APTS Statistical Modelling: Exercises Students should talk to their supervisors to find out whether or not their department requires this work as part of any formal accreditation process (APTS itself has no resources to assess or certify students). It is anticipated that departments will decide on the appropriate level of assessment locally, and may choose to drop some (or indeed all) of the parts, accordingly. - 0. If you have not already done so, complete the three APTS week practical sessions. - 1. (a) Suppose that $y = (y_1, \ldots, y_n)$ are modelled as observations of i.i.d. random variables from $f(y_i|\theta)$ and that the prior information about $\theta = (\theta_1, \ldots, \theta_p)$ is represented by the prior probability distribution $\pi(\theta)$ (which does not depend on n). Writing the marginal likelihood, p(y), as $$p(y) = \int f(y \mid \theta) \pi(\theta) d\theta = \int \exp\{-h(\theta)\} d\theta,$$ apply the Laplace approximation to the integral, and show that if O(1) terms are neglected, then $$-2\log p(y) \doteq \mathrm{BIC} = -2\log f(y\mid\widehat{\theta}) + p\log n, \quad n\to\infty.$$ Hence, what can you say about Bayesian posterior model probabilities as $n \to \infty$? - (b) Show that AIC for a normal linear model with n responses, p covariates and unknown σ^2 may be written as $n\log\widehat{\sigma}^2+2p$ where $\widehat{\sigma}^2=RSS/n$ is the maximum likelihood estimate of σ^2 . If $\widehat{\sigma}_0^2$ is the unbiased estimate under some fixed 'correct' model with q covariates, show that AIC is equivalent to using $n\log\left\{1+(\widehat{\sigma}^2-\widehat{\sigma}_0^2)/\widehat{\sigma}_0^2\right\}+2p$ as a model comparison criterion, and that this is approximately equal to $n\left(\widehat{\sigma}^2/\widehat{\sigma}_0^2-1\right)+2p$. Deduce that model selection using C_p approximates that using AIC. - (c) In the same context as (b), show that $C_p = (q p)(F 1) + p$ where F is the F-statistic for comparison of the models with p and q > p covariates, and deduce that if the model with p covariates is correct then $E(C_p) \doteq q$ but that otherwise $E(C_p) > q$. - 2. The data frame bacteria are discussed in Chapter 10 of Modern Applied Statistics with S (4th edition) by Venables and Ripley (Springer, 2002). They are available in R by loading the library MASS. The response y indicates presence or absence of a particular bacteria when assessed on 50 individuals (ID) at each of up to 6 time points (week). Each individual has received one of three treatments (trt: placebo/drug/drug+). Model the dependence of y on trt and week using binary GLMs and GLMMs (to account for intra-subject dependence in the response), fitted by maximum likelihood and associated approximations. Functions which you might wish to investigate for doing this include glmmPQL (from the MASS library), glmmML (from the library of the same name) and lmer (from the lme4 library). Use the library documentation provided to learn about the required arguments of these functions. Compare the inferences obtained by different fitting methods (quadrature, Laplace, PQL). 3. For the bacteria data, Venables and Ripley (2002, p297) propose the binary GLMM with $$Y_{ij} \sim \text{Bernoulli}(\mu_{ij}), \quad g(\mu_{ij}) = \beta_0 + \beta_1 x_{1ij} + \beta_2 x_{2ij} + \beta_2 x_{3ij} + b_{0i}, \quad b_{0i} \sim N(0, \sigma_b^2)$$ where X_1 , X_2 , X_3 are the three binary explanatory variables I(trt = drug), I(trt = drug), and I(week > 2) and g is the logit link function. If instead g is the probit link (Φ^{-1}) , then a Bayesian analysis of this model, using a Gibbs sampler, is straightforward, utilising the following latent variable formulation: The GLMM above (with $g = \Phi^{-1}$) is equivalent to $$Y_{ij} = I(Z_{ij} > 0), \quad Z_{ij} \sim N(\mu_{ij}, 1), \quad \mu_{ij} = \beta_0 + \beta_1 x_{1ij} + \beta_2 x_{2ij} + \beta_2 x_{3ij} + b_{0i}, \quad b_{0i} \sim N(0, \sigma_b^2)$$ where the Z_{ij} are latent continuous-valued variables, one for each observed Y_{ij} . (a) Establish this equivalence, that is, for the latent variable model, show that $P(Y_{ij} = 1|b_{0i}) = \Phi(\mu_{ij})$. As the Z_{ij} are unobserved, they can also be generated in any Gibbs sampler scheme. It is immediately obvious that, given Z, the conditional distributions for β, b, σ_b^2 are exactly as for a LMM (with known error variance $\sigma^2 = 1$). Hence, a Gibbs sampler for this GLMM can be obtained by a straightforward modification of our LMM Gibbs sampler from Practical 3. We simply need to generate the Z_{ij} at each step. - (b) Show that the conditional distribution for $Z_{ij}|Y,\beta,b,\sigma_b^2$ is $N(\mu_{ij},1)$, restricted to the range $(0,\infty)$ when $Y_{ij}=1$, or the range $(-\infty,0]$ when $Y_{ij}=0$. - (c) Modify the R function you used for an LMM Gibbs sampler in Practical 3, to perform a Bayesian analysis of the model above. Use the initial diffuse priors $\beta_i \stackrel{\text{ind}}{\sim} N(0, 25)$ and $\sigma_b^{-2} \sim \text{Gamma}(0.01, 0.01)$. It is reasonable to suppose a priori that the probability of bacteria presence decreases over time. Perform an alternative analysis with the more informative prior distribution $\beta_3 \sim N(-2, 4)$. How are your results affected? - (d) Compare your results with the logit model results obtained using maximum likelihood in Question 2. [Note that, if g_1 and g_2 are logit and probit links respectively, then linear approximation gives $g_1 \approx 4g_2/(2\pi)^{1/2}$.] - 4. Consider the below experimental design with m=11 factors and n=12 runs (also available from the APTS website). | Run | $ x_1 $ | x_2 | x_3 | x_4 | x_5 | x_6 | x_7 | x_8 | x_9 | x_{10} | x_{11} | y | |-----|---------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|------| | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2846 | | 2 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 284 | | 3 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 113 | | 4 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 104 | | 5 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 126 | | 6 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 971 | | 7 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 326 | | 8 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 71 | | 9 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 142 | | 10 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 266 | | 11 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 420 | | 12 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 62 | A regression model is to be fitted to this data, containing an intercept and linear terms in all 11 factors. This is an example of a *non-regular* fractional factorial design, where the alias structure cannot be summarised through a defining relation. This particular design is a *Plackett-Burman* design. Using $\log(y)$, fit a regression model for the main effects and use a normal effects plot to decide which factors are important. What caveats do you need to place on your conclusions?