
APTS Computer Intensive Statistics 2013/14

Computer Practical 2 Outline Solutions
Monte Carlo Methods

1. The Kumaraswamy distribution1 with parameters a > 0 and b > 0 describes a random variable with
range [0, 1]. It has density:

fX(x; a, b) = abxa−1(1− xa)b−1 for x ∈ [0, 1].

(a) Transformation Method

i. Compute the distribution function and it’s inverse.

The cumulative distribution function is defined as:

FX(x) =

∫ x

−∞
fX(u)du

The density is zero outside the unit interval, so

FX(x) =


0 x < 0∫ x

0
fX(u)du x ∈ [0, 1]

1 x > 1

and for x ∈ [0, 1] we obtain:

FX(x) =

∫ x

0

abua−1(1− ua)b−1du

Noting that −aua−1 is the derivative of 1 − ua it’s natural to try the change of variable
z = 1− ua which leads to:

FX(x) =−
∫ 1−xa

1

abua−1zb−1
dz

aua

=b

∫ 1

1−xa

zb−1dz = b
[
zb/b

]1
1−xa = 1− (1− xa)b

FX(x) is a strictly increasing function on [0, 1] and so an inverse exists; noting that u =
FX(x)⇔ F−1X (u) = x we have that:

u =1− (1− xa)b

1− xa =(1− u)1/b(
1− (1− u)1/b

)1/a
=x ⇒ F−1X (u) =

(
1− (1− u)1/b

)1/a
ii. Implement a function which uses the inverse transform method to return a specified number

of samples from this distribution with specified a and b parameters, using runif as a source
of uniform random variables.

A Direct solution would be to write simply:

rkumaraswamy <- function(n=1,a=1,b=1) {

u <- runif(n)

x <- (1-(1-u)**(1/b))**(1/a)

}

1Kumaraswamy, P. (1980). ”A generalized probability density function for double-bounded random processes”. Journal
of Hydrology 46 (1-2): 79–88.



But 1− U
D
= U and so we can simplify the final line to

x <- (1-u**(1/b))**(1/a)

iii. Use the system.time function to determine how long your implementation takes to obtain a
sample of size 100,000 from the Kumaraswamy distribution with a = b = 2. (You may wish
to run it a few times and take the average.)

There’s some variability in runtime, ranging from about 25 ms to 31 ms, with an average
over ten runs of 27ms using my laptop.

(b) Rejection Sampling

i. Implement a function which uses rejection sampling to return a specified number of samples
from this distribution with specified a and b parameters, using runif as it’s sole source of
randomness (use a U[0, 1] proposal distribution).

We need to identify a constant M such that

sup
x∈[0,1]

f(x)/g(x) ≤M

with g(x) = I[0, 1](x).
Differentiating the ratio of densities with respect to x we find:

∂

∂x

f(x)

g(x)
=

∂

∂x

abxa−1(1− xa)b−1

1

=ab
[
(a− 1)xa−2(1− xa)b−1 + xa−1(b− 1)(1− xa)b−2(−axa−1)

]
=ab

[
xa−2(1− xa)b−2 {(a− 1)(1− xa)− a(b− 1)xa}

]
which equals zero at x?, where x? is the x that satisfies:

[(a− 1) + a(b− 1)]xa = a− 1⇒ x? =

(
a− 1

ab− 1

)1/a

or at the boundaries x = 0, 1. As this is the only stationary point in the interior of the
interval and the density is positive here, zero at 0 and 1 and continuous, it must be a
maximum.
Having identified M , it’s straightforward to implement the rejection sampler, although we
might want to do something more efficient if we were to do this seriously R is not good at
loops.

dkumaraswamy <- function(x,a,b) {

a*b * (x ** (a-1)) * (1 - x**a) ** (b-1)

}

rrejectk <- function(n=1,a=1,b=1) {

naccept <- 0

x <- c()

M <- dkumaraswamy (((a-1)/(a*b-1))**(1/a), a, b) + 1E-8

while(naccept < n) {

x[naccept +1] <- runif (1)

u <- runif (1)

if(u < dkumaraswamy(x[naccept +1],a,b) / M) { naccept <- naccept + 1}

}

return(x)

}

ii. Use the system.time function to determine how long your implementation takes to obtain a
sample of size 100,000 from the Kumaraswamy distribution with a = b = 2.



