APTS Computer Intensive Statistics 2013/14

Computer Practical 1
Simulation Basics

1. Pseudorandom Numbers & Transformation Methods

(a) RANDU was an extremely popular PRNG for many years (it was widely used on IBM and DEC
mainframes, for example). It’s a linear congruential generator with recursion:

ii.

iii.

iv.

Z; =65539Z;_1 mod 23! X; = 7;/2%

i. Iterate the recursion twice to write Z; as a function of Z;_ and Z;_». Is there a clear issue

here?

The following code is one possible implementation of the PRNG. Using this or your own
code obtain a long sequence of random numbers from this generator.

randu.map <- function(z,a=2**16 + 3, c=0, M=2%%31) {
(a *x z + ¢c) %% M

}
randu <- function (n,z0, a=(2*%x16) + 3, c=0, M=2%%31) {
z <- vector (’numeric’, n)
z[1] <- randu.map(z0,a,c,M)
for(i in seq(from=2,to=n,by=1)) z[i] <- randu.map(z[i-1],a,c,M)
return(z / M)
}

unif <- randu(n=100000,2z0=123142)

Plot a histogram of a reasonably long sequence obtained from this generator. Is there any
clear departure from uniformity?

Plot a time series showing the evolution of the sequence over a thousand or so iterations. Is
there any clear pattern?

Plot the even items in the sequence against the odd items; is there any clear pattern between
successive items in the sequence?

Investigate what you see if you treat the triples in the randu data set as coordinates in R3.
If the rgl package is available then you might find its plot3d function useful. Do you see
anything interesting?

(b) Recall the Box-Muller method which transforms pairs of uniformly-distributed random variables
to obtain a pair of independent standard normal random variates. If

and

UL, Us 2 U[0,1]

X1 =+v/—2log(Uy) - cos(2wUs)
Xy =+/—21og(U) - sin(27Us)

iid

then Xl,XQ ~ N (0,].)

i

ii.

Write a function which takes as arguments two vectors and returns the two vectors obtained
by applying the Box-Muller transform elementwise.

Apply this function with the first vector corresponding to those numbers generated at odd
indices and the second to those generated at even indices in your sequence; you should find
10,000 or so samples sufficient. Plot the two “independent” normal variables obtained by
doing this, one against the other. What do you see?

*

iii. The R function runif provides access to a PRNG. The type of PRNG can be identified using
the rngkind command; by default it will be a Mersenne-Twister (http://en.wikipedia.org/
wiki/Mersenne_twister). Generate 10,000 U[0,1] random variables using this function,
convert this to two vectors of 5,000 elements in the same way as you did with the RANDU
values.

iv. Apply your Box Muller transformation to the same elements of this array as you did with
the randu dataset. How do the results compare?

v. Try exploring other values of the coefficients with the linear congruential generator, e.g., try
the sequence arising from the recursion

Z; =1229Z; 1 +1 mod 2048 X; = Z;/2048

and see what happens when you push the resulting values through the Box Muller transfor-
mation.

2. The Bootstrap: This question can be answered in two ways. The more direct (and perhaps more
informative, if you have the time to do so and the inclination to implement a bootstrap algorithm
from scratch) is to use the sample function to obtain bootstrap replicates and to compute the required
confidence intervals by direct means. More pragmatically, the voot library provides a function boot
to obtain bootstrap samples and another, boot.ci which will provide various bootstrap confidence
intervals.

(a)

(e)

(f)
(2)

The nile dataset shows the rivers. Use a histogram or other visualisation to briefly explore this
data.

What’s the mean and median length of a river in this category?

Treating the data as a simple random sample, appeal to asymptotic normality to construct a
confidence interval for the mean annual flow of the Nile.

Using the voot: :boot function to obtain the sample and boot: :boot.ci to obtain confidence intervals
from that sample, or otherwise, obtain a bootstrap percentile interval for both the mean and
median of the Nile’s annual flow. For the median you may also wish to obtain the interval
obtained by an optimistic appeal to asymptotic normality combined with a bootstrap estimate
of the variance (boot: :boot.ci will provide this).

Note the following: boot::boot does the actual bootstrap resampling; it needs a function which
takes two arguments to compute the statistic for each bootstrap sample, the first contains the
original data and the second the index of the values included in a particular bootstrap resampling.

Are there any interesting qualitative differences between the various confidence intervals? How
does this relate to the data?

Are your findings stable? If you repeat sthe bootstrap sampling do you recover similar behaviour?

Are there any reasons to doubt the accuracy of these confidence intervals?

3. Convergence of Sample Approximations

(a)

(b)

The stats::ecdf and stats: :plot.ecdf functions compute and plot empirical distribution functions
from a provided sample.

i. Show plots of the empirical distribution function of samples of a variety of sizes ranging
from 10 to 10,000 from a U[0, 1] distribution. Add to your plots the distribution function of
the U[0, 1] distribution.

ii. Repeat part 7. with a standard normal distribution.
iii. Repeat part i. with a Cauchy distribution.

For each of the three distributions considered in the previous part, determine sup, |Fn(:c) —
F(z)| for each n considered (consider only the sup over the sampled values of x) and plot these
quantities against n. Do you notice anything interesting?

Indicates questions which can easily be done later if you're short of time.

http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Mersenne_twister

