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1

Introduction

1.1 What this course is about

This APTS course will cover a variety of methods which enable data to be modelled

in a flexible manner. It will use and extend a variety of topics covered in earlier APTS

courses, including

– linear models, including the Bayesian version;

– generalised linear models;

– R programming;

– Taylor series expansions and standard asymptotic methods.

The main emphasis will be on regression settings, because of the widespread use and

application of this kind of data structure. However, the material of the first chapter will

include the simple case of density estimation, also covered in the preliminary material,

to introduce some of the main ideas of nonparametric smoothing and to highlight some

of the main issues involved.

As with any statistical topic, a rounded treatment involves a variety of approaches,

including

– clear understanding of the underlying concepts;

– technical understanding of methods, with an exploration of their properties;

– appreciation of the practical computational issues;

– some knowledge of the tools available to fit relevant models in R;

– understanding of how these models can bring insight into datasets and applications.

The aim is to reflect all of these aspects in the course, but to varying degrees in different

sections. There will not be time to cover all the material in the notes and some of the

material is intended to provide pointers to topics which it might be of interest to explore

in the context of your own research.
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1.2 Brief review of density estimation

A probability density function is a key concept through which variability can be ex-

pressed precisely. In statistical modelling its role is often to capture variation sufficiently

well, within a model where the main interest lies in structural terms such as regression

coefficients. However, there are some situations where the shape of the density function

itself is the focus of attention. The example below illustrates this.

Example 1.1 (Aircraft data). These data record six characteristics of aircraft designs

which appeared during the twentieth century. The variables are:

Yr: year of first manufacture

Period: a code to indicate one of three broad time periods

Power: total engine power (kW)

Span: wing span (m)

Length: length (m)

Weight: maximum take-off weight (kg)

Speed: maximum speed (km/h)

Range: range (km)

A brief look at the data suggests that the six measurements on each aircraft should be

expressed on the log scale to reduce skewness. Span is displayed on a log scale below,

for Period 3 which corresponds to the years after the second World War. /
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The pattern of variability shown in both the histogram and the density estimate

exhibits some skewness. There is perhaps even a suggestion of a subsidiary mode at

high values of log span, although this is difficult to evaluate.

The histogram is a very familiar object. It can be written as
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f̃(y) =
n∑
i=1

I(y − ỹi;h),

where {y1, . . . , yn} denote the observed data, ỹi denotes the centre of the interval in

which yi falls and I(z;h) is the indicator function of the interval [−h, h]. The form of

the construction of f̃ highlights some feature which are open to criticism if we view the

histogram as an estimator of the underlying density function. Firstly the histogram is

not smooth, when we expect that the underlying density usually will be. Secondly, some

information is lost when we replace each observation yi by the bin mid-point ỹi. Both

of the issues can be addressed by using a density estimator in the form

f̂(y) =
1

n

n∑
i=1

w(y − yi;h),

where w is a probability density, called here a kernel function, whose variance is con-

trolled by the smoothing parameter h.

Large changes in the value of the smoothing parameter have large effects on the

smoothness of the resulting estimates, as the plots below illustrate.
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One advantage of density estimates is that it is a simple matter to superimpose these

to allow different groups to be compared. Here the groups for the three different time

periods are compared. It is interesting that the ‘shoulder’ appears in all three time

periods.
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1.2.1 Simple asymptotic properties

Without any real restriction, we can assume that the kernel function can be written in

the simple form w(y − yi;h) = 1
h
w
(
y−yi
h

)
. The preliminary material showed that the

mean and variance of a density estimator can then be expressed as

E
{
f̂(y)

}
= f(y) +

h2

2
σ2
w f
′′(y) + o(h2),

var
{
f̂(y)

}
=

1

nh
f(y)α(w) + o

(
1

nh

)
,

where we assume that the kernel function is symmetric so that
∫
uw(u)du = 0, and where

σ2
w denotes the variance of the kernel, namely

∫
u2w(u)du, and α(w) =

∫
w2(u)du.

These expressions capture the essential features of smoothing. In particular, bias is

incurred and we can see that this is controlled by f ′′, which means that where the

density has peaks and valleys the density estimate will underestimate and overestimate

respectively. This makes intuitive sense.

If we need it, a useful global measure of performance is the mean integrated squared

error (MISE) which balances squared bias and variance.

MISE(f̂) =
1

4
h4σ4

w

∫
f ′′(y)2dy +

1

nh
α(w) + o

(
h4 +

1

nh

)
.

1.2.2 Extension to other sample spaces

The simple idea of density estimation is to place a kernel function, which in fact is itself

a density function, on top of each observation and average these functions. This extends

very naturally to a wide variety of other types of data and sample spaces.

