0 : Y ∼ fY ∈ F,

for some specified family F. It is helpful to distinguish two situ-
ations. In a simple hypothesis F has only one element, while in a simple hypothesis

composite hypothesis F has more than one element. If we take the composite hypothesis

statistical model fY|θ as given, then simple hypotheses either takes
the form

fY(·) =
�

fY|θ(· | t)πθ(t)dt, (6.1a)

where one specifies a prior distribution πθ ,1 or the form 1 Giving rise to prior predictive diag-
nostics, see Section 4.4.

fY(·) = fY|θ(· | θ0) (6.1b)

where one specifies a point value for θ; i.e. H0 : θ = θ0. Composite
hypotheses take the general form

H0 : θ ∈ Ω0

for some Ω0 ⊂ Ω, where Ω0 has more than one element. In this
chapter I will focus on simple hypotheses until Section 6.6, which
considers nuisance parameters.

6.1 P-values for simple hypotheses

A simple null hypothesis H0 is represented as

H0 : Y ∼ fY

for some specified distribution fY. The idea of a significance level is
to construct a statistic (a scalar real-valued function of the observa- statistic

tions) which can be interpreted on a standard scale, no matter what
H0 might be. Formally, this idea is implemented as a p-value. p-value
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Definition 6.1 (P-value). A statistic p : Y → R is a p-value for a
hypothesis H0 exactly when the realm of p(Y) is [0, 1],

1. p(Y) has a subuniform distribution under H0, and

2. p(Y) under H0 stochastically dominates p(Y) under some decision-
relevant departure from H0.

If p(Y) has a uniform distribution under H0 then I term it an exact
p-value.

In this definition, X has a subuniform distribution exactly when subuniform distribution

Pr(X ≤ u) ≤ u for all u ∈ [0, 1]. And X stochastically dominates Y stochastically dominates

exactly when

Pr(X > a) ≥ Pr(Y > a) for all a ∈ R.

If X stochastically dominates Y then, visually, the distribution func-
tion of X lies to the right (or, rather, never to the left) of Y. The
importance of the stochastic dominance property was emphasised
by DeGroot (1973). To avoid writing “decision-relevant departure
from H0” I will just write H�, where H� is a direction in ‘distribu-
tion space’ away from H0.

Both properties in Definition 6.1 are important, but only the
second is necessary to prove the following result, which relates the
p-value to the odds ratio. Recollect from Theorem 2.6 that the odds
ratio is the only admissible way to choose between two competing
hypotheses; i.e. to choose between H0 and the (notional) H�.

Theorem 6.1. Small p-values indicate that the odds ratio for H0 versus H�

is likely to be less than one.

Proof. I will assume that the p-value has a continuous distribution.2 2 This proof is really just illustrating
the ‘obvious’ point that if two random
quantities X and Y have the same
realm U and X stochastically domi-
nates Y then fY(u) ≥ fX(u) when u is
a sufficiently small value in U.

Denote the distribution function of p(Y) under H0 as F0, with
PDF f0. Let u denote the p-value, and let u be small, close to zero.
In this case

f0(u) ≈
F0(u)− F0(0)

u
=

u0
u

say, where u0 := F0(u) and F0(0) = 0. Let F� be the distribution
function of p(Y) under H�, and f � the PDF. By the same reasoning,

f �(u) ≈ u�

u

where u� := F�(u) and F�(0) = 0, so that u0 ≤ u� according to the
stochastic dominance property in Definition 6.1. Hence the odds
ratio for H0 versus H� is

f0(u)
f �(u)

≈ u0
u�

≤ 1.

There are three points to notice about this result. First, it only
holds for small p-values. For large p-values, the odds ratio is un-
determined. Second, a small p-value does not fix the value of the
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odds ratio, beyond suggesting that it will be less than one. The
value could be almost one, or tiny—it would be necessary to make
an explicit choice for H� to resolve this. Third, recollect from the
discussion in Section 2.6.1 that the odds ratio is not the same as the
posterior odds, so that a small odds ratio does not imply that H0 is
improbable relative to H�. All three of these points correspond to
common errors.

Errors in interpreting p-values:

1. The large p-value fallacy: a large p-value implies that the odds large p-value fallacy

ratio favours H0 over its alternatives.

2. The odds ratio fallacy: a small p-value implies a small odds ratio odds ratio fallacy

for H0 versus its alternatives.

3. The base rate fallacy: a small p-value makes H0 less probable than base rate fallacy

its alternatives.

I have coined the name ‘odds ratio fallacy’, but its origins go
back at least to Edwards et al. (1963), who noted that the p-value of
0.05 was much smaller than a lower bound for the odds ratio in the
case where Y is Normal. The ‘base rate fallacy’ gets its name from
forensics and medical science, where the prior odds Pr(H0)/Pr(H�)
is taken to be the ratio of the relative frequencies (base rates) of H0

and H� in the population (see, e.g., Gigerenzer, 2003).
To return to the point made at the start of this chapter, it is a

horrible error to think that a p-value can be used to ‘reject H0’ or
‘not reject H0’ on the basis of yobs. To ‘reject H0’ on the basis of a
small p-value commits both the odds ratio fallacy and the base rate
fallacy. To ‘not reject H0’ on the basis of a large p-value commits the
large p-value fallacy. P-values are never decision-relevant—they are
purely indicative.

P-values have always been controversial, because misinterpre-
tation is so easy; see, for example, Greenland and Poole (2013),
which is just the latest exchange in fifty years of discussion. If there
was an acid test for statistical competence, correctly defining and
interpreting a p-value would do.

6.2 Constructing and computing p-values

I continue to assume that H0 is a simple hypothesis of the form
H0 : Y ∼ fY for some specified fY.

6.2.1 Using a test statistic

The ubiquitous method for constructing p-values is to propose a
test statistic s : Y → R with the property that large values of s(y)
are suggestive of a decision-relevant departure from H0. Then we
have the following result, which is precise in the case where s(Y) is
continuous, but imprecise when it is discrete.
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Theorem 6.2. Let H0 be a simple hypothesis for Y, and let S := s(Y) be a
test statistic for which S under H0 is stochastically dominated by S under
some decision-relevant departure from H0, labelled H�. Then

ps(y) := Pr{S ≥ s(y) | H0}

has a subuniform distribution under H0, and ps(Y) under H0 nearly
stochastically dominates ps(Y) under H�. If S is continuous then ps is an
exact p-value.

