
APTS Statistical Modelling: Exercises

Students should talk to their supervisors to find out whether or not their department requires
this work as part of any formal accreditation process (APTS itself has no resources to assess
or certify students). It is anticipated that departments will decide on the appropriate level of
assessment locally, and may choose to drop some (or indeed all) of the parts, accordingly.

0. If you have not already done so, complete the three APTS week practical sessions.

1. (a) Suppose that y = (y1, . . . , yn) are modelled as observations of i.i.d. random variables
from f(yi|θ) and that the prior information about θ = (θ1, . . . , θp) is represented by
the prior probability distribution π(θ) (which does not depend on n). Writing the
marginal likelihood, p(y), as

p(y) =

∫
f(y | θ)π(θ) dθ =

∫
exp{−h(θ)} dθ,

apply the Laplace approximation to the integral, and show that if O(1) terms are
neglected, then

−2 log p(y)
.
= BIC = −2 log f(y | θ̂) + p log n, n→∞.

Hence, what can you say about Bayesian posterior model probabilities as n→∞?

(b) Show that AIC for a normal linear model with n responses, p covariates and unknown
σ2 may be written as n log σ̂2 + 2p where σ̂2 = RSS/n is the maximum likelihood
estimate of σ2. If σ̂20 is the unbiased estimate under some fixed ‘correct’ model with
q covariates, show that AIC is equivalent to using n log

{
1 + (σ̂2 − σ̂20)/σ̂20

}
+2p as a

model comparison criterion, and that this is approximately equal to n
(
σ̂2/σ̂20 − 1

)
+

2p. Deduce that model selection using Cp approximates that using AIC.

(c) In the same context as (b), show that Cp = (q − p)(F − 1) + p where F is the
F -statistic for comparison of the models with p and q > p covariates, and deduce
that if the model with p covariates is correct then E(Cp)

.
= q but that otherwise

E(Cp) > q.

2. The data frame bacteria are discussed in Chapter 10 of Modern Applied Statistics with
S (4th edition) by Venables and Ripley (Springer, 2002). They are available in R by
loading the library MASS. The response y indicates presence or absence of a particular
bacteria when assessed on 50 individuals (ID) at each of up to 6 time points (week). Each
individual has received one of three treatments (trt: placebo/drug/drug+).

Model the dependence of y on trt and week using binary GLMs and GLMMs (to ac-
count for intra-subject dependence in the response), fitted by maximum likelihood and
associated approximations. Functions which you might wish to investigate for doing this
include glmmPQL (from the MASS library), glmmML (from the library of the same name)
and lmer (from the lme4 library). Use the library documentation provided to learn about
the required arguments of these functions. Compare the inferences obtained by different
fitting methods (quadrature, Laplace, PQL).
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3. For the bacteria data, Venables and Ripley (2002, p297) propose the binary GLMM
with

Yij ∼ Bernoulli(µij), g(µij) = β0 + β1x1ij + β2x2ij + β2x3ij + b0i, b0i ∼ N(0, σ2b )

where X1, X2, X3 are the three binary explanatory variables I(trt = drug), I(trt =
drug+), and I(week > 2) and g is the logit link function.

If instead g is the probit link (Φ−1), then a Bayesian analysis of this model, using a
Gibbs sampler, is straightforward, utilising the following latent variable formulation:
The GLMM above (with g = Φ−1) is equivalent to

Yij = I(Zij > 0), Zij ∼ N(µij , 1), µij = β0+β1x1ij+β2x2ij+β2x3ij+b0i, b0i ∼ N(0, σ2b )

where the Zij are latent continuous-valued variables, one for each observed Yij .

(a) Establish this equivalence, that is, for the latent variable model, show that P (Yij =
1|b0i) = Φ(µij).

As the Zij are unobserved, they can also be generated in any Gibbs sampler scheme. It is
immediately obvious that, given Z, the conditional distributions for β, b, σ2b are exactly
as for a LMM (with known error variance σ2 = 1). Hence, a Gibbs sampler for this
GLMM can be obtained by a straightforward modification of our LMM Gibbs sampler
from Practical 3. We simply need to generate the Zij at each step.

(b) Show that the conditional distribution for Zij |Y, β, b, σ2b is N(µij , 1), restricted to
the range (0,∞) when Yij = 1, or the range (−∞, 0] when Yij = 0.

(c) Modify the R function you used for an LMM Gibbs sampler in Practical 3, to perform

a Bayesian analysis of the model above. Use the initial diffuse priors βi
ind∼ N(0, 25)

and σ−2
b ∼ Gamma(0.01, 0.01). It is reasonable to suppose a priori that the prob-

ability of bacteria presence decreases over time. Perform an alternative analysis
with the more informative prior distribution β3 ∼ N(−2, 4). How are your results
affected?

(d) Compare your results with the logit model results obtained using maximum likeli-
hood in Question 2. [Note that, if g1 and g2 are logit and probit links respectively,
then linear approximation gives g1 ≈ 4g2/(2π)1/2.]

4. Consider the below experimental design with m = 11 factors and n = 12 runs (also
available from the APTS website).

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2846
2 -1 -1 -1 -1 -1 1 1 1 1 1 1 284
3 -1 -1 1 1 1 -1 -1 -1 1 1 1 113
4 -1 1 -1 1 1 -1 1 1 -1 -1 1 104
5 -1 1 1 -1 1 1 -1 1 -1 1 -1 126
6 -1 1 1 1 -1 1 1 -1 1 -1 -1 971
7 1 -1 1 1 -1 -1 1 1 -1 1 -1 326
8 1 -1 1 -1 1 1 1 -1 -1 -1 1 71
9 1 -1 -1 1 1 1 -1 1 1 -1 -1 142
10 1 1 1 -1 -1 -1 -1 1 1 -1 1 266
11 1 1 -1 1 -1 1 -1 -1 -1 1 1 420
12 1 1 -1 -1 1 -1 1 -1 1 1 -1 62
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A regression model is to be fitted to this data, containing an intercept and linear terms
in all 11 factors. This is an example of a non-regular fractional factorial design, where
the alias structure cannot be summarised through a defining relation. This particular
design is a Plackett-Burman design.

Using log(y), fit a regression model for the main effects and use a normal effects plot
to decide which factors are important. What caveats do you need to place on your
conclusions?
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