APTS: Nonparametric smoothing

Post-course assessment

The questions are grouped into easy and moderate/hard questions. Most questions consist of both a “theory”
part and an “applied” part. Choose the questions you want to work on based on your strengths and interests.
You should try at least two moderate/hard questions.

All data used in the questions on this assignment sheet can be loaded into R using the command
Lload(url("http://www.stats.gla.ac.uk/~levers/aptspca.RData"))

This file also contains the function bbase used to construct the B-spline basis in the first practical session.

Easy questions

Question 1 (Kernel-density estimation). Consider the distribution represented by a density estimate f , con-
structed from a sample of data {yy,...,y,}. What is the mean and variance of this distribution? What do
these expressions indicate about the nature of smoothing?

N ~

Note this question does not refer to i f (y)) and Var( f (y)) at specific values of y, as discussed in the lectures.
It refers to the mean and variance of a random variable whose density function is f.

Question 2 (Local regression). In section 2.1 we have defined the local mean estimator as

_ 2 wimk =z h)ye
D b Wk —ash)

which implies that
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Thus the fitted values are a linear function of the observed response and we can write y = Sy.

(a) Write down the entries of the matrix S.

(b) Consider the radio-carbon dating data (available in the data frame radiocarbon), in which we aim to
predict the age from radio-carbon dating (rc.age) from the calendar age (cal.age).

(i) Construct the matrix S for a Gaussian kernel with bandwidth 4 = 0.05 and use it to compute the
fitted values.

(ii) Plot the data and add the fitted values.

(iii) In section 2.4 of the notes we have seen that we can define the effective degrees of freedom as
tr(S). Compute the trace.

(iv) Change the value of h. How does this change the fitted function and the effective degrees of
freedom?

Question 3 (Penalised least-squares for P-splines). In section 3.3 of the notes we have introduced P-splines,
which minimise the penalised least-squares criterion

n
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where B is the matrix of B-spline basis functions, D is the difference matrix used in the penalty, and A > 0
is the smoothing parameter.

(a) Show, by taking the derivative with respect to 3, that the minimiser of the penalised least-squares crite-
rion is given by
B=B'B+)D'D)'By.

(b) Explain why we can rewrite the objective function as

H(\/I;D)ﬁ—(m

(c) (harder) How can we exploit this to estimate 3 using a QR decomposition, which is numerically more
stable than inverting the matrix B'B + AD 'D?
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Question 4 (Clyde dissolved oxygen data). The Clyde DO data (available in the data frame clyde) were used
in one of the practical sessions.

Subset these data to focus only on Station 10. Fit an additive model to describe the relationship between DO
and the three potential explanatory variables, Doy (day of the year), Year and Salinity. Describe the results
of fitting three additive terms. Now fit a model which includes interaction (a bivariate term) between Doy
and Year. Is there any evidence that the seasonal effect has changed over the years at this station?

Moderate/hard questions

Question 5 (B-spline basis functions for equally-spaced knots). The B-spline basis functions are defined recur-
sively. Given a set of [ knots the B-spline basis of degree 0 is given by the functions (BY(z), ..., B} ,(x))
with

1 forw; <z <k,
0 _ J = j+1
B () = { 0 otherwise.

T

The B-spline basis of degree > 0 is given by the functions (B} (z), ..., B],,_;(z)) with

T — Ki_
B — 2 WTr pr-l
(@)= B ) +

Rj41 — X

B ().

Kj+1 — Kj+1—r
Important: Note there was a typo in the notes (subscript in bold above).

We will now turn to the important special case that the knots are equally spaced, i.e. Kj;1 — k; = 0 for all
j. In this case the basis functions can be computed as r-th order differences of truncated polynomials.

We start by defining the coefficients of the difference of r-th order

r i[T .

Aj:(—1)3<j) forj=0,...,r

For a first-order difference we obtain A} = 1and A}l = —1.

For a second order difference we obtain A2 = 1, A? = —2 and A2 = 1.

For a third order difference we obtain A3 = 1, A% = —3, A3 =3 and A3 = —1.

These are also the numbers appearing inside the differencing matrix used in P-splines.
r+1 AT+1

(2) Show that Bj(z) = » _ 5 (@ = K}

=

The proof is by induction using the recursive definition of B-splines.

The following two properties of A will help in the proof.
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o AT = L ATH = (<1 and AT = Aj - AL forj =1,

For first-order and second-order differences this corresponds to:
1 -1
-1 1
1 -2 1
For second-order and third-order differences this corresponds to:
1 -2 1
-2 -1
1 -3 3 -I

If we define A" | = AT | = 0, the formula A;H—l = AL — A%, holds forall j =0,...,r + 1.

e(r—i+ 1AL, =(r—i+ 1)(_1)%1% = (-1 (21'1) (r—i)! = _(_1)%@!(;11-)! =
AT

(b) Write an R script (or function) which uses the above method to generate a B-spline basis of degrees 0,
1, and 2. Can you generalise your script (or function) so that it generate a B-spline basis of any order r?

Question 6 (Derivative estimation). In this question we will focus on estimating the derivative m/(z) of the
regression function. We will initially be focusing on B-splines.

(a) Show that

0 r
—Bj(1) = ——B/_{(x) - ——— B} ().
ax ( ) Kj — Kj_r j—l(x) Kjs1 — Kjilr J (I)

r

In the special case of equally-spaced knots (x; — kj_1 = 0) this becomes

) 1 1

%BT( ) ngji(x)—gB;—l(x).