For example, a two-dimensional density estimate can be constructed from bivariate

data {(y1i, y2i) : i = 1, . . . , n} by employing a two-dimensional kernel function in the

form

f̂(y1, y2) =
1

n

n∑
i=1

w(y1 − y1i;h1)w(y1 − y2i;h2).

Notice that there are now two smoothing parameters, (h1, h2). A more general two-

dimensional kernel function could be used, but the simple product form is very conve-

nient and usually very effective.

Here is an example which uses the scores from the first two principal components of

the aircraft data, again focussing on the third time period. The left hand scatterplot

shows the individual scores while the right hand plot shows a density estimate, from

which suggests three separate modes. This feature is not so easily seen from the raw

scatterplot.
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The lower two plots show alternative ways of presenting a two-dimensional estimate,

using a coloured image on the left and contour lines on the right. Notice that the

contours on the right have been chosen carefully to contain the quarters of the data

with successively higher density, in a manner which has some similarities with a box

plot.

This principle extends to all kinds of other data structures and sample spaces by

suitable choice of an appropriate kernel function.

1.2.3 Deciding how much to smooth

It is not too hard to show that the value of h which minimizes MISE in an asymptotic

sense is

hopt =

{
γ(w)

β(f)n

}1/5

,

where γ(w) = α(w)/σ4
w, and β(f) =

∫
f ′′(y)2dy. Of course, this is of rather limited

use because it is a function of the unknown density. However, there are two practical

approaches which can be taken to deciding on a suitable smoothing parameter to use.

One is to construct an estimate of MISE and minimise this. Another is to estimate the

optimal smoothing parameter. These two approaches are outlined below.
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Cross-validation

The integrated squared error (ISE) of a density estimate is∫
{f̂(y)− f(y)}2dy =

∫
f̂(y)2dy − 2

∫
f(y)f̂(y)dy +

∫
f(y)2dy.

Only the first two of these terms involve h and these terms can be estimated by

1

n

n∑
i=1

∫
f̂ 2
−i(y)dy − 2

n

n∑
i=1

f̂−i(yi),

where f̂−i(y) denotes the estimator constructed from the data without the observation

yi. The value of h which minimises this expression is known as the cross-validatory

smoothing parameter.

Plug-in methods

By inserting suitable estimates of the unknown quantities in the formula for the

optimal smoothing parameter, a plug-in choice can be constructed. The difficult part

is the estimation of β(f) as this involves the second derivative of the density function.

Sheather & Jones (JRSSB 53, 683–90) came up with a good, stable way of doing this.

The Sheather-Jones method remains one of the most effective strategies for choosing

the smoothing parameter.

A very simple plug-in approach is to use the normal density function in the expression

for the optimal smoothing parameter. This yields the simple formula

h =

(
4

3n

)1/5

σ,

where σ denotes the standard deviation of the distribution. This is a surprisingly effective

means of smoothing data, in large part because it is very stable.

1.2.4 Some simple inferential tools

Once an estimate has been constructed, a natural next step is to find its standard error.

The earlier result on the variance of f̂ is a natural starting point, but this expression

involves the unknown density. A helpful route is to consider a ‘variance stabilising’

transformation. For any transformation t(·), a Taylor series argument shows that

var
{
t(f̂(y))

}
≈ var

{
f̂(y)

}[
t′
(
E
{
f̂(y)

})]2

.

When t(·) is the square root transformation, the principal term of this expression be-

comes

var

{√
f̂(y)

}
≈ 1

4

1

nh
α(w),

which does not depend on the unknown density f . This forms the basis of a useful

variability band. We cannot easily produce proper confidence intervals because of the
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bias present in the estimate. However, if the standard error is constructed and the

intervals corresponding to two s.e.’s on the square root scale are transformed back to

the origin scale, then a very useful indication of the variability of the density estimate

can be produced. This is shown below for the aircraft span data from period 3.
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A useful variation on this arises when the true density function is assumed to be

normal with mean µ and variance σ2, and the kernel function w is also normal. If the

standard normal density function is denoted by φ, then the mean and variance of the

density estimate at the point y are then

E
{
f̂(y)

}
= φ

(
y − µ;

√
h2 + σ2

)
var
{
f̂(y)

}
=

1

n
φ
(

0;
√

2h
)
φ

(
y − µ;

√
σ2 +

1

2
h2

)
− 1

n
φ
(
y − µ;

√
σ2 + h2

)2

These expressions allow the likely range of values of the density estimate to be cal-

culated, under the assumption that the data are normally distributed. This can be

expressed graphically through a reference band.

Example 1.2 (Icelandic tephra layer). Data on the percentages of aluminium oxide found

in samples from a tephra layer resulting from a volcanic eruption in Iceland around

3500 years ago are available in the tephra dataset in the sm package. To deal with the

percentage scale, apply the logit transformation

logit <- log(tephra$Al2O3/(100-tephra$Al2O3)) .