Proof. To prove the first property of Definition 6.1, I use a nifty
trick from Casella and Berger (2002, section 8.3.4). Let G0 be the
distribution function of −S under H0. Then

ps(y) = Pr{S ≥ s(y) | H0} = Pr{−S ≤ −s(y) | H0} = G0(−s(y)).

Then since ps(Y) = G0(−S), subuniformity of p(Y) under H0

follows from the Probability Integral Transform (Section A.3). If S is
continuous, then ps(Y) is uniform under H0.

For property 2, let H� be a decision-relevant departure from H0,
for which

Pr(S > a | H0) ≤ Pr(S > a | H�) (†)

for each a ∈ (0, 1), according to the conditions of the theorem. If S
is continuous, G−1

0 exists, and then

Pr{ps(Y) > u | H0} = Pr{G0(−S) > u | H0}
= Pr{S < −G−1

0 (u) | H0} (‡)

≥ Pr{S < −G−1
0 (u) | H�} by (†)

= Pr{G0(−S) > u | H�} (‡)

= Pr{ps(Y) > u | H�},

and hence ps(Y) under H0 stochastically dominates ps(Y) under H�,
as required.

In the more general case where S is discrete, a non-decreasing
generalised inverse can be defined,

G−
0 (u) := inf

s

�
s ∈ R : G0(s) ≥ u

�

but this has the property that G−
0 G0(s) ≤ s and G0G−

0 (u) ≥ u.
Hence the lines between the (‡)’s cannot be true, but will be good
approximations when the distances between points in G0(S) are
small, where S is the realm of S.

Theorem 6.2 is sometimes taken to be the definition of a p-value,
with small p-values being interpreted as ‘surprising’ under H0. This
interpretation makes little sense, because such a p-value depends
on the choice of test statistic, of which there is an infinite variety.
Perhaps it is possible to choose a test statistic with the element
of ‘surprise’. But it would be much more sensible to choose a test
statistic that indicated a decision-relevant departure from H0.
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6.2.2 Computing p-values by simulation

Occasionally it will be possible to choose a test statistic s with a
known distribution under H0, from which an explicit expression for
ps(y) can be derived (see Section 6.3.1). But this puts the cart before
the horse—what we want is to be able to choose our test statistic ac-
cording to our judgement about decision-relevant departures from
H0. Happily, the p-value for any s can be computed by simulation
using following result.

Theorem 6.3. For any finite sequence of scalar random quantities
X0,X1, . . . ,Xm, define the rank of X0 in the sequence as

R :=
m

∑
i=1

(Xi ≤ X0).

If X0,X1, . . . ,Xm are exchangeable then R has a uniform distribution
on the integers 0, 1, . . . ,m, and (R + 1)/(m + 1) has a subuniform
distribution.

Proof. By exchangeability, X0 has the same probability of having
rank r as any of the other X’s, for any r, and therefore

Pr(R= r) =
1

m + 1
for r = 0, 1, . . . ,m (†)

and zero otherwise, proving the first claim.
To prove the second claim,3 3 Notation: �x� is the largest integer no

larger than x, termed the ‘floor’ of x.

Pr

�
R + 1
m + 1

≤ u
�

= Pr
�
R + 1 ≤ u(m + 1)

�

= Pr
�
R + 1 ≤ �u(m + 1)�

�
as R is an integer

=
�u(m+1)�−1

∑
r=0

Pr(R = r)

=
�u(m+1)�−1

∑
r=0

1
m + 1

from (†)

=
�u(m + 1)�

m + 1
≤ u.

Now take a statistic s : Y → R which has the property that larger
values of s(y) are suggestive of a decision-relevant departure from

H0. Define S := s(Y) and Sj := s(Yj) where Y1, . . . ,Ym iid∼ fY. Then
S, S1, . . . , Sm form a scalar exchangeable sequence under H0. Hence
if

Rs(y) :=
m

∑
j=1

(−Sj ≤ −s(y)) =
m

∑
j=1

(Sj ≥ s(y))

then Theorem 6.3 implies that

Ps(y) :=
Rs(y) + 1

m + 1

has a subuniform distribution under H0.4 Furthermore, the Weak 4 Here I write both Rs and Ps as
capitals, because they are functions of
the random quantities Y1, . . . ,Ym.
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Law of Large Numbers (Section A.4) shows that

lim
m→∞

Ps(y) = lim
m

limm Rs(y) + 1
m + 1

= lim
m

m−1{Rs(y) + 1}
m−1{m + 1}

= Pr{S ≥ s(y) | H0}

and so the asymptotic limit of Ps is the p-value defined in Theorem 6.2.
Hence, asymptotically, Ps satisfies the stochastic dominance prop-
erty in the same way as ps. Thus a large m is preferable, even
though Ps is subuniform for all m.

Therefore Ps can be computed from an SRS for fY, which is used
to provide Y1, . . . ,Ym. In order for these to be exchangeable it is
sufficient that they are independent, and hence these m values
must be extracted from well-separated locations in the SRS (see
Section 4.2).
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Figure 6.1: The MCMC approach of
Besag and Clifford (1989), with m = 7
and k = 10.

Besag and Clifford (1989) made an elegant suggestion for null
hypotheses of the form H0 : θ = θ0, based on an MCMC simula-
tion on Y with stationary distribution fY|θ(· | θ0). First, initialise
the MCMC at y, and run the MCMC backwards for k steps. Then
initialise m independent sequences from the same value and run
each one forwards for k steps. Then y and the MCMC values will
be exchangeable under H0 (see Figure 6.1). If k is small these values
will not be independent under H0, but exchangeable is all that is re-
quired by Theorem 6.3. However, a large k and a large m are better,
again because of the stochastic dominance property.