Hint: The proof in the general case is done by induction using the recursive definition of B-splines. In

the special case of equally spaced knot, one can simply take the derivative of the formula from question
5.

(b) Show that, in the case of equally-spaced knots,

l+r—2

0
L) = 3 B

J=1

i.e. we can estimate the derivative by multiplying the matrix of basis functions of degree » — 1 with the
Bi+1 — B
5

(c¢) The data frame follicle contains data on the number of ovarian follicles counted from sectioned
ovaries of women of various ages. It has two columns.

vector 4 = (Y1, ..., ¥r+1—2), Where Y=

age age of the women
log.count logarithm of the follicle count

(i) Fit a B-spline model with a suitable number of knots to the follicle data.
Hint: You can use the function bbase and the code from the first practical session.

(i) Suppose we are interested in the rate by which the number of follicles is reducing. We can estimate
this rate by computing the derivative of the fitted regression function. Use the formula from part
(b) to compute the derivative and plot it.

(iii) Can you construct a confidence interval for the estimated derivative? From what age onward is
there a significant decrease in the number of follicles



(d) Suppose you wanted to use a truncated power basis instead of a B-spline basis. How would you estimate
the derivative?

(e) Suppose you wanted to use a local estimate like the one studied in question 2. How would you estimate
the derivative?

Question 7 (Monotonic smoothing). Consider again the radio-carbon example in which tried to relate the
observed radio-carbon age to the calibrated age. It seems natural to impose the constraint that the function
describing the relationship between the two is non-decreasing. In this question you will learn how this can
be achieved by using equally-spaced B-splines.

I+r—1

(a) Explain why the estimated regression function r(z) = > ;7

for all j.
Hint: Use the derivative formula from question 6(b).

B,(x)B; is non-decreasing if 3; < ;11

(b) This fact can be exploited to construct a monotonic regression function. “All” we need to do is to
introduce the additional constraint that 5; < 3, for all j. These additional constraints however make
finding B much more difficult: we have to resort to quadratic programming methods'. We will use
a simpler approach, based on modifying the penalty in a P-splines approach.> When using first-order
differences to construct the penalty we use

1 -1 0
Dl — E ‘. . c. . O ,
0 1 -1
i.e. the penalty becomes
I+r—2
DB = D (B — B)*
j=1

In order to penalise lack of monotonicity we only want to penalise differences between the 3; if 5; >
Bj+1, i.e. we would like to use the penalty

2
> (BB
J: Bi>Bj+1
This corresponds to modifying the matrix, setting all rows to zero that correspond to pairs with 3; <

Bjs1-

Now there is of course the problem that we need the differencing matrix to estimate B, but it, in turn,
depends on 3. The way around this problem is to simply iterate between these two steps, which gives
the following algorithm.

0 ... 0
1. SetDW = |[: ..
0 ... 0

2. For h = 1,2, ... until convergence ...
i. Compute 3™ = (BTB + AD® 'D®)~1BTy (or use a QR decomposition to compute 3.

. o(h) (h)
i, Seto®™ =1 1 B> B0
J 0 otherwise.

I'These are for example implemented in the R package quadprog.

2This idea was first suggested by Bollaerts et al. ( British Journal of Mathematical and Statistical Psychology (2006), 59,
451-469). Bollaerts et al. use a monotonicity penalty in conjunction with a smoothness penalty, but for simplicity we will omit
the smoothness penalty and control the smoothness by choosing a small enough number of basis functions.
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g st 0

iii. SetD"+D = | 0
h h
0 e 5z(+)r—2 _(5l(+)r—2

We will now turn to the radiocarbon data.

(i) Fita “classical” B-spline model with 25 equally spaced knots to the data.
Hint: You can use the function bbase to create the matrix B.

(ii) Implement the above algorithm to estimate a non-decreasing regression function modelling the
relationship between radio-carbon age and calibrated age. Use the same basis function as in part

@@).
Compare the results to the B-spline model fitted in part (i).

(c) In this part we will return to the follicle data from question 6. All (primordial) follicles are developed
before birth, so, after birth, the number of follicles must decrease over time.

When using a moderate number of knots (say 10) for modelling the log-follicle counts the estimated
regression function is oscillating.

How can you use the approach set out above to estimate a non-increasing regression function?

Question 8 (SO, concentrations). The data frame SO2station contains measurements of SO, from the air
at a sampling station in mainland Europe. The variables are:

LogS02 SO2 measurement on a log scale

Year year, with a fractional component to reflect week within year
Week week within the year

Rain rainfall

Temp temperature

Humidity air humidity

Flow a measurements of air flow

1. Explore the relationships between the variables, and specifically between SO, and potential explana-
tory variables, by any graphical means you consider suitable.

2. Fit an additive model and refine this into a model which you believe gives a good description of the
data. (At this stage, do not worry about temporal correlation in the data.)

3. Consider a model which uses only Year and Week as explanatory variables. This model is of interest
because meteorological information is not always easy to obtain, so an understanding of whether it is
needed at this station may help in decisions on whether to collect it at others. Compare this reduced
model with one which makes use of the meteorological information. In the comparison, interest lies
particularly in any effect on the estimate of trend in SO, over the years.