Can the variation in the tephra data be adequately modelled by a normal distribution

on this scale? /
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The density estimate does not fit comfortably within the reference band at all points

and this effect persists across a wide range of smoothing parameters. A global test of

normality could be developed but the graphical device of a reference band offers very

useful informal insight.

The preliminary material also discussed the role of the bootstrap in capturing the

variability, but not immediately the bias, of a density estimate.

1.3 Broad concepts and issues of smoothing

The simple case of density estimation highlights features and issues which are common to

a wide range of problems involving the estimation of functions, relationships or patterns

which are nonparametric but smooth. The term nonparametric is used in this context

to mean that the relationships or patterns of interest cannot be expressed in specific

formulae which involved a fixed number of unknown parameters. This means that the

parameter space is the space of functions, whose dimensionality is infinite. This takes

us outside of the standard framework for parametric models and the main theme of

the course will be to discuss how we can do this while producing tools which are highly

effective for modelling and analysing data from a wide variety of contexts and exhibiting

a wide variety of structures.

On a side note, the term nonparametric is sometimes used in the narrower setting

of simple statistical methods based on the ranks of the data, rather than the original

measurements. This is not the sense in which it will be used here.

Further details on density estimation are given in Silverman (1986), Scott (1992),

Wand and Jones (1995) & Simonoff (1996).

The issues raised by our brief discussion of density estimation include
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– how to construct estimators which match the type of data we are dealing with;

– how to find a suitable balance between being faithful to the observed data and incor-

porating the underlying regularity or smoothness which we believe to be present;

– how to construct and make use of suitable inferential tools which will allow the models

to weigh the evidence for effects of interest, in a setting which takes us outside of

standard parametric methods.

These broad issues will be explored in a variety of contexts in the remainder of the

course.

1.4 Nonparametric regression

Regression is one of the most widely used model paradigms and this will be the main

focus in the remainder of the course. Here is an example which will be used to illustrate

the initial discussion.

Example 1.3 (Great Barrier Reef data). A survey of the fauna on the sea bed lying be-

tween the coast of northern Queensland and the Great Barrier Reef was carried out.

The sampling region covered a zone which was closed to commercial fishing, as well as

neighbouring zones where fishing was permitted. The variables are:

Zone an indicator for the closed (1) and open (0) zones

Year an indicator of 1992 (0) or 1993 (1)

Latitude latitude of the sampling position

Longitude longitude of the sampling position

Depth bottom depth

Score1 catch score 1

Score2 catch score 2

The details of the survey and an analysis of the data are provided by Poiner et al.

(1997), The effects of prawn trawling in the far northern section of the Great Barrier

Reef, CSIRO Division of Marine Research, Queensland Dept. of Primary Industries. /

The relationship between catch score (Score1) and longitude is of particular inter-

est because, at this geographical location, the coast runs roughly north-south and so

longitude is a proxy for distance offshore. We might therefore reasonably expect the

abundance of marine life to change with longitude. The first of the three panels below

shows that there is indeed a strong underlying negative relationship, with considerable

variability also present. The middle panel summarises this in a simple linear regression
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which captures much of this relationship. However, if we allow our regression model to

be more flexible then a more complex relationship is suggested in the right hand panel,

with a broadly similar mean level for some distance offshore followed by a marked de-

cline, possibly followed by some levelling off thereafter. This gives valuable informal and

graphical insight into the data but how can flexible regression models can be constructed

and how can we use them to evaluate whether there is really evidence of non-linear be-

haviour in the data?
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1.4.1 A local fitting approach

A simple nonparametric model has the form

yi = m(xi) + εi,

where the data (xi, yi) are described by a smooth curve m plus independent errors εi.

One approach to fitting this is to take a model we know and fit it locally. For example,

we can construct a local linear regression. This involves solving the least squares problem

min
α,β

n∑
i=1

{yi − α− β(xi − x)}2w(xi − x ;h)

and taking as the estimate at x the value of α̂, as this defines the position of the

local regression line at the point x. This has an appealing simplicity and it can be

generalised quite easily to other situations. This was the approach used to produce the

nonparametric regression of the Reef data in the plot above.

There is a variety of other ways in which smooth curve estimates can be produced

and a further approach is outlined in the next section. It can sometimes reasonably be

argued that the precise mechanism usually isn’t too important and can be chosen for

convenience.