6.3 Choice of test statistic

Ideally, the client would be able to specify a test statistic for which
large values indicate a decision-relevant departure from H0. But in
many cases it is useful have a default test statistic. Such a choice
can at least avoid any suspicion that the test statistic has been
selected to reach a foregone conclusion.5 5 Although recollect my warning about

basing actions on significance levels, in
Section 6.1.

However, there is one important caveat which applies in this
section. It is the same caveat given at the start of Section 5.3. It has
to be possible to evaluate and manipulate the statistical model
fY|θ(y | t) as a function of t. This is almost taken for granted in
textbooks, but it rules out many of the statistical models that are
regularly used in modern statistical inference.

Here I consider testing hypotheses about the parameters. Sup-
pose that

H0 : θ = θ0

for some specified θ0 ∈ Ω ⊂ Rd, but no specified alternative value
H� : θ = θ� is available. Imagine if such a θ� were specified. In this
case, all admissible tests for H0 versus H� would have the form

choose H� over H0 when
fY|θ(y | θ�)
fY|θ(y | θ0)

> c
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for some c > 0 (Theorem 2.6). Now suppose that θ� is close to θ0.
Taking the logarithm of the odds ratio and writing θ� = θ0 + δ for
small δ gives

log
fY|θ(y | θ0 + δ)

fY|θ(y | θ0)
= log fY|θ(y | θ0 + δ)− log fY|θ(y | θ0)

≈ δTu(y, θ0),

using a Taylor series expansion to first order, where u is the score
function, score function

u(y, t) := ∇ log fY|θ(y | t)
and ∇ indicates differentiation with respect to the components of
t.6 Thus for testing for small departures from θ0 in the direction δ, 6 Hence u(y, t) is a d-vector.

admissible tests would have the form δTu(y, θ0) > c for some c ∈ R.
Overall, this suggests that test statistics based on the score function
will be powerful for examining small departures from H0. In the
very simple case where θ is a scalar parameter, u(·, θ0) is termed the
the locally most powerful test statistic. the locally most powerful test statistic

The variance of the score function will be used below. This is
termed the expected Fisher information, expected Fisher information

I(t) := Var{u(Y, t) | θ = t}, (6.2)

and it is, by construction, a d × d symmetric non-negative definite
matrix.

6.3.1* Special case of regular statistical models

As well as being theoretically attractive, test statistics based on the
score function have a practical advantage as well, for statistical
models of a particular form: their distribution under H0 : θ = θ0 is
approximately known. In this section I write Y := (Y1, . . . ,Yn).

The defining feature of regular statistical models is that the oper- regular statistical models

ations of taking expectations over Y and taking derivatives with
respect to t can be interchanged. The dominant necessary condition
for this is that the support of the statistical model does not depend
on the values of the parameters. If this condition holds, a sufficient
condition is that the realm of Y is bounded. See Casella and Berger
(2002, ch. 2) for more details of regular statistical models.

Theorem 6.4. If fY |θ is a regular statistical model then E{u(Y , t) | θ = t} = 0.

Proof. Start from the identity ∑y fY |θ(y | t) = 1. Then differentiate
both sides with respect to tj. The righthand side is zero. For a
regular model, the lefthand side is

∂

∂tj
∑
y

fY |θ(y | t) = ∑
y
∇j fY |θ(y | t)

= ∑
y
∇j log fY |θ(y | t)× fY|θ(y | t)

= E{uj(y, t) | θ = t},
which must therefore equal zero.
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Now consider the special case where

fY |θ(y | t) =
n

∏
i=1

fY|θ(yi | t).

In this case, the Y is said to be IID given θ (Section 3.1). For the
score function,

u(Y , t) = ∇ log
n

∏
i=1

fY|θ(Yi | t)

= ∇
n

∑
i=1

log fY|θ(Yi | t)

=
n

∑
i=1

∇ log fY|θ(Yi | t) =
n

∑
i=1

u1(Yi, t), (6.3)

where u1 is the score function for a single observation. And then
the expected Fisher information (see (6.2)) equals

I(t) = nVar
�
u1(Yi, t) | θ = t

�
= nI1(t),

where I1 is the expected Fisher Information for a single observation.
The following result then follows directly from (6.3) and the Central
Limit Theorem (Section A.4).

Theorem 6.5. If Y is IID given θ ∈ Ω ⊂ Rd and fY|θ is a regular
statistical model, then

u(Y , θ0)
D−→ Nd

�
0, nI1(θ0)

�

where convergence is under H0 : θ = θ0.

Therefore, under the conditions of Theorem 6.5 the score func-
tion has a known distribution under H0 in the limit as n → ∞, and
an approximately known distribution for large n. This means that
approximate p-values for H0 which are based on the score function
can be computed directly, without simulation. In particular, there is
the general purpose test statistic for H0,

s(y, θ0) = u(y, θ0)T
�
nI1(θ0)

�−1u(y, θ0) (6.4a)

for which Normal distribution theory implies that s(Y , θ0)
D−→ χ2

d
under H0 (see, e.g., Mardia et al., 1979, ch. 3, Cor. 3.2.1.1). Thus, for
large n,

ps(y, θ0) = Pr
�
s(Y , θ0) ≥ s(y, θ0) | θ = θ0

�

≈ 1− Fχ2
d

�
s(y, θ0)

�
(6.4b)

where Fχ2
d
is the distribution function of a χ2

d random quantity.

6.3.2* Expected and observed Fisher Information

For regular models, there is an additional result which is useful
when computing the expected Fisher Information—it is often easier
to compute derivatives than to compute variances.
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Theorem 6.6 (Fisher’s identity). If fY |θ is a regular statistical model,
then

I(t) = −E
�
∇2 log fY |θ(Y | t) | θ = t

�
. (6.5)

Proof. The following cryptic outline should suffice:

∇i∇j log f = ∇i
∇j f

f

=
∇i∇j f · f −∇j f · ∇i f

f 2
the quotient rule

=
∇j∇j f

f
−∇i log f · ∇j log f .