4. Consider the additive model which contains only Year and Week as explanatory variables. Examine
the residuals from this model for evidence of serial correlation. How would you adjust your model
to account for this? Even if you don’t do that, can you say what the effects of a suitable adjustment
would be?

Question 9 (Marginal smoothing using local smoothers). Consider a bivariate smoothing problem in which
the data has been collected on a regular grid, i.e. the response was observed at each combination (z;, z;)
(t=1,...,m,j=1,...,n). The figure below illustrates this setup.



T @ ® @ ® o

T2 @ ] o o (]

Tm @ [ J { { o
21 zZ2 zZ3 Zn

In this case it is easiest to write the observed response as a matrix Y = (y;;) with y;; being the response
associated with (x;, z;). Alternatively we can write the observed response as a long vector, stacking the
columns of Y on top of each other, i.e.

Y= (ylh"'aym17y127'"7ym27"'7ymn)T~

Suppose we wish to use a bivariate local smoother, i.e.

(a)
(b)

(©

(d)

X . ST w(wy — xg h)w(z — 255 h)y
Jij :m(a:i,zj) _ Zk;% 21_711 ( k = ) ( l _] ) kl.
Dbt D W(@E — xis h)w(z — 255 h)

Just like in question 2 we can write y = Sy. Write down one entry of S.

Show that S = 8@ @ S where S is the smoothing matrix associated with a univariate smoothing
problem with observed covariate values 21, . .., z, and SV is the smoothing matrix associated with a
univariate smoothing problem with observed covariate values 1, . .., Z,.

Hint: Important properties of the Kronecker product (“®”) are summarised on page 8.

Using the properties of the Kronecker product show that we can also write Y = SOYS® " What is the
advantage of this representation?
Hint: Think about the dimensions of the matrices involved in the calculation.

The data frame us . rain contains noisy observations of the total rainfall in March/April 2006 in a rectan-
gular area covering most of the central US (see figure below). The vectors us.northing and us.east-
ing contain the corresponding latitudes and longitudes. Construct the smoothing matrices S¢") and S©
and use the formula derived in part (c) to construct the fitted values. Use an R function like image to
plot the resulting smoothed surface.
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Question 10 (Marginal smoothing using B-splines and P-splines). Consider again the bivariate smoothing
problem with gridded data set out in question 8. In this question we will consider the tensor-product-based
spline approach, set out in section 3.4.1 of the notes.



(a) Explain that we can write the design matrix

Bii(w1,21) ... Bijyr—1,1(®1,21) Bia(w1,21) ...  Bijgr—12(®1,21) ... Biygr—1424r-1(21,21)
p— | Bulm,z) ... Biyir_11(@m,21)  Biz(@m,z1) ... Biytr-1,2(@m,z1) oo Bigre—ti424r—1(@m, 21)
Bii(z1,22) ... Bijyr-1,1(21,22) Bia(z1,22) ... Bijyr—12(®1,22) ... Bijpr—11424r—1(21,22)
Bi1(Tm,2n) .- Biy4r—1,1(@m,2n)  Bi2(@m,2zn) ... Biyr_12@m,zn) . Biytr—14240-1(@m, 2n)

of the bivariate tensor-product-splines as B = B® ® B(!), where B! is a univariate B-spline basis on
the 25, B®) is a univariate B-spline basis on the z;, and B, ;(z, z) = B{" (x) B (2).

(b) Suppose S is the bivariate smoothing matrix, i.e.
S=B(B'B)"'B'
and SV and S are the corresponding univariate smoothing matrices, i.e.
s = gL TBM)-1gM " S® = B (BR @)@
Show that S = S® © S and that we can write = Sy as Y = SDYS® ", just like in question 8.

(c) Is the above formula also valid if P-splines are used?

(d) Use the formula derived in part (c) to analyse the US rainfall data from question 8(d).



The Kronecker Product

Given a m x n matrix C and a p x ¢ matrix D the Kronecker product of the two matrices is defined as the

following mp X ng matrix:

cndin ciidiz
ciidar  ci1dag

ciD - e, D Clldpl ClldpQ
CeD = : : = : :
D o D Cm1d11  Cm1di2
Cmidar  Cpidas

| Cmi1 dpl Cm1 dp2

Clldlq
Cndzq

C11 dpq

Cm1 dlq
Cm1 d2q

Cm1 dpq

Cindin
Cind21

Clndpl

Cmndl 1
Cmnd21

Cmn dpl

Cindi2
Cinda2

ClndpQ

Cmnd12
Cmnd22

Cmn dp?

For this assignment you will need the following properties of the Kronecker product.

* The Kronecker product is, just like the standard matrix product, not commutative, i.e. CRD # D& C.
It is however associative, i.e. (C®D)QE=C® (D®E).

*CD+E)=Ce®D+C®Eand (C+D) E=CXRE+D®E.

« (C®D)(E®F) = (CE) ® (DF).
s (CoD)'=C'eD
e (CeD)'T=C"®D".

* (A ®B)c = dif and only if BCAT = D, where the vectors ¢ (and d) simply consist of the columns
of C (and D) stacked on top of each other, i.e.

i1 ... Cin
C =

Cmi1 Cmn

dll . dlq
D= | : :

dpl dpq

C = (CH,..

d= (dlla--

-y Cm1,C12, - .

.,dpl,dlg,...

<y Cm2; -

(..