The simple implementation above takes around 25s to produce 100,000 samples; around
1,000 times as long as the inversion sampler. . . but this is largely due to inefficient imple-
mentation: R is very slow when handling loops.
Entering:
library(’compiler’)

enableJIT(3)

and repeating the timing experiment reduces the time to 22s. ? compiler will give some
explanation of this.
In practice, a better strategy would be to ’guess’ how many proposals will be required
and to operate vectorially, generating another block of proposals if it turns out that we
don’t have enough. The following solution uses a recursive approach combined with this
strategy and takes between 0.4 and 0.65 seconds to run on my laptop, and so it takes
between approximately 1.5 and 2.5 times as long to produce the same sample:

rrejectk2 <- function(n=1, a=1, b=1) {

M <- dkumaraswamy (((a-1)/(a*b-1))**(1/a), a, b) + 1E-8

x <- runif(n*ceiling (1.1*M))

u <- runif(n*ceiling (1.1*M))

xa <- x[u < (dkumaraswamy(x,a,b) / M)]

if(length(xa) > n) {

return(xa[1:n])

}

return(c(xa,rrjectk2(n-length(xa),a,b)))

}

iii. Modify your function to record how many proposals are required to obtain this sample; how
do the empirical results compare with the theoretical acceptance rate?

rrejectk.count <- function(n=1,a=1,b=1) {

naccept <- 0

npropose <- n

x <- c()

M <- dkumaraswamy (((a-1)/(a*b-1))**(1/a), a, b) + 1E-8

while(naccept < n) {

x[naccept +1] <- runif (1)

u <- runif (1)

if(u < dkumaraswamy(x[naccept +1],a,b) / M)

{ naccept <- naccept + 1}

else

{ npropose <- npropose + 1}

}

return(list(X=x,np = npropose))

}

Such a modification is straightforward, with one run I found that I needed to make 153,901
proposals in order to obtain 100,000 accepted samples.
Theoretically, one requires a NB (100, 000, 1/M) number of samples (we’re looking for
100,000 successes in independent Bernoulli trials with success probability 1/M) which has
mean 100000M = 153960 which seems eminently plausible (checking the variance of the
negative binomial distribution confirms this).

(c) Importance Sampling

i. Implement a function which uses a uniform proposal to return a weighted sample (i.e. both
the sampled values and the associated importance weights) of size 100,000 which is properly
weighted to target the Kumaraswamy distribution of parameters a = b = 2. Use the
normalising constants which you know in this case.

rimportk <- function(n=1,a=1,b=1) {

x <- runif(n)

w <- dkumaraswamy(x, a, b)

return(list(x=x,w=w))

}

ii. Use the system.time function to determine how long your implementation takes to obtain a
sample of size 100,000 targetting this distribution.

This implementation took between 11 and 13 ms on my laptop; 12 ms on average over 10
runs.



iii. Produce a variant of your function which returns the self-normalised version of your weighted
sample (this is easy; just divide the importance weights by their mean value after producing
the original weighted sample).

rimportk2 <- function(n=1,a=1,b=1) {

x <- runif(n)

w <- dkumaraswamy(x, a, b)

return(list(x=x,w=w/mean(w)))

}

iv. Use the system.time function to determine how long your implementation takes to obtain a
sample of size 100,000 targetting this distribution.

This takes a surprisingly consistent 13 ms on my latop.

(d) Comparison

i. The inverse transformation and rejection algorithms both produce iid samples from the
target distribution and so the only thing which distinguishes them is the time it takes to
run the two algorithms. Which is preferable?

The inverse transformation method is better than the more efficient rejection sampler and
much better than the inefficient implementation.