1.4.2 Basis function approaches

Basis approaches to function approximation have a very long history. One of the first

was Fourier series, which is based on the expansion
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m(x) ≈ a0

2
+

p∑
j=1

ajcos

(
2πjx

P

)
+ bjsin

(
2πjx

P

)
where P is the range of the covariate. The plots below show the effects of fitting a

Fourier series with p = 1, 2, 4, 6 frequencies.
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Each basis function in a Fourier expansion has effects across the entire range of the

data, with the result that the effect of fitting data well in one part of the sample space

can create artefacts elsewhere. An alternative approach is to use a set of basis functions

which are more local in their effects. The figure below shows a set of b-spline functions,

b1(x), . . . , bp(x) which can be used for this.

A curve estimate can then be produced simply by fitting the regression

yi = β0 + β1b1(xi) + βpb2(xi) + . . .+ βpbp(xi) + εi.

A popular approach, known as p-splines, uses a large number of basis functions but

includes a penalty to control the smoothness of the resulting estimator. Specifically, the

coefficients βi are chosen to minimise

n∑
i=1

{yi − β0 − β1b1(xi)− βpb2(xi)− . . .− βpbp(xi)}2 + λP (β),

where the penalty function P might, for example, have the form

P (β) =

p∑
j=2

(βj − βj−1)2

or some other measure of roughness along the sequence of coefficients. Here the param-

eter λ controls the degree of smoothness of the resulting estimator. This idea of using a
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penalty to find a good balance between fit to the data and smoothness of the estimator

is a general theme which will reappear at various points during the course.

A useful connection can be made here with wavelets, where local basis functions are

also used to construct sophisticated function estimators.

1.5 Further illustrations of smoothing

This section gives a few brief illustrations of how the ideas outlined in simple settings

can be extended to much more complex situations and data structures. Some of these

will be revisited in greater detail later in the course.

1.5.1 Regression with more than one covariate

It is rare to have problems which involve only a single covariate. For the Reef data a

natural extension is to look at the relationship between the catch score and both latitude

(x1) and longitude (x2), in a model

yi = m(x1i, x2i) + εi.

the top left hand panel of the plot below shows the effect of this. The effect of longitude

dominates, as we see from the earlier nonparametric regression. However, a small effect of

latitude is also suggested. The methods by which surfaces of this type can be constructed

will be discussed in the next two chapters.
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It would be unrealistic to generalise this much further, by modelling additional co-

variates through functions of ever-increasing dimension. A very powerful approach is to

construct additive models of the form

yi = m1(x1i) +m2(x2i) + εi,

where the component functions m1 and m2 describe the separate and additive effects of

the two covariates. Estimated additive model components, and their combined effects

as an additive surface, are displayed in the other panels of the figure above. Methods

for fitting models of this type will also be discussed later.

1.5.2 Areal data

Data quantifying population-level summaries of disease prevalence for n non-overlapping

areal units are available from both the English and Scottish Neighbourhood Statistics

databases. They are used in many different applications, including quantifying the effect

of an exposure on health, and identifying clusters of areal units that exhibit elevated risks

of disease. The health data are denoted by Y = (Y1, . . . , Yn) and E = (E1, . . . , En), which

are the observed and expected numbers of disease cases in each areal unit. The covariates

are denoted by an n × p matrix X = (x1, . . . ,xn), and could include environmental

exposures or measures of socio-economic deprivation.
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One example concerns the prevalence of respiratory disease in Glasgow in 2010, where

interest focusses on the hospitalisation risk SIRk = Yk/Ek. The data are displayed in

the plot below.
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A suitable statistical model is

Yk ∼ Poisson(EkRk),

log(Rk) = xT
k β + φk,

φk|φ−k, τ 2,W ∼ N

(∑n
i=1wkiφi∑n
i=1 wki

,
τ 2∑n
i=1wki

)
,

where

– Rk quantifies disease risk in area k.

– φ = (φ1, . . . , φn) are random effects that model residual spatial autocorrelation and

improve estimation of disease risk by smoothing the risks across neighbouring areas.

– Commonly, conditional autoregressive (CAR) models are used for this smoothing,

where W = (wki) is a binary n× n neighbourhood matrix.

Material kindly provided by Duncan Lee, University of Glasgow.

1.5.3 Network data

Models for spatial data often involve some form of smoothing, either implicitly or ex-

plicitly. An interesting forms of spatial data arises from river networks, where models for

the variation in measurements should respect both the spatial pattern of the intercon-

necting water channels as well as the mixing effect of confluence points where channels

meet. The data below refer to nitrate pollution in the River Tweed. The point measure-

ments on the left can be used to construct a spatial model for the whole network, whose
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predictions are shown in the panel on the right.
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This example arises from joint work with Alastair Rushworth, David O’Donnell, Mar-

ian Scott, Mark Hallard (SEPA).
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2

Fitting models locally

2.1 Local mean and local linear estimators

In chapter 1, the idea of fitting a linear model locally was introduced. In fact, there is

an even simpler approach by fitting a local mean. Specifically, at any point of interest

x, we choose our estimator of the curve there as the value of µ which minimises

n∑
i=1

{yi − µ}2w(xi − x;h)

and this is easily shown to produce the ‘running mean’

m̂(x) =

∑n
i=1 w(xi − x;h) yi∑n
i=1w(xi − x;h)

.