..,cmn)T

dpg)

Clndlq
Clnd2q

Clndpq

Cmndlq
Cmnqu

Crnpg

A is a ¢ X n matrix and B is a p X m matrix, thus C is a m X n matrix and D is a p X ¢ matrix.

In R this can be verified as follows.

Create example matrices

<- matrix(rnorm(6), ncol=3)
<- matrix(rnorm(8), ncol=2)
<- matrix(rnorm(6), ncol=3)
<- as.vector(C)

Calculate d

7 kronecker(A, B)%*%c

s # Calculate D

ol B%*%C%*%t (A)

1

¥ 0 O W@ > #




APTS: Nonparametric smoothing

Post-course assessment — Model answers

1. Mean: [ f(y)ydy =130, [yiw (52)dy =130 yi=7
J i@y = 1370 [y hw (52) dy = 2370 (B + 42)

Variance: h* + =37 g2 — 2 = A2+ 230 (i — 4)?

So, the mean of the distribution is the sample mean of the data, while the variance is the sample variance
(using the divisor n) inflated by h2. This ‘variance inflation’ quantifies the effect of smoothing.

2. (@) S = (sij) with 55 =

w(x;—x;;h)
>k w(@g—wih)

(b) (parts (i) to (iv))

1

# Simply call covariate x and response y
o/ x <- radiocarbon$cal.age
3y <- radiocarbon$rc.age

# Set bandwitdh
h <- 0.05

# Compute the smoothing matrix S
S <- dnorm(outer(x, x, —"),sd=h)
S <- S / rowSums(S)

o/ # Plot data
s plot(x, y, xlab="Calibrated age”, ylab="Radiocarbon age”)

s|# Compute fitted values and add fitted line
| fitted <- S%*%y

lines(x, fitted)

# Effective degrees of freedom
sum(diag(S))

Increasing h reduces the effective degrees of freedom and makes the regression function less flexible.

3. (a) We have that

Setting this derivative to zero yields the equation

0
B

:%y

—(y—BB)' (y—BB)+ A3 D'Dg

'y—-28'B'y+B'B'B3+\3'D'DS

=—-2B'y+B'B3+\D'D3

B'B+ D'D)3=B"y

which has

as

B=B"B+ D'D)"'B'y

solution.



C

AN T
(b) Using the formula that <B) <D

) = ATC + B"D we have that

(y—BB)' (y—BB)+A3'D'DS
=(y—BB)"(y—BB) + (0 — VADB)" (0 — VD)

()= ()2) (6)-()2)
“16) - (o)

(c) The QR decomposition of B = (\/I;D> isB=(Q Q) (g) = QR Q= (Q Q) isan

y

0 we have that

orthogonal matrix and R is upper triangular. Withy =

15~ BBI = I — QRB|* = QT (¥ — QuRA|?
Ty 2
~[(5) - (%) [ = very - raie + 107wl

We have used that Q] Q; = I and Q; Q, = 0.

1Q, y||? does not depend on 3 and ||Q[y — RG] can (if B is of full column rank) be made exactly
zero by solving R3 = Q| y, which can, due to R being upper-triagonal, be performed very efficiently.

4. The following code should be sufficient.

| clyde.subset <- subset(clyde, Station == 10)
), plot(clyde. subset)

4 library(mgcv)

ssmodell <- gam(DO ~ s(Doy, Year) + s(Salinity), data = clyde.subset)
oomodel® <- gam(DO ~ s(Doy) + s(Year) + s(Salinity), data = clyde.subset)
71par(mfrow = c(2, 2))

sy plot(modell)

oo par(mfrow = c(1, 1))

ol anova(model®@, modell, test = "F7)

This shows some evidence of change in the seasonal effect over the years.
5. (a) The proof is by induction.

r = 0: For r = 0 the formula comes down to

1 fork; <z <k,
B)(z) = (x = ;)% = (= K1)} = Lny,00)(2) = Ly h00) () = { 0 J "

otherwise,
which is exactly how we have defined a B-spline basis of degree = 0.
r—1 - A: r—1 . .
—_— A . . = —_— —_— 77‘+1+Z
r — 1 ~ r: Suppose we know that B} () E T (x—k; )%~ Using the recursive
- r—1)lo"™
i=0

10



definition of B-splines of higher order we have that

Bi(w) = B + B ()
Kj — Kj—r Kj+1 — Kj+1-r
T r

T = Rj—p A; o Nr—1 T T Kj4 Z A§ o \r—1
= rod — (T _.1)[5r_1($ Kg—r+z)+ -0 <~ (r __1)!5r_1(x Hj_r+1+z)+

1 « 1 <
Tl ZA:(OC o)y w Tl ZAf(x — Kjorrnd)s (@ = Ky)

=0 =x71€j,7«+17i6 =0 =x—nj,r+1+i+(r—i)~6

1 < 5 <

- rl.or Z A:(l‘ - ’Qj—r—&-i)i - rl.or ZZA:("E - RJ—T-H')TF_I
=0 i=0
1 < b <
e D AT = Kyl e D= DA (@ = fypr)
! = oo = )
=yt AT (z—rj—ryi)} =yt (T—i'*‘l)Azr_l(iU—fij—m-i)i—l

1 r+1 5 r

= s 2 A AL )@ ) — e Y (AT = (=i DAL (@ — Kyp)
' i=0 v : i=1 ~~
:Az+1 =0
r+1 AT+1

= Z T!i(sr (37 - '%j—r-i-i):-
0

(b) We create a covariate vector with values ranging from O to 1.