How many uniform random variables do the two algorithms require to produce the samples
(this is, of course, a random quantity with rejection sampling, but the average value is a
good point of comparison) and how does this relate to their relative computational costs?

We need two random variables per trial and around 100,000 M trials to obtain 100,000 ac-
ceptances by rejection; but just one random variable per acceptance with the IS algorithm.
Which suggests a factor of 3.08 between the two methods.
This is of the same order of magnitude as the difference in timing between efficient imple-
mentations, the rejection algorithm does a little better than we might expect, suggesting
that the ancillary calculations done in this case are a little cheaper than those required
for inversion sampling (looking at the expression involved, this seems plausible).
In contrast, the in efficient rejection sampler is orders of magnitude slower. This illustrates
the need to be careful with “computational overheads” and to be aware of limitations and
inefficiencies of any particular platform when implementing these algorithms.

ii. To compare the importance sampling estimators with other algorithms it’s necessary to
have some idea of how well they work. To this end, use all four algorithms to estimate the
expectation of X when X ∼ fX(·; a, b) using samples of size 100,000.

The algorithms which use iid samples form the target and the simple importance sampling
scheme are unbiased and so we can use their variance as a measure of how well they perform.
Noting that their variance scales with the reciprocal of sample size, an appropriate figure
of merit is the product of the estimator variance and computational cost (cheaper schemes
could be run for longer to reduce their variance without requiring any further computing).

We’re interested here not in the variance of the target distribution which we could easily
estimate from a single sample but in the estimator variance: a characterisation of the
variability between repeated runs of our algorithms. This Monte Carlo variance tells us how
much variability we introduce into the estimate by using Monte Carlo instead of the exact
population mean. To characterise it, run each of your algorithms a large number of times,
100, say, obtain an estimate of each run and compute the sample variance of the collection
of estimates you obtain.

How do the algorithms compare?



Algorithm Mean Var / 10−6 Cost /ms Var × Cost
Transformation 0.5334 5.9 2.7 15.9
Rejection (2) 0.5334 5.5 5.4 29.7
Importance 0.5327 11.8 1.2 14.2

In this case, somewhat surprisingly, the highest variance scheme is also the most efficient
in computational terms: because it is so fast, it’s also the one which produces the lowest
variance per CPU cycle and may be the preferred estimator in many circumstances.

iii. The self-normalized importance sampling scheme is biased and this further complicates the
comparison.

First obtain it’s variance as you did for the other algorithms.

I obtained 3.9×10−6 which is comfortably the lowest amongst all the estimators and
remains so after factoring in computational cost.

Now estimate it’s bias: what’s the average difference between the estimates you obtained
with this algorithm and the average result obtained with one of the unbiased schemes?

The mean squared error can be expressed as the sum of variance and bias squared.

Perform a comparison of the algorithms which considers MSE as well as computational cost.

The simplest approach is to note that the bias of this estimate is tiny; the expectation
agrees to at least four significant figures with those obtained by the other algorithms.
Consequently, the variance and MSE are essentially the same.

2. Bayesian Inference via Monte Carlo. One very common use of Monte Carlo methods is to perform
Bayesian inference.

Consider a scenario in which you wish to estimate an unknown probability given n realisations of a
Bernoulli random variable of success probability p. You can view your likelihood as being Bin (n, p).
The traditional way to proceed is to impose a Beta prior on p and to exploit conjugacy. Consider,
instead a setting in which you wish to use a Kumaraswamy distribution with a = 3 and b = 1 as a
prior distribution (perhaps you’re dealing with a problem related to hydrology).

(a) Develop a Monte Carlo algorithm which allows you to compute expectations with respect to the
posterior distribution.

The simplest option is to sample from the prior using the code developed in question 1
and the importance weight using the likelihood and self-normalised importance sampling
to compute expectations with respect to the posterior.

ripost <- function(sample.size , n, obs) {

x <- rkumaraswamy(sample.size ,3,5)

w <- dbinom(obs ,n,x)

w <- w / mean(w)

list(X=x,W=w)

}

(b) Use your algorithm to compare the prior mean and variance of p with its posterior mean and
variance in two settings: if n = 10 and you observe 3 successes and if n = 100 and you observe
30 successes.