Now take expectations conditional on θ, to give

E
�
∇i∇j log f | θ = t

�
= E

�∇j∇j f
f

��� θ = t
�
− Iij(t), (†)

because, for the second term,

E{∇i log f · ∇j log f | θ = t}
= E

�
ui · uj | θ = t

�
= Cov

�
ui, uj | θ = t

�

as E{ui | θ = t} = E{uj | θ = t} = 0 by regularity and Theorem 6.4.
Finally, the first term in (†) is zero, because, by regularity, and

suppressing the conditioning on θ = t,

E
∇i∇j f

f
= ∑

y

∇i∇j f
f

f

= ∑
y
∇i∇j f

= ∇i ∑
y
∇j log f · f

= ∇i E
�
∇j log f

�
= ∇i E

�
uj
�
= 0

again by Theorem 6.4.

Now recollect the definition of the observed Fisher Information,
given in Section 4.5,

Ĵ(y) := −∇2 log fY |θ
�
y | θ̂(y)

�
, (6.6)

where θ̂ is the Maximum Likelihood Estimator (MLE). It is surely
not a coincidence that I(t) in (6.5) and Ĵ(y) in (6.6) look so similar,
even if they do have different arguments. And indeed it is not.

Theorem 6.7. If Y is IID given θ and fY|θ is a regular statistical model
then

Ĵ(Y) P−→ nI1(θ0)

under H0 : θ = θ0.
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Proof (informal). The conditions of the theorem satisfy the regularity

conditions of Theorem 4.2, and hence θ̂(Y) P−→ θ0 under H0. And
then, because Y is IID given θ,

Ĵ(y) =
n

∑
i=1

−∇2 log fY|θ
�
yi | θ̂(Y)

�
.

Hence, under H0,

n−1 Ĵ(Y) P−→ E
�
−∇2 log fY|θ(Yi | θ0) | θ = θ0

�
= I1(θ0)

according to the Weak Law of Large Numbers (WLLN, Section A.4)
and Theorem 6.6.

This result supports the practice of replacing I(θ0) with Ĵ(yobs)

in asymptotic approximations derived under H0. Sometimes this
will be simply for convenience. If the value of the MLE has been
found, then Ĵ(yobs) ought to be readily available (see Section 5.3),
whereas I(θ0) requires an integration over Y. But there are also
theoretical reasons for preferring to use the observed Fisher Infor-
mation rather than the expected Fisher information, explored in
Efron and Hinkley (1978).

6.4 Confidence sets

The only use I know for a confidence interval is to have confidence in
it. —L.J. Savage (Savage et al., 1962, p. 98)

Confidence sets are a Frequentist approach to quantifying para-
meter uncertainty, in terms of a set in parameter space. A Bayesian
approach to the same problem would simply assert a loss function

L(A, θ0) for A ⊂ Ω and θ0 ∈ Ω,

the loss experienced from choosing set A when the ‘true’ θ equals
θ0, and then use the Bayes rule (see Chapter 2) for a specified prior
distribution. Hence confidence sets are adopted by statisticians
who would rather not provide either a loss function or a prior
distribution.

Without a prior distribution, confidence sets cannot make prob-
abilistic statements about θ directly. Instead, they make them indi-
rectly, with reference to the behaviour of random sets in parameter
space.

Definition 6.2 (Confidence set and coverage). Cβ is a level β confi-
dence set for θ exactly when Cβ(y) ⊂ Ω and confidence set

Pr
�
t ∈ Cβ(Y) | θ = t

�
≥ β for all t ∈ Ω.

The probability on the lefthand side is defined as the coverage of C at t. If coverage

the coverage is exactly β for all t, then the confidence set is ‘exact’.

There is a close relationship between confidence sets and p-
values; for every p-value, there is a confidence set (and vice versa).7 7 The vice versa is that if θ0 is on the

boundary of a level β confidence set,
then 1− β is a p-value for H0 : θ = θ0.
See Section 6.6.
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Theorem 6.8. Let p(y, θ0) be a p-value for the hypothesis H0 : θ = θ0.
Then

Cβ(y) :=
�
t ∈ Ω : p(y, t) > 1− β

�

is a level β confidence set for θ. If the p-value is exact, then the confidence
set is exact as well.

Proof. This proof uses the subuniformity property of p-values.

Pr{t ∈ Cβ(Y) | θ = t} = Pr{p(Y, t) > 1− β | θ = t}
= 1− Pr{p(Y, t) ≤ 1− β | θ = t}
≥ 1− (1− β) = β,

where the inequality follows from the p-value being subuniform. In
the case where the p-value is uniform, the inequality is replaced by
an equality, and the confidence set is exact.

Note that although the stochastic dominance property of
p-values is not used explicitly, it is used implicitly to define a sen-
sible confidence set. Values for t with small p-values are excluded
from the confidence set because their odds ratios for H0 versus
decision-relevant departures from H0 are likely to be smaller than
one (Theorem 6.1).

Section 6.2.1 showed how p-values could be constructed from
test statistics: the p-value for H0 using test statistic s was denoted
ps(·, θ0). For a given test statistic, confidence sets constructed with
p-value have two important properties.

First, from the construction it is immediate that β ≤ β� implies
that Cβ(y) ⊂ Cβ�(y), so that these confidence sets are always nested. always nested

While this property is not in the definition of a confidence set,
anything else would seem bizarre.

Second, such confidence sets are transformation-invariant (see transformation-invariant

Section 5.3.1). That is to say, if g : θ �→ φ is an injective mapping
and Cθ

β is the confidence set in the parameterisation θ, and C
φ
β in the

parameterisation φ, then C
φ
β(y) = gCθ

β(y).

Proof. If H0 : θ = θ0, then, in terms of φ, H0 : φ = φ0 where
θ0 = g−1(φ0). Then the result follows immediately from (5.1) and

pφ
s (y, φ0) = Pr

�
s(Y) ≥ s(y) | φ = φ0

�

= ∑y�
�
s(y�) ≥ s(y)

�
fY|φ(y

� | φ0)

= ∑y�
�
s(y�) ≥ s(y)

�
fY|θ(y

� | θ0)

= pθ
s (y, θ0).