I|x <- seq(@, 1, len=100)
oin.knots <- 6
sidelta <- (max(x)-min(x))/(n.knots-1)

Degree r = 0:

# Create knots

siknots <- seq(min(x), max(x), delta)

ol # Create truncated polynomials

7B <- outer(x, knots, function(x,y) pmax(x-y,0))>0
s/ # Create B-spline matrix

o/B <- B[,-ncol(B)] - B[,-1]

| # Plot basis functions

i/matplot(x, B, type="1")

&

Degree r = 1:

o/ # Create knots

sl knots <- seq(min(x)-delta, max(x)+delta, delta)

# Create truncated polynomials

51 B <- outer(x, knots, function(x,y) pmax(x-y,0))

ol # Create B-spline matrix

B <- (B[,1:(ncol(B)-2)] - 2¥*¥B[,2:(ncol(B)-1)] + B[, 3:ncol(B)])/delta
# Plot basis functions

)l matplot(x, B, type="1")

=

9

®

Degree r = 2:

2| # Create knots
2ilknots <- seg(min(x)-2*delta, max(x)+2*delta, delta)

11



»|# Create truncated polynomials

3B <- outer(x, knots, function(x,y) pmax(x-y,0))"2

2| # Create B-spline matrix

5B <= (B[,1:(ncol(B)-3)] - 3*B[,2:(ncol(B)-2)] + 3*B[,3:(ncol(B)-1)] - B[, 4:ncol(B)])
26 / (2¥deltan2)

7| # Plot basis functions

»simatplot(x, B, type="1")

Any degree 7:

| # Set example degree

T <= 3

# Create knots

knots <- seq(min(x)-r*delta, max(x)tr¥*delta, delta)

sl # Create truncated polynomials

34/ B <- outer(x, knots, function(x,y) pmax(x-y,0))"r

5i # Create B-spline matrix

36| B <= B%*%t(diff(diag(ncol(B)), diff=r+1))/(deltarr*factorial(r))
3711# Plot basis functions

ssmatplot(x, B, type="1")

e]

6. (a) The proof is by induction.

r = 1: For r = 1 we have that

2L forkiq < x < K
Kj—Kj—1 J — J
KRi—T
B;(.CC) = H]J:l—_’ij for R <z < Rj+1
0 otherwise,
thus
1
5 p—— forkj_1 <o < K;j
—1
%B;({E) = PR for R <z < Rj+1
0 otherwise,
1 1
- B - ——— )
Fj = K1’ Kjr — K 7
r — 1 ~» r: Suppose we know that
0 r—1 r—1
—Bj’f_l(a:) = ——B;-:f(x) + —B;_Q(x).
O Kj — Kjor1 Kjt1 — Kj—ry2
We will take the derivative of B (z).
0 1 T —FKi_p O
—B(z) = — B z)+ — = B« 1
Ox j( ) /’ij_ﬁjfr ]71( ) /‘ij—/ﬁ)j,rax jfl( ) ( )
1 Kiz1—x O
- B )+ gy
Kjt+l — Kjtl-r Kjt1 — Kjp1—r O

12



We will now rewrite the right-most term in each of the last two lines of the above equation.

ki, O R 1 - 1 -
It D) = S () - )

- J= - L K -
Kj — Kj—y OT Kj — Kj—r \Kj—1 — Kj_y Kj — Kjtl—r

r—1 T — Ki_, B
= B (x) +
Rj = Rj—r \ Fi—1 = Kj—r Rj = Kj+i-r

/ij—l'

B;:f (x)

J/

-~

=—B] " (x)

_@——xB;:%(x) _ B ~2(x)
R Rj = Rjt1—r Rj — Rjt1—r .
VvV

r— Rj—r

—_ i Fj-r pr-2
RjTRj+1—r 5-1(@)
r—1

-~ r—1
= —B;_l(x) -
Kj — Kj—r Kj = Kj+i—r

B =i (x)

Kjiy1—2 0 _,._ Kjq1 — @ r—1 . r—1 7_
e | B - — B

Rj+1 — KRj+1—r \Kj — Rj+1—r Rj+1 — Kjyo—r

Rjt1 — Kjy1—r 0w
_ r—1 Kjt1 — X BTﬁQ(I) + L= Kj—r41 Ber(x)
= 1 — 2B

Rj+1 — Rjt1—r \ Kj — Kjt1—r / Kj — Rj—r41 /

~~

J/

K5 — K

_ 17 —r41 Br—2

= . x
KjTRj—r41 i1 (@)

T

— KRj_ Kj — X
j—r+1 r—2 741 r—2
P Bi~i(x o — B (x)
J j—r+1 j+1 42—

A ~~ >y
_ r—1
—*Bj (=)

r—1 _ r—1 _

= ————B7{(x) - ———B]'(2)
Kj = Kj—rt1 Rj+1 — Kjt1—r

In both cases the second and third term inserted in the second step cancel each other out (second term
is minus the third term). Plugging these two results into equation (1) yields

0 1 r—1 r—1
— B (z)=—— B}z — BT Nx) - BT 2(x
ax ]( ) K/j _ /fj—r jfl( ) + ﬁj _ /’ij—r ]71( ) /{] Kuj—‘,—l—'r ]71( )
1 r—1 r—1
B (@) + B (e) - ——————B ()
Rjt1 — Kjy1—r Rj — Kj—r41 Rjt1 — Kjy1—r
T T
= B2 ——— B Y«
Kj— Kj—r 7 1) Kjt1 — Kjri—r (@)