If we do the algebra to minimise the sum-of-squares given in Chapter 1 to define the

local linear approach, then an explicit formula for the local estimator can be derived as

m̂(x) =
1

n

n∑
i=1

{s2(x;h)− s1(x;h)(xi − x)}w(xi − x;h)yi
s2(x;h)s0(x;h)− s1(x;h)2

,

where sr(x;h) = {
∑

(xi − x)rw(xi − x;h)}/n.

In both the local mean and the local linear cases, the estimator is seen to be of the

form
∑

i κiyi, where the weights κi sum to 1. There is a broad sense then in which even

the local linear method is ‘locally averaging’ the data. In fact, many other forms of

nonparametric regression can also be formulated in a similar way.

2.2 Some simple properties

One question which immediately arises is whether it matters very much which form

of nonparametric smoothing is used. Sometimes computational and other issues may
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constrain what choices are practical. However, if we take the simple local mean and local

linear examples, what principles can we use to guide our choice? Deriving expression

which capture simple properties such as bias and variance is an obvious place to start.

We will start with the local mean estimator. The exploration will be a little informal,

without the full technicality of formal proofs (although these could be added if time

permitted). The aim is to identify the properties of the estimator in conceptual form.

If the numerator and denominator of the local mean estimator are both scaled by 1/n,

then the denominator has a familiar form, namely a kernel density estimator. As we saw

earlier, this has expectation

E

{
1

n

∑
i

w(xi − x;h)

}
= f(x) +

h2

2
f ′′(x) + o(h2),

where, as before, we assume for convenience that the kernel function can be rewritten

as 1
h
w((xi − x)/h) and w is a symmetric probability density function around 0 with

variance 1. Turning now to the numerator, we have

E

{
1

n

∑
i

w(xi − x;h) yi

}
=

1

n

∑
i

1

h
w

(
xi − x
h

)
m(xi)

≈
∫

1

h
w

(
z − x
h

)
m(z)f(z) [integral approximation]

=

∫
w(u)m(x+ hu)f(x+ hu)du [change of variable]

Now apply a Taylor series expansion to the terms involving x+ hu, to give

m(x+ hu) = m(x) + hum′(x) +
(hu)2

2
m′′(x) + o(h2)

f(x+ hu) = f(x) + hu f ′(x) +
(hu)2

2
f ′′(x) + o(h2)

Substituting these in and integrating over u gives

E

{
1

n

∑
i

w(xi − x;h) yi

}
≈ m(x)f(x)+h2

{
1

2
f(x)m′′(x) +m′(x)f ′(x) +

1

2
f ′′(x)m(x)

}
+o(h2).

Dividing both numerator and demoninator by f(x) gives

numerator: m(x) + h2

{
1

2
m′′(x) +m′(x)

f ′(x)

f(x)
+

1

2

f ′′(x)

f(x)
m(x)

}
+ o(h2)

denominator: 1 +
h2

2

f ′′(x)

f(x)
+ o(h2)

The dominant term in the mean of the ratio of numerator and denominator is the ratio

of the means. Applying the series expansion for (1 + x)−1 allows the reciprocal of the

denominator to be written as

1− h2

2

f ′′(x)

f(x)
+ o(h2)
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Multiplying the different terms out, we have

E{m̂(x)} ≈
{
m(x) + h2

{
1

2
m′′(x) +m′(x)

f ′(x)

f(x)
+

1

2

f ′′(x)

f(x)
m(x)

}
+ o(h2)

}
{

1− h2

2

f ′′(x)

f(x)
+ o(h2)

}
= m(x) + h2

{
1

2
m′′(x) +

m′(x)f ′(x)

f(x)

}
+ o(h2)

Phew!

A similar sequence of manipulations (which you might like to try on your own) gives

an asymptotic expression for the variance as

var{m̂(x)} ≈ 1

nh

{∫
w(u)2du

}
σ2 1

f(x)
,

where σ2 denotes the variance of the error terms εi.

In the local linear case, the estimator can be written as
∑

i aiyi/
∑

i ai, where ai =
1
n

1
h
w(xi−x

h
){s2 − (xi − x)s1}. Consider first s1, which can be written as

s1 =
1

n

∑
j

1

h
w

(
xi − x
h

)
(xj − x)

≈
∫

1

h
w

(
x− x
h

)
f(z)(z − x)dz

=

∫
w(u)hu{f(x) + huf ′(x) + o(h)}du

= h2f ′(x) + o(h2)

By a similar argument,

s2 ≈ h2f(x) + o(h2).