6.4.1* Interpretation of confidence sets

The first thing about confidence sets is that there are as many ways
to construct them as there are ways to construct p-values. This
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means that one can construct confidence sets which are completely
meaningless, by choosing a p-value which is meaningless. For ex-
ample, use {y, θ0} to seed a deterministic uniform random number
generator, and then select, say, the thousandth iterate as p(y, θ0). In
this case p(Y, θ0) is uniform for all fY|θ and all θ0 ∈ Ω, and

Cβ(y) :=
�
t ∈ Ω : p(y, t) > 1− β

�

is an exact level β confidence set under all statistical models; see
Figure 6.2. This confidence set is exact, nested, and transformation-
invariant—what’s not to like?! It is also meaningless.
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Figure 6.2: Meaningless exact 50%
confidence sets for the parameter of a
Poisson statistical model, for different
values of y.

One way to protect against meaningless confidence sets is to
enforce the stochastic dominance property of p-values. If strict
stochastic dominance is required, then the distribution of the p-
value must vary between the null model and decision-relevant
alternatives. Better p-values have stronger stochastic dominance,
and give rise to better confidence sets. Thus a statistician using
a confidence set needs to be able to defend his particular choice
of confidence set (e.g. his choice of test statistic) as a good choice
among the infinity of possible choices, bearing in mind that this
infinity includes many choices that are poor.

* * *

Second, a confidence set only promises a lower bound on cov-
erage when averaging over the whole of Y, but for particular y it
may be unattractive: unbounded, say, or unconnected. However, in
order for the coverage to be correct, the statistician must commit
to a particular confidence set Cβ before seeing Y = yobs, and then
report Cβ(yobs) even though it may turn out that this particular set
is unattractive. This has proved to be unpalatable for statisticians;
see ch. 2 of Berger and Wolpert (1984) for more details.

One consequence has been the development of conditional infer-
ence, in which one conditions on ancillary statistics, representing conditional inference

ancillary statisticsa function of the observations that is independent of the param-
eters. But it has been difficult to formalise conditional inference
into an acceptable principle, due to ambiguities about what con-
stitutes an ancillary statistic (if such a thing exists); see Berger and
Wolpert, op. cit.. Davison (2003, ch. 12) provides an update-to-date
summary of conditional inference.

A Bayesian approach suffers none of these difficulties, because
a Bayesian credible set is conditioned on yobs; but then again,
Bayesian credible sets make no guarantees about coverage.

* * *

Third, there is the issue of what happens when the statistician
reports the confidence set to the client. Suppose that you tell the
Minister that you have computed a 95% confidence interval for
sea-level rise in 2100 to be (0.25m, 0.85m), and she says

“OK, just to be clear, there is a 95% probability that sea-level rise will
be greater than 0.25m and less than 0.85m.”
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To which you reply

“Not quite Minister: (0.25m, 0.85m) is one realisation of a random
interval that has at least a 95% probability of containing the true
value of sea-level rise, no matter what that value happens to be”

She looks at you as though you have two heads, but you have no
choice—this is the definition!

Non-statisticians expect Bayesian credible intervals (see, e.g.,
Rubin, 1984), and you—the statistician—should recognise this fact,
and be extremely cautious about presenting confidence sets to non-
statisticians. I doubt whether the client is interested in being 95%
correct on average, over thousands of imaginary replications of the
observations. She is much more concerned with her observations
yobs, and what they tell her about the parameters and the predic-
tands. This requires a Bayesian analysis, and a prior distribution for
the parameters.

6.5* Quick confidence sets

There is a practical issue when computing Cβ(yobs). To enumer-
ate the elements in this confidence set requires the calculation of
a p-value for H0 : θ = θ0 for many candidate values of θ0 ∈ Ω.
In general each candidate requires a simulation, as described in
Section 6.2.2. So computational cost is an issue.

This issue can be addressed by making a tractable choice of test
statistic; in particular using the test statistic and p-value from (6.4)
which does not require any simulation.8 Unfortunately, however, 8 This is only possible when the score

function is computable. The more
general situation is discussed in
Section 6.6, but this section should be
read first.

the conditions of Theorem 6.5 will typically not hold. This means
that the actual coverage of the resulting confidence set will not be
the same as its nominal coverage β—the difference between these
two is termed level error. So there needs to be a correction for level level error

error.
Let s be defined as in (6.4a), but with I(θ0) in place of nI1(θ0),

and ps be defined as in (6.4b). Define the set

C(y, β∗) :=
�
t ∈ Ω : ps(y, t) > 1− β∗� .

For any y and t it is cheap to compute whether t ∈ Cβ(y, β∗),
because it is cheap to compute whether ps(y, t) > 1− β∗. But in
general Cβ(·, β∗) will not have coverage of at least β∗ for all t ∈ Ω,
because the conditions of Theorem 6.5 will not hold. So the simple
idea is that β∗ is adjusted until C(·, β∗) has the desired coverage β

in the region of parameter space favoured by the observations yobs.
The tool for this adjustment is the bootstrap. Here is the algo- bootstrap

rithm.

1. Compute the ML estimate θ̂(yobs), denote this as θ̂obs.

2. Sample y1, . . . , ym iid∼ fY|θ(· | θ̂obs), for some large m (say 1000).

3. Set β∗ ← β.
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4. Compute the empirical coverage

coverage(β∗) := m−1
m

∑
j=1

�
θ̂obs ∈ C(yj, β∗)

�

= m−1
m

∑
j=1

�
ps(yj, θ̂obs) > 1− β∗�.

5. If coverage(β∗) ≈ β then go to step 6; otherwise, adjust β∗ and
go back to step 4.

6. Set
Cβ(·) = C(·, β∗). (†)

Eq. (†) will have coverage of almost exactly β at θ = θ̂obs, and—one
hopes—coverage of close to β in a reasonably large region of Ω
around θ̂obs. The observed (approximately exact) level β confidence
set Cβ(yobs) can now be enumerated quickly.

The empirical coverage in step 4 approximates the true coverage
at θ̂, according to the Weak Law of Large Numbers (WLLN, see
Section A.4). As discussed in Section 4.2, the y’s can be sampled
from an SRS for fX,Y|θ(· | θ̂), or for fY|θ(· | θ̂) if the joint distribution
marginalises conveniently.