The proof in the special case of equally-spaced knots is much simpler and does not need to be per-
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formed using induction.

a ) a T+1‘AT+1 )
%Bj () = ox Z»Z:(; rlor (x "ijr+i>+
AT-AT
=D e (@ = )
— (r—1)lo" 7
1 4 AT r—1 1 - A;;l r—1
=5 Z oD@ T i) g > T T ey
i=0 i=1
1o A7 1 Ig A7 .
= g (r — 1)!5T_1 (LC — /ijfl—r+1+i)+ ! _5 Z (T’ 1)[5r 1( K r+1+z)+ !
=0 =0 .
=B~} () =B} (=)
(b) Using the derivatives of the basis functions we have just derived
P I4+r—1 P )
7=1
l+r—1 6
= Y (B - B @)
j=1
l+r—2
r—1, A Bir1 — B
- Z Bj 1(35) J+5 ’
j=1
In the last step we have exploited that within the range of the data B}~ *(z) = BX#"~1(z) = 0.

(c) (parts (i) to (iii))

iI|# Set x to covariate and y to
o|x <- follicle$age

sy <- follicle$log.count

s\ # Create basis functions

B <- bbase(x, deg=3, n.knots=4
# Estimate coefficients

beta <- qr.coef(qr(B), v)

]

®

# Plot fitted function

response

)

i plot(x, vy, xlab="Age”, ylab="log(Count)”)
| xx<-seq(min(x), max(x), len=1le3)

13l BB <- bbase(xx, deg=3, n.knots=4)

14 Lines(xx, BB%*%beta)

# Estimated derivative

BBd <-bbase(xx, deg=2, n.knots
delta <- (max(x)-min(x))/(4-1)
gamma <- diff(beta)/delta

20| deriv <- BBd%*%gamma

plot(xx, deriv,

=4)

type="1", xlab="Age”, ylab="Derivative”)

The estimated derivative is highly sensitive to the choice of number of basis functions.
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Just like in the classical linear model we have that

Var(3) = o2 « (B'B)~!
1 -1 ... 0

The estimated derivative is B" 14 = %B’"*lDlB where D; = o is the first

o ... 1 -1

order differencing matrix and B"~! is the corresponding B-spline basis matrix of degree r — 1. Thus
the variance of the estimated derivative is

1 . 2
Var(zB~'D,3) = Z

r— - r—1T
5 = 5B 'D,(B'B)"'D/B"!

The square roots of the diagonal elements of the matrix are the standard error of the derivatives.

o)

)

@

# Estimate residual sd

5)sigma.hat <- sqrt(1l/(length(y)-ncol(B)) * sum((B%*%beta - y)"2))

s|# Compute standard error of derivatives

D <- diff(diag(ncol(B)))
sds <- sigma.hat/delta * sqrt(diag(BBd%*%D%*%solve(crossprod(B))%*%t(D)%*%t(BBd)))

# Plot confidence bands
lines(xx, deriv + gnorm(0.975) ¥ sds, lty=2)
lines(xx, deriv - gnorm(0.975) * sds, lty=2)

33 # Add horizontal line at ©

abline(h=0, lty=3)

(d) The basis functions of a truncated power basis of degree r with [ knots is

La,...,a” Y (x—k1)ys oo (= Km)”

Taking derivatives yields

0,1,....,(r=Da" 2 r(x—r) " or(@—kpy)

Thus the derivative of the regression function can be computed as

m'(x) = By

where B"~! is the matrix of truncated power functions of degree r — 1 and v = (53,2535, ..., (r —

1)51"—17 T/BTv s 7Tﬁl+r—1)—r

35

36,

# Create basis functions (using tbase function from practical 1)
B <- tbase(x, deg=3, n.knots=4)

# Estimate coefficients

beta <- qr.coef(qr(B), vy)

# Plot fitted function
plot(x, vy, xlab="Age”, ylab="log(Count)”)

o xx<-seq(min(x), max(x), len=1le3)
;) BB <- tbase(xx, deg=3, n.knots=4)

lines(xx, BB%¥*%beta)

# Estimated derivative

BBd <-tbase(xx, deg=2, n.knots=4)

gamma <- beta[-1]*c(1l:2, rep(3, 4-1))

plot(xx, BBd%*%gamma, type="1", xlab="Age”, ylab="Derivative”)
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(e) For the local smoother we have that

0

_ 9 2221 w(zy — 23 h)ye

%m(:c) T or S w(x, — a3 h)

Qi w'(xn — s )yr) Oy wlaw — 3 h)) — Oy wlak — 23 h)yr) 3y W'z — 23 h))
(g w(an — x5 h))°

For a Gaussian kernel we have that

7. (a) In

exp(—2/2h2) = —w(t: h),

w(t;h) = 3

exp(—t*/2h%)  w/(t;h) = —

1 t
V2 % h V2 % h3

# Set bandwitdh
h <- 5

sl # Compute the (predictive) smoothing matrix S

S <- dnorm(outer(xx, x, —’),sd=h)

5§S <= S / rowSums(S)

# Plot data
plot(x, vy, xlab="Age”, ylab="log(Count)”)
Llines(xx, S%*%y)

# Calculate derivative

o|D <- outer(xx, x, ™—7)
3T <= dnorm(D,sd=h)

plot(xx, -1/h"2 * ((T*D)%*%y * rowSums(T) - T%*%y * rowSums(T¥*D))
/ rowSums(T)A2, type="1")

question 6 we have shown that

a l+r—2 ' _a
am(x) = Z B;_l(x)—ﬁﬁl(S 6J.