The weights ai can then be approximated by

ai ≈
1

n

1

h
w

(
xi − x
h

)
h2{f(x)− (xi − x)f ′(x)}.

The mean of the estimator is E{m̂(x)} =
∑

i aim(xi)/
∑

i ai. Ignoring the term h2 which

cancels in the ratio, the numerator can be expressed as{
f(x)2 +

h2

2
f(x)f ′(x)− h2f ′(x)2

}
m(x) +

h2

2
f(x)2m′′(x)2,

after an integral approximation, a change of variable and a Taylor series expansion. By

a similar argument, the denominator of E{m̂(x)} can be approximated by

f(x)2 +
h2

2
f(x)f ′′(x)− h2f ′(x)2.

The principal term of the ratio then gives
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E{m̂(x)} ≈ m(x) +
h2

2
m′′(x).

So, after considerable work, a very simple expression has been achieved. Similar manip-

ulations for the variance produces an expression which is exactly the same as that for

the variance of the local mean estimator.

A comparison of the expressions for the local mean and local linear estimators is

interesting. For example, the principal terms in the expression for the mean of the local

linear estimator is not only simpler but also does not involve f(x), both of which are

attractive properties. This is one of the reasons that the local linear estimator is generally

preferred over the local mean.

However, another issue concerns edge effects. These require more careful analysis to

identify so, instead, we will use a simple illustration based on simulation. The figures

below show the results of repeatedly simulating 50 data points, equally spaced over [0, 1],

from the model y = x + ε, where the standard deviation of the error terms is 0.1. For

each set of simulated data, a nonparametric regression curve is plotted, using local mean

(left) and local linear (right) estimators. Notice that at the ends of the sample space

the local mean has strong bias, because there is data only on one side of the estimation

point of interest. In contrast, the local linear method is unaffected. The same pattern is

displayed in the lower plots, using the model y = x2 + ε over the range [−1, 1].
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With a little more theoretical work, a central limit theorem can be constructing to

show that
m̂(x)−m(x)− b(x)√

v(x)
→ N(0, 1),

where b(x) and v(x) denote the bias band variance of m̂(x).

Following on from the discussions in density estimation, the performance of a non-

parametric estimator can be summarised in the mean integrated squared error, defined

as

MISE =

∫
E{m̂(x)−m(x)}2 f(x)dx

and an optimal smoothing parameter can be defined as the value of h which minimises

the asymptotic approximation of MISE, namely

hopt =

{
γ(w)σ2∫

[m′′(x)]2f(x)dx

}1/5

n−1/5

If we use this optimal smoothing parameter, then both the bias and the square root of

the variance, which determines the rate of convergence, are of order n−2/5. Notice that

this rate of convergence is slower than the n−1/2 which applies for parametric models.

Fan and Gijbels (1996) give further details on the theoretical aspects of local poly-

nomial smoothing.

2.3 Smoothing in two dimensions

It can often be of interest to smooth over two covariates simultaneously, for example

when dealing with a response variable defined over geographical co-ordinates. The lo-

cal linear approach is particularly easy to extend to this setting. If the observed data

are denoted by {x1i, x2i, yi; i = 1, . . . , n}, then for estimation at the point (x1, x2) the

weighted least squares formulation is

min
α,β,γ

n∑
i=1

{yi − α− β(x1i − x1)− γ(x2i − x2)}2w(x1i − x1;h1)w(x2i − x2;h2).

The value of the fitted surface at (x1, x2) is simply α̂. With careful thought, the com-

putation can be performed efficiently.

This is illustrated below with one year of Reef data from the closed zone.
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2.4 Degrees of freedom and standard errors

It is helpful to express the fitted values of the nonparametric regression as

m̂ = Sy,

where m̂ denotes the vector of fitted values, S denotes a smoothing matrix whose rows

consist of the weights appropriate to estimation at each evaluation point, and y denotes

the observed responses in vector form. This linear structure is very helpful.

For example, it gives us a route to defining degrees of freedom by analogy with what

happens with the usual linear model, where the number of parameters is the trace of the

projection matrix. An approximate version of these can be constructed for nonparametric

models as

df = tr {S} .

Similarly, we can construct an estimate of the error variance σ2 through the residual

sum-of-squares, which in a nonparametric setting is simply

RSS =
∑
{yi − m̂(xi)}2.

This leads to the estimator of the error variance

σ̂2 = RSS/df.
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The linear structure of the fitted values also makes it very easy to produce standard

errors which quantify the variability of the estimate at any value of x. Unfortunately,

we can’t easily produce confidence intervals for the curve because of the bias mentioned

above. However, by adding and subtracting two standard errors at each point on the

curve we can produce variability bands which express the variation in the curve estimate.