There are many approaches to using the bootstrap to construct
confidence sets, reviewed in DiCiccio and Efron (1996). The ap-
proach outlined here is an example of what they term bootstrap
calibration. Because there is an adjustment for level error, addi- bootstrap calibration

tional approximations are possible. In particular, because θ̂obs has
been computed, the observed Fisher Information Ĵ(yobs) ought
to be available (see Section 5.3.2 and Section 6.3.2). Replacing the
expected Fisher Information with the observed Fisher Informa-
tion simplifies the evaluation of Cβ and C(·, β∗) because then the
denominator of (6.4a) does not depend on θ0.

6.6* Nuisance parameters

The calibration correction for level error in Section 6.5 is a general
tool that can be used whenever it is possible to simulate from
the statistical model. So it can be used to correct Bayesian set
estimators for level error, and this is perhaps the most general way
to construct confidence sets.

Suppose that the client is interested in some scalar function of
the parameters, φ := g(θ). This is a very common situation. The
full parameter set θ is necessary to construct a statistical model
which adequately represents the judgements of the client, but only
a subset of the parameters is decision relevant, or some function
of the parameters—I have just used a scalar function here but the
results generalise immediately.9 Convex confidence sets for scalar 9 For a vector function, the credible

interval below would need to be
replaced by a high posterior density
set (see, e.g. Tanner, 1996).

parameters are termed confidence intervals. The other functions of

confidence intervals

the parameters that are required to augment g into an injective
function are termed nuisance parameters. In the simplest case the

nuisance parameters
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client might be interested in, say, θ1, and then θ2, . . . , θd would be
nuisance parameters.

The simple idea is to construct a Bayesian interval estimator of
φ, and then correct for level error using bootstrap calibration. It is
necessary to specify a prior distribution πθ . As this is effectively
a device, a rule-based specification may suffice (see, e.g., Kass
and Wasserman, 1996). But it seems sensible and defensible to
incorporate judgements about θ where they are widely shared.
Then generate an SRS for π∗

θ , the posterior distribution of the
parameters. This can immediately be transformed into an SRS for
π∗

φ, according to Theorem 4.1. Using this SRS, compute the level β

equi-tailed credible interval, which is the interval defined by the
(1− β)/2 and (1+ β)/2 quantiles of the SRS (see Section 4.4); denote
these quantiles � and u.

Now you have a level β credible interval for φ, based on yobs.
You can tell the Minister that there is a 100β% probability that φ lies
in the range [�, u], based on the statistical model, the prior distribu-
tion, and the observations. It is just possible that the Minister will
ask “and what is the coverage of this interval?” At this point you
can do the calibration calculation of Section 6.5. Starting from the
Bayes estimate (the posterior expectation of θ), generate a large set
of candidate observations. Compute a level β equi-tailed credible
interval for each one, and count the proportion that contain the
Bayes estimate. This proportion is an estimate of the coverage at
the Bayes estimate and—one hopes—in a reasonably large region
around this estimate as well.10 10 This is a computationally intensive

calculation, because each candidate re-
quires an SRS, but it can be performed
in parallel.

Fingers crossed, there will only be a small discrepancy between
β and the estimated coverage. If there was a large discrepancy, I
would initially suspect a computing error. Having ruled this out,
I would subject the statistical model and the prior distribution
to more stringent checking—see Section 4.4. A more pragmatic
response would be to try a different (flatter?) prior distribution.11 11 There is a class of prior distributions

called matching priors that are designed
to give level β credible intervals with
coverage of approximately β, but these
prior distributions only exist for a
small subset of statistical models; see
Datta and Sweeting (2005).

6.6.1* P-values for composite hypotheses

The hypothesis
H0 : φ = φ0

is an example of a composite hypothesis, because it does not com-
pletely determine the distribution of Y. This section has shown how
to derive confidence intervals for φ, and these can be turned into
a p-value for H0, using the duality of p-values and confidence sets
described in Theorem 6.8. Simply adjust the confidence level β until
φ0 lies on the boundary of its confidence interval. Then 1− β is a
p-value for H0. Similarly, one could compute a Bayesian p-value by Bayesian p-value

using a Bayesian credible interval in place of a confidence interval.
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More on expectation and probability

Here is a smörgåsbord of additional results about expectation and
probability.

A.1 Variances and covariances

Specifying my expectation for X describes only a single aspect
of my judgements about X. I can increase the depth of my judge-
ments about X by specifying expectations for non-linear func-
tions of X. There are several approaches, but one in particular has
proved mathematically tractable, which is to specify judgements
about powers of X. The value E(Xr) is termed the rth moment, for rth moment

r = 1, 2, . . .; thus the first moment is the expectation. The second
moment in particular plays an important role, because of its attrac-
tive theoretical properties. This is the variance. For vector random
quantities, this generalises to the covariance.

A.1.1 Variance and standard deviation

The variance of X is defined as variance

Var(X) := E
�
{X − E(X)}2

�
,

and the standard deviation of X, standard deviation

Sd(X) :=
�
Var(X).

Both the variance and the standard deviation are well-defined
provided that X is square integrable, as can be seen by multiplying
out:

{X − E(X)}2 = X2 − 2X E(X) + {E(X)}2,

and hence Var(X) = E(X2)− {E(X)}2. The standard deviation is the
more intuitive of the two, having the same units as X itself. It has
acquired much familiarity from its role as a standard parameter of
the Normal distribution.
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A.1.2 Covariance and correlation

I may judge two random quantities X and Y to be related, in the
sense that my expectation for the random quantity

{X − E(X)}{Y − E(Y)}

is positive, or negative. Thus define the covariance of X and Y, covariance

Cov(X,Y) := E
�
{X − E(X)}{Y − E(Y)}

�
,

implying that Cov(X,Y) = Cov(Y,X), and Var(X) = Cov(X,X).
Multiplying out,

Cov(X,Y) = E(XY)− E(X)E(Y),

so that the Schwarz inequality (Theorem 1.2) implies that Cov(X,Y)
is finite if X and Y are both square integrable. Also,

Cov(X,Y) = 0 ⇐⇒ E(XY) = E(X)E(Y).