J=1

All basis functions of the B-spline basis are non-negative, thus the derivative is non-negative if
B 1 2 Bj-

(b) (parts (i) to (iii))
We first define a function which performs the monotonicity-constrained regression.

1

2

monoreg <- function(B, y, lambda) {
# Set initial difference matrix
D1 <- diff(diag(ncol(B)), diff=1)
# Set initial beta
beta <- rep(@, ncol(B))
for (h in 1:100) {
# Compute delta and difference matrix
delta <- beta[-1]<beta[-length(beta)]
D <- delta*D1
# Store old beta
old.beta <- beta
# Update beta (using QR decomposition)
B.work <- rbind(B, sqrt(lambda)¥*D)
y.work <- c(y, rep(@, nrow(D)))
beta <- qr.coef(qr(B.work), y.work)

16



19

if (all(abs(beta-old.beta) < le-10*abs(old.beta)))
break

beta

20[ }

We first a non-shape constrained B-spline with a (too) large number of knots.

Now we fit the monotonicity-constrained spline using the function monoreg we have written above.

# Simply call covariate x and response y
x <- radiocarbon$cal.age

1|y <- radiocarbon$rc.age

# Construct basis
B <- bbase(x, n.knots=20)

# B spline solution
beta <- qr.coef(qr(B), y)

# Plot the data
plot(rc.age~cal.age, data=radiocarbon)

# Create design matrix for predictions on a regular grid (makes plot prettier)
5| xx <= seq(min(x), max(x), len=1000)

BB <- bbase(xx, n.knots=20)

# Add fitted function to plot
lines(xx, BB%*%beta)

40| # Compute betas
41| beta <- monoreg(B, y, lambda=100)

2

4| # Add line to the plot
1 lines(xx, BB%*%beta, col="red”)

(c) We use the simple trick of considering —y, in which case we need to estimate a non-decreasing

function, which is what we have done in part (b).

45

46

47

48

46

w

60

# Set x to covariate and y to -response
x <- follicle$age
y <- -follicle$log.count

# Construct basis functions and compute coefficient estimates
B <- bbase(x, n.knots=10)
beta <- monoreg(B, y, lambda=100)

s3i# Plot data and fitted function
ss plot(x, -y, xlab="Age”, ylab="log(Count)”)

xx<-seq(min(x), max(x), len=1le3)
BB <- bbase(xx, deg=3, n.knots=10)
lines(xx, -BB%*%beta, col="red”)

# For comparison add non-monotonicity-constrained fit

beta <- qr.coef(qr(B), y)
lines(xx, -BB%*%beta)
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8. The solution sketched here, and in the script below, uses the gam function from the mgcv package, with

its

default settings. This means that smoothing parameters are selected automatically. This captures the

main features of the data, but there would be scope for more careful analysis, to account for the effects
of smoothing parameter selection, if students chose to do that.

(a)

(b)

(©

(d)

9. (a)

A pairs plot shows some potential (but noisy) relationships between 10gS02 and other variables,
with a clear downward trend over the years. Temperature is strongly related to the week of the year
and to humidity.

An additive model, using the default setting in the gam function from mgcv, shows strong effects
of Year and Temp, a modest effect of Flow, and little effects from the other three variables. Week
remains significant in the model which omits Rain and Flow, so we might reasonably stick with this
model.

Plots of the Year term from the model selected above and from the model which uses only Year
and Week are quite similar, except that the ‘shoulder’ in the estimate from the latter model is rather
sharper. We need to be a little careful here, because the gam function is automatically choosing the
degree of smoothing in each model. It might be better to fix the degree of smoothing to be the same
in both cases. However, broadly speaking, the overall trend with Year is quite similar. There may
therefore be relatively little added value in the meteorological variables. (Notice, though, that the
standard errors are larger in the simpler model, because the meteorological variables have explained
more of the variation in the data.)

The acf and pacf functions show some evidence (not surprisingly) of serial correlation. There are
various options for modification here, one of which is to explore the use of the gamm function. In
terms of effects, the estimates may change relatively little but the standard errors should increase.
The effects here are sufficiently strong that this may not change the conclusions much, although the
evidence for a Week effect may be further weakened (if you will excuse the pun).

pairs(S0O2station)

ssmodell <- gam(logS02 ~ s(Year) + s(Week) + s(Rain) +

s(Temp) + s(Humidity) + s(Flow),
data = SO2station)

plot(modell, se = TRUE, pages = 1)

anova(modell)

model2 <- gam(logS02 ~ s(Year) + s(Week) + s(Temp) + s(Flow),
data = SO2station)

plot(model2, se = TRUE, pages = 1)

anova(model2)

symodel@ <- gam(logS02 ~ s(Year) + s(Week), data = SO2station)

par(mfrow = c(1, 2))
plot(modell, se TRUE, select = 1, ylim c(-1.9, 1.1))
plot(model@, se TRUE, select = 1, ylim = c(-1.9, 1.1))
par(mfrow = c(1, 1))

acf(residuals(modell))

20 pacf(residuals(modell))

We continue to use the double-indexing used in y. Then S = (s;;,,;) With
R . w(xy — i h)w(z — 243 h)
Sigikl = Yig = MU\ T4, Z5) = m n
J J (25, 25) S SN w(@, — @i h)w(zy — 253 h)

w(xg — 255 h) w(z — zj; h)
2 e W = i h) 325 w(zy — 2z h)

18



(b) This follows directly from part (a) and the definition of the Kronecker product. The first fraction in
part (a) comes from the matrix S; and the second fraction comes from Ss.