In fact, we don’t need to rely on the asymptotic formula for variance. If m̂ denotes the

estimated values of m at a set of evaluation points then

var{m̂} = var{Sy} = SSTσ2

and so, by plugging in σ̂2 and taking the square root of the diagonal elements, the

standard errors at each evaluation point are easily constructed. The plot below illustrates

this on the Reef data.
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Sometime we want to compare curves, at least informally, and we can use the standard

errors from each curve to do that. At any point x, the standard error of the difference

between the curves is sed(x) =
√
se1(x)2 + se2(x)2, where se1(x) and se2(x) denote the

standard errors of each curve at that point. A neat trick is to plot a band whose width

is 2sed(x). By centring this band at the average of the two curves we can see where they

are more than two standard errors apart. We can see this with the Reef data separated

into two groups corresponding to open and closed fishing zones.
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2.5 How much to smooth

One of the key questions with nonparametric models is how much smoothing to apply

to the data. For exploratory work, it can often be helpful simply to experiment with

different degrees of smoothing. One appealing way to do that is to specify how many

degrees of freedom (see discussion above) you would like to have. This puts things on a

natural scale.

However, in more complicated situations that can be difficult and it is helpful to

have an automatic way of producing a suitable level of smoothing. There are several

ways to do this, some of which are carefully tailored to particular models. Here we will

outline a method called cross-validation which, although it has some difficulties, has the

advantage that the generality of its definition allows it to be applied to quite a wide

variety of settings. In the present setting, the idea is to choose h to minimise

CV:
n∑
i=1

{yi − m̂−i(xi)}2.

The subscript −i denotes that the estimate of the smooth curve at xi is constructed

from the remainder of the data, excluding xi. The aim then is to evaluate the level of

smoothing through the extent to which each observation is predicted from the smooth

curve produced by the rest of the data. The value of h which minimises the expression

above should provide a suitable level of smoothing.

It is often convenient to use an approximation known as generalised cross-validation

(GCV) which has the efficient computational form

GCV: nRSS/{tr {I − S}2}
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.

The degree of smoothing can also be selected automatically by minimising a quantity

based on Akaike’s information criterion, namely

AIC:
RSS

n
+ 1 +

2(ν + 1)

(n− ν − 2)
,

Other interesting approaches will be outlined in the next lecture.
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3

Splines

3.1 Introduction

This chapter covers splines, which are one of the most popular tools for flexible mod-

elling. This section discusses a number of more philosophical concepts, some of which we

have already touched upon in chapter 2. Each of these issues will come up again when

we look at the details of spline-based flexible regression later on in this chapter.

In parametric modelling (e.g. estimating the rate of a Poisson distribution, linear

regression) we assume we know the data generating process up to a finite number of

parameters. In flexible modelling we want to fit a function to data, without making such

a strict parametric assumption. All we are willing to assume is typically that the function

of interest is sufficiently smooth. More formally speaking, this corresponds to working

with an infinite-dimensional parameter space. This flexible approach has a number of

advantages, most importantly it is less likely that the model is mis-specified. However

there is a price to pay. Estimation becomes more difficult.

Example 3.1. Figure 3.1 shows two smooth functions describing the relationship between

the response Yi and the covariate xi. In this example both functions yield the same fitted

values ŷi = m̂(xi). This also implies that the least-squares loss
∑n

i=1(yi− m̂(xi))
2 is the

same for both functions, i.e. the data alone does not tell us which function does a better

job. There is no global answer to this question.

Which of the two functions appears better suited to us depends on the context and

also to some extent our subjective choice. In most circumstances we would prefer the

function in the left-hand panel as it is the “simpler” function. However, if we expect

the signal to have a periodic component (say we are expecting a day-of-the-week effect)

then we might prefer the function shown in the right-hand panel. /
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Figure 3.1. Two possible smooth functions modelling the relationship between the response Yi and the covariate

xi. Note that both functions yield the same fitted values ŷi = m̂(xi) and thus the same least-squares loss∑n
i=1(yi − m̂(xi))

2.

What we have seen in the example is simply that the family of smooth functions is

so large that observing a finite sample alone will not tell us enough to learn the function

of interest m(·).
We need to provide additional information, which can be of different types:

– We can assume that the function of interest m(·) comes from a more restricted family

of functions. We might even assume a rich class of parametric models. We will use this

idea when we are looking at splines based on truncated power series and B-splines in

section 3.2.4.

– We express a preference for some functions over others (without looking at the data)

and use this in the model fitting procedure. Typically we prefer a smooth function to

a more wiggly function. In a frequentist setting, this leads to penalty-based approach,

or can be viewed as a Bayesian prior over the space of functions. We will discuss this

in sections 3.2.3 and 3.3.