The prior mean and variance can be easily estimated by simple Monte carlo.

> rks <- rkumaraswamy (100000 ,3 ,1)

> mean(rks)

[1] 0.7500746

> var(rks)

[1] 0.03748851

We can estimate the posterior mean and variance using our importance sampling algo-
rithm. Doing this a few times with the two parameter values specified and a fairly small
sample we find:

> rip1 <- ripost (100 ,10 ,3)

> rip2 <- ripost (100 ,10 ,3)



> rip3 <- ripost (100 ,10 ,3)

> mean(rip1$X*rip1$W)

[1] 0.4136343

> mean(rip2$X*rip2$W)

[1] 0.3959585

> mean(rip3$X*rip3$W)

[1] 0.3895696

> mean(rip1$X**2 * rip1$W) - mean(rip1$X * rip1$W)^2

[1] 0.01130371

> mean(rip2$X**2 * rip2$W) - mean(rip2$X * rip2$W)^2

[1] 0.01271694

> mean(rip3$X**2 * rip3$W) - mean(rip3$X * rip3$W)^2

[1] 0.01162405

> ripl1 <- ripost (100 ,100 ,30)

> ripl2 <- ripost (100 ,100 ,30)

> ripl3 <- ripost (100 ,100 ,30)

> mean(ripl1$X*ripl1$W)

[1] 0.3129667

> mean(ripl2$X*ripl2$W)

[1] 0.3261331

> mean(ripl3$X*ripl3$W)

[1] 0.3109552

> mean(ripl1$X**2 * ripl1$W) - mean(ripl1$X * ripl1$W)^2

[1] 0.002847201

> mean(ripl2$X**2 * ripl2$W) - mean(ripl2$X * ripl2$W)^2

[1] 0.001571596

> mean(ripl3$X**2 * ripl3$W) - mean(ripl3$X * ripl3$W)^2

[1] 0.00211944

(c) How would your algorithm behave if n was much larger?

The performance for the mean here looks fairly consistent, although the variance estimates
seem less convincing, so perhaps it might work even for very large n?

> ripvl <- ripost (100 ,10^6 ,3*10^5)

> ripvl1 <- ripost (100 ,10^6 ,3*10^5)

> ripvl2 <- ripost (100 ,10^6 ,3*10^5)

> ripvl3 <- ripost (100 ,10^6 ,3*10^5)

> mean(ripvl1$X*ripvl1$W)

[1] 0.3014544

> mean(ripvl2$X*ripvl2$W)

[1] 0.3033601

> mean(ripvl3$X*ripvl3$W)

[1] 0.2977458

> mean(ripvl1$X**2 * ripvl1$W) - mean(ripvl1$X * ripvl1$W)^2

[1] 3.188226e-07

> mean(ripvl2$X**2 * ripvl2$W) - mean(ripvl2$X * ripvl2$W)^2

[1] 5.134781e-16

> mean(ripvl3$X**2 * ripvl3$W) - mean(ripvl3$X * ripvl3$W)^2

[1] -1.387779e-17



Indeed,the posterior mean seems to be estimated reasonably consistently, but the variance
estimate is terrible — it varies by 10 orders of magnitude between these three estimates!
This is actually an artefact of the compact support of the parameter. There is always a
sample fairly close to the mode of the posterior and so estimates of the centre don’t look
bad, but in fact, the distribution is being very poorly approximated here. Look at the
weighted samples for the three sample sizes considered:
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With the largest number of observations a single sample contributes almost all of the mass
to the estimate and this can lead to very poorly behaving estimators.

(d) How might you address this problem?

There are many things we could do, but the most natural might be to try to find a
proposal distribution that’s more like the posterior than the prior; in one dimension it’s
not too difficult to do this as we could plot a function equal to the product of prior and
likelihood and then try to fit a distribution to it.
In this case the problem is simple enough we could probably get around it by increasing
the sample size, but that strategy does’t generalise very well.