(c) This follows directly from the last property mentioned on page 8 of the assignment sheet.
The key advantage of this representation is that much smaller matrices are used, so computations are
much more efficient and much larger data sets can be considered.

(d) We can use the following R code.

h <-1

)

IS

| Lines(m)

10. (a) We have that

Bii(z1,21)

Bi1(zm, z1)
Bi1(z1, 22)

B11(zm, zn)

B (@1) B (21)

i|# Set bandwidth

# Construct S1
5181 <- dnorm(outer(us.easting, us.easting, —”),sd=h)
6 S1 <- S1 / rowSums(S1)

sl # Construct S2
9| S2 <- dnorm(outer(us.northing, us.northing, ™), sd=h)
0 S2 <- S2 / rowSums(S2)

o|# Compute fitted values
3 fitted.rain <- S1%*%us.rain%*%t(S2)

15| # Plot results

15l Library(maps)

7/m <- map(”state”, mar=rep(0.5,4))

15l image(us.easting-360, us.northing, fitted.rain, add=TRUE)

By +r—1,1(®1,21)  Biz2(w1,21) ...  Byyr-12(®1,21) .. Bijtr—1i142+r-1(x1,21)
By tr—1,1(®m,21)  Bi2(zm,21) ... Biyr-1,2@m,2z1) .. Bitr—11424r—1(Tm,21)
By 4+r—1,1(z1, 22) Bia(x1,22) ... Bijyr—12(z1,22) ... Biyiyr—1i424r—1(21,22)
Biy4r—1,1(@m,2zn)  Bi2(@m,2zn) ... Bijqr_12@m,2zn) - Bipr—14240-1(Tm, 2n)
1 2 1 2 1 2 1
B\, @BP ) BV@)BP Gy ... Bi, @B Gy ... B,

W@OBE, )

| BV @) B 1) BV, L @mBP ) BV @B ) o B @a)BP ) o BUY L @a) B (e1)

| B @B () Bffir,l(msszz) B{Y@)B (z2) ... Bfllllrr,1<z1>3§2)(zz> Bfilr,gznsfjir,l(zﬂ
B (@) B (20) Bl(llirril(xm)BYz)(zn) B (@m)B (20) ... Bl(lllril(:cm)Bf)(zn) Bfilril(xm)Bfilril(%)
BP Gy o B Gy BV (@) .. B (@)

= ; . : ® ; 4
B?’(Zn) Bl<22)+r;1(z7l) B§1>'(zm) Bl(lllrr;l(zm)

—s® gD

(b) Using that B = B®® ® B, we have that
S=B(B'B)"'B'
= (B(2) ® B(l)) ((B(2) ® B(l))T(B(2) ® B(I)))_l (B(Z) ® B(l))T

— (BY(B® ' B®)"1B®) o (BV(BY

-~

= ((B<2>T®B<1)T)(B<2)®B<1))) (B TB@)-1gBML TR

[

-~

=((B® "B2)-1B@)gx((BM) "B1)~-1B(1))

TBW)~IBW) = §@) g s
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The result follows from the last property mentioned on page 8 of the assignment sheet.

1 -1 0 ... 0 0
(c) For P-splines we have, using D = O L= O 0
0O ... ... ... 1 -1

S=BB'B+\D'D)"'B'
=BB'B+\D'D)'B’

@ p@ g @ Tp@y-1g@ " WEpOL gL M Tpy-1gMm "
BPB® B® +AD® DH)BE ) BYBY BY + DU DWYTIBWD )
(B® o BY) <<B(2>TB(2> + D 'D®) g (B BV 1 \pW) D(1>)>‘1 (B® o BT
( @ ® B(l)) ((3(2) ® B(l))T(B( ) ® B(l)) + >\( 2) o B1 )) (D(2) ® B(l))

A(B(Q) ®D(1))T(B( ) o DU ) + )\2( ) o DU )) (D(2) )) (B 2 o B¢ )
=B" (B'B+A(D?@ @BM)"(D® @ BW) + A\(B® @ DM)T(B® @ DV)
—|—)\2(D(2) ® D(l))T(D(Q) ® D(l)))—l BT

S@ & sW

B

Thus the two approaches are not the same, as they correspond to different penalties.

(d) We can use the following R code.

i|# Construct S1
»|B1 <- bbase(us.easting, n.knots=16)
31 S1 <- Bl%*%solve(crossprod(B1l))%*%t(B1)

s # Construct S2
¢/ B2 <- bbase(us.northing, n.knots=4)
7182 <- B2%*%solve(crossprod(B2))%*%t(B2)

0| # Compute fitted values
nffitted.rain <- S1%*%us.rain%*%t(S2)

13l # Plot results

14 Library(maps)

i5ssm <- map(”state”, mar=rep(0.5,4))

sl image(us.easting-360, us.northing, fitted.rain, add=TRUE)

17| Lines(m)
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