The covariance is particularly tractable for specifying judgements
about linear functions of random quantities. It is easy to check that
if a, b, c, d are constants, then

Cov(a + bX, c + dY) = bdCov(X,Y),

so covariances (and variances as a special case) are invariant to
shifts (a and c) but not to scalings (b and d). One special case is
Cov(a,Y) = 0, setting b = 0. More generally,

Cov(X +Y,Z) = Cov(X,Z) +Cov(Y,Z).

This result can be iterated for any finite sum. In particular,

Var
�

∑
i

Xi

�
= ∑

i
Var(Xi) + ∑

ij
Cov(Xi,Xj). (A.1)

The unit of Cov(X,Y) is the product of the units of X and the
units of Y, which is not very intuitive. The correlation coefficient is a correlation coefficient

unitless transformation of the covariance, defined as

Corr(X,Y) :=
Cov(X,Y)

Sd(X) Sd(Y)
if Sd(X) Sd(Y) > 0,

and undefined otherwise. This is invariant to shifts and scalings.
The correlation is bounded between −1 and 1, according to the
Schwarz inequality.

Proof. Since covariances are invariant to shifts, we may take X
and Y to have expectation zero, without loss of generality. Then
Cov(X,Y) = E(XY) and Var(X) = E(X2). By the Schwarz inequal-
ity, then,

Cov(X,Y)2 = E(XY)2 ≤ E(X2)E(Y2) = Var(X)Var(Y).

Taking square roots implies

|Cov(X,Y)| ≤ Sd(X) Sd(Y),

from which −1 ≤ Corr(X,Y) ≤ 1 follows directly, provided that the
righthand side is positive.
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The next result sheds light on the interpretation of the correla-
tion.

Theorem A.1. If Y ms
= a + bX for some real a, b then |Corr(X,Y)| = 1.

Proof. Without loss of generality, let Y and a + bX both have expecta-
tion zero. Then

E
�
{Y − (a + bX)}2

�
= E(Y2)− 2E{Y(a + bX)}+ E{(a + bX)2}
= Var(Y)− 2Cov(Y, a + bX) +Var(a + bX)

= Var(Y)− 2bCov(Y,X) + b2 Var(X).

This must be equal to zero for all b, and hence

{2Cov(Y,X)}2 − 4Var(Y)Var(X) = 0

from which the result follows directly.

Thus correlation can be interpreted as a measure of the strength
of the linear association between two random quantities, with ±1
indicating an effectively perfect linear association, and 0 indicating
no linear association.

We say that X and Y are uncorrelated exactly when Cov(X,Y) = 0. uncorrelated

If X and Y are uncorrelated then Var(X + Y) = Var(X) + Var(Y),
from (A.1). This result can be iterated to any finite sum of mutually
uncorrelated random quantities, for which Cov(Xi,Xj) = 0 for all mutually uncorrelated

i �= j. If X and Y are probabilistically independent (see Section 3.1)
then they are uncorrelated, but the converse is not true.

A.2 Inequalities

The axioms of expectation give rise to some very powerful inequal-
ities regarding expectations of functions of random quantities.
Schwarz’s inequality has already been given (Theorem 1.2). Here
are some others.

Theorem A.2 (Jensen’s inequality). If x := (x1, . . . , xn) and g is any
convex function of x, then E{g(X)} ≥ g(E{X}).

g(x)

h(x)

E(X)

g{E(X)}

Figure A.1: Supporting hyperplane for
a convex function

Proof. If g is convex then there is a supporting hyperplane through
every point g(x). Let x̄ := E(X), and denote the supporting hyper-
plane through g(x̄) as h(x) := g(x̄)+ aT(x− x̄), for some a ∈ Rn; see
Figure A.1. Then since g(x) ≥ h(x) for all x, so E{g(X)} ≥ E{h(X)}
by monotonicity, and the result follows by linearity:

E{g(X)} ≥ E{g(x̄) + aT(X − x̄)} = g(x̄) + aT(x̄ − x̄) = g{E(X)}.

Theorem A.3 (Monotonicity of norms). Let 1 ≤ p ≤ r. If E(|X|r) is
finite then

E(|X|p)1/p ≤ E(|X|r)1/r.
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Proof. As E(|X|r) is finite by hypothesis, it is only necessary to
show that

E(|X|p)r/p ≤ E(|X|r).
But g(x) = |x|r/p is a convex function and so

E(|X|p)r/p = |E(|X|p)|r/p by non-negativity

≤ E(||X|p|r/p) by Jensen’s inequality

= E(|X|pr/p) = E(|X|r)

as was to be shown.

Here are some inequalities which link expectation and probabil-
ity.

Theorem A.4 (Generalised Markov’s inequality). If g is an increasing
non-negative function of x, then

Pr(X ≥ a) ≤ E{g(X)}
g(a)

.

Proof. If g(a) = 0 then this is certainly true, so let g(a) > 0. Because
g is increasing, X ≥ a if and only if g(X) ≥ g(a). Let Y := g(X) and
b := g(a). Then

Pr(X ≥ a) = Pr(Y ≥ b)

= E(Y ≥ b) by definition

= E(Y/b ≥ 1) as b > 0

≤ E(Y/b) as Y ≥ 0 implies (Y/b ≥ 1) ≤ Y/b

= E(Y)/b

which proves the result, on substituting for Y and b.

The original Markov’s inequality states that if Y is non-negative
then Pr(Y ≥ b) ≤ E(Y)/b. Other famous inequalities follow from
this one, such as Chebyshev’s Inequality.

Theorem A.5 (Chebyshev’s inequality). If X is a random quantity with
expectation µ and variance σ2 then

Pr(|X − µ| ≥ a) ≤ σ2

a2
.

Proof. Since |X − µ| ≥ a ⇐⇒ (X − µ)2 ≥ a2, so

Pr(|X − µ| ≥ a) = Pr{(X − µ)2 ≥ a2} ≤ E{(X − µ)2}
a2

=
σ2

a2

where the inequality is the original Markov’s inequality.

Note that Markov’s and Chebyshev’s inequalities are tight (Whit-
tle, 2000, ch. 15), so that one cannot get a better upper bound on
the probability without constraining the distribution of X further.
Here is one approach to getting a better bound with additional
information about X.



more on expectation and probability 107

Theorem A.6 (Tail probabilities). If a > 0,

Pr{|X| ≥ a} ≤ min
r>0

E{|X|r}
ar .

Proof. Follows immediately from the generalised Markov’s in-
equality (Theorem A.4) with g(x) = xr, which must hold for all
r > 0.

A.3 The Probability Integral Transform (PIT)

Let X ∈ X ⊂ R be a scalar random quantity with distribution
function FX : X → [0, 1]. Define a new random quantity Y := FX(X);
i.e. Y is the random quantity one gets by putting X into its own
distribution function. It is a very useful fact that Y has a subuniform
distribution, i.e. subuniform distribution

FY(u) ≤ u for all u ∈ [0, 1],

and that FY(u) = u if there exists an x ∈ X such that u = FX(x).

Proof. First, consider the case where u = FX(x) for some x ∈ X:

FY(u) = Pr{FX(X) ≤ FX(x)} = Pr{X ≤ x} = FX(x) = u.

The ‘cancellation’ of F at the second equality occurs because of the
bijective relationship between x and F(x) for x ∈ X.1 This proves 1 Technical note: here we can ignore

points in X that have zero probability.the second part of the claim: in the case where X is a continuous
random quantity, the points u in (0, 1) are in a bijective relationship
with the points x in X, and Y is uniformly distributed.

Otherwise, let x and x� be two consecutive values in X, with
u = FX(x) and u� = FX(x�), and let u + δ be some value in the open
interval (u, u�). Then

Y ≤ u + δ =⇒ X ≤ x

and so FY(u + δ) ≤ FX(x) = u. But we must also have FY(u + δ) ≥
FY(u) = u. Therefore we conclude that FY(u + δ) = u, and hence
FY(u + δ) < u + δ.
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Figure A.2: Distribution function of
Y = FX(X), where X ∼ Poisson(λ =
2.5).

So the distribution function of Y looks like a staircase where
each step starts from the 45◦ line drawn from (0, 0) to (1, 1); see
Figure A.2. For a continuous random quantity the steps are in-
finitesimally small, and the distribution function and the 45◦ line
coincide.

A.4 Convergence of random quantities

This is a very brief outline of some useful results about probabilistic
convergence. Details and proofs can be found in Grimmett and
Stirzaker (2001, chs 5 and 7).

There are several different types of convergence for sequences of
random quantities. Two if these are:



108

1. Convergence in probability: Xn
P−→ X, exactly when Convergence in probability

lim
n→∞

Pr{|Xn − X| ≥ ε} = 0

for all ε > 0.

2. Convergence in distribution: Xn
D−→ X, exactly when Convergence in distribution

lim
n→∞

FXn(x) −→ FX(x)

for all x for which FX is continuous. An equivalent condition is
that limn→∞ E{g(Xn)} = E{g(X)} for all bounded continuous g.

Here are two results which link these types of convergence.

Theorem A.7.

1. Xn
P−→ X =⇒ Xn

D−→ X

2. Xn
P−→ c ⇐⇒ Xn

D−→ c, where c is a constant.

Theorem A.8 (Slutsky’s theorem). If Xn
D−→ c, where c is a constant,

and Yn
P−→ Y,

1. Xn +Yn
D−→ c +Y,

2. XnYn
D−→ cY.

A.4.1 Convergence in probability

The Weak Law of Large Numbers (WLLN) is an example of conver- Weak Law of Large Numbers (WLLN)

gence in probability.2 2 See Section A.1.2 for the definition of
‘mutually uncorrelated’.

Theorem A.9 (Weak Law of Large Numbers). If X1,X2, . . . is an infi-
nite sequence of mutually uncorrelated random quantities with E(Xi) = µ

and Var(Xi) < ∞, then X̄n
P−→ µ, where X̄n := n−1 ∑n

i=1 Xi, the sample
mean.

Proof. Let Var(Xi) = σ2. From the properties of the expectation and
variance (Section A.1.2), E(X̄n) = µ and Var(X̄n) = σ2/n. Then, by
Chebyshev’s Inequality (Theorem A.5),

Pr
�
|X̄n − µ| ≥ ε

�
≤ σ2/n

ε2
,

and the righthand side tends to zero in n, for all ε > 0.

A different version of the WLLN requires the stronger condition
that X1,X2, . . . is an IID sequence,3 but then allows for Var(Xi) to 3 See Section 3.1 for the definition of

IID.be infinite, as long as E(Xi) is finite. This is proved using character-
istic functions.

Two useful properties of P−→ are given in the next result.

Theorem A.10.

1. If Xn
P−→ X and Yn

P−→ Y then Xn +Yn
P−→ X +Y.

2. If g is continuous and Xn
P−→ X, then g(Xn)

P−→ g(X).
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A.4.2 Convergence in distribution

The Central Limit Theorem (CLT) is an example of convergence in Central Limit Theorem (CLT)

distribution. It states that if X1,X2, . . . is an infinite IID sequence
for which E(Xi) = µ and Var(Xi) = σ2 < ∞, then

X̄n − µ

σ/
√

n
D−→ N(0, 1), (A.2)

where X̄ is the sample mean (see Theorem A.9). For convergence
in distribution it is common to write a distribution on the right-
hand side, as shown in (A.2), rather than a Y with a specified
distribution.

The CLT can be elegantly proved using characteristic functions;
see Grimmett and Stirzaker (2001, chapter 5). There is a multivari-
ate CLT as well, for an infinite IID sequence of vectors. In this case,
if Xi is a k-vector, E(Xi) = µ and Var(Xi) = Σ, then

√
n Q−T(X̄n − µ)

D−→ Nk(0, I)

where Q is any matrix satisfying QTQ = Σ.
The Normal distribution is closed under linear transformations.

Therefore, although technically incorrect, it is understandable to
write these two results as

X̄n
D−→ N(µ, σ2/n) and X̄n

D−→ N(µ, n−1Σ).
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