3.2 Univariate splines

3.2.1 Polynomial regression

We will start by revising polynomial regression. To fix notation, we quickly state the

simple linear regression model

E(Yi) = β0 + β1xi for i = 1, . . . , n,

or equivalently, in matrix-vector notation,
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E(y) = Bβ with y = (Y1, . . . , Yn)> and B =


1 x1

...
...

1 xn

.

The simple linear regression model can be extended into a polynomial regression

model by including powers of the covariates xi in the design matrix. The polynomial

regression model

E(Yi) = β0 + β1xi + . . .+ βrx
r
i for i = 1, . . . , n,

just corresponds to linear regression using the expanded design matrix

B =


1 x1 . . . xr1
...

...
. . .

...

1 xn . . . xrn

 .

We can then estimate β using the same techniques as used in multiple linear regression,

i.e. the least-squares estimator is

β̂ = (B>B)−1B>y

Polynomial regression is a very simple example of a basis expansion technique. We

have simply replaced the design matrix of simple linear regression by an augmented

design matrix. In the case of polynomial regression we have simply added powers of the

xi’s. Many of the techniques covered in this chapter will be based in this idea of basis

expansions.

Polynomial regression can be a useful tool if a polynomial of very low order yields a

sufficient fit to the data.

Example 3.2 (Glucose levels in potatoes). Figure 3.2 shows a quadratic regression model

fitted to a simple data set from an experiment in which the glucose level in potatoes

was measured over the course of several weeks. Given the small number of observations

there is little need to go beyond a simple quadratic regression model. /

However, polynomial regression is not very well suited for modelling more complex

relationships, as the following example shows.

Example 3.3. Consider the data set simulated using the model

yi = 1− x3
i − 2 exp(−100x2

i ) + εi
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Figure 3.2. Glucose level in potatoes. The solid line is the fitted regression function obtained from quadratic

regression.

with x = (−1,−0.98, . . . , 0.98, 1) and εi ∼ N(0, 0.12). Figure 3.3(a) shows the data

together with the fitted function obtained for a polynomial regression model of degree

10. The polynomial model of degree 10 is not flexible enough to capture the sharp

dip around 0. If we increase the degree to 17 we can capture the dip better (panel

(b)). However, the polynomial fit of degree 17 shows strong oscillations which are not

supported by the data. Panel (c) shows the fitted regression function using a spline

based model, which we will discuss later on in this chapter. The spline-based approach

can capture the sharp dip much better and without yielding any oscillations.

Figure 3.4 allows some insight into why the polynomial model struggles. It shows

image plots of the hat matrix S = B(B>B)−1B> for the three models under considera-

tion. The hat matrix maps the observed response to the fitted response, i.e.

ŷ = Bβ̂ = B(B>B)−1B>y = Sy

When performing flexible regression we would expect the prediction at xi to almost only

depend on observations close to xi, i.e. we would expect the hat matrix S to be largely

band-diagonal with a rather narrow band width. However, polynomials are not “local”.

As one can see from a Taylor series expansion, the coefficients of the polynomial can

be learnt from higher order derivatives observed at a single point. The problem is that

sharp dip provides more information than the data on either side of it, yielding to a

poor fit on both sides. This is known as Runge’s phenomenon in Numerical Analysis.

Figure 3.3(a) and figure 3.3(b) shows another drawback of polynomial regression. As

x→ ±∞ the polynomial must go to ±∞ as well. This often leads to very high curvature

at both ends of the range, which is typically not supported by the data.
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(a) Polynomial regression of degree 10
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(b) Polynomial regression of degree 17
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(c) Quadratic-spline-based regression

Figure 3.3. Data and fitted function for the simulated data from example 3.3 for polynomial regression of degrees

10 and 17 as well as for a spline-based model.
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(a) Polynomial regression of degree 10
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(c) Quadratic-spline-based regression

Figure 3.4. Hat matrix S = B(B>B)−1B> for polynomial regression of degrees 10 and 17 as well as for splines

applied to the simulated data from example 3.3.
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Yet another reason for avoiding polynomial regression is that it is highly likely to be

numerically unstable. Due to the large correlations between the powers of the xi, which

make up the columns of the design matrix, the design matrix B and the matrix of cross-

products B>B is very likely to be ill-conditioned. The condition number1 of B>B for the

polynomial regression model of degree 17 is 1.56×1012, i.e. B>B is barely invertible. For

comparison, the corresponding condition number for the spline-based model is 32.49. /

As we have seen in the example above, polynomial regression is, unless modelling very

simple relationships, not a suitable tool for flexible regression. In the next section we

will consider piecewise polynomial models, which are better suited for flexible regression.

These are based on the idea of splitting the input domain and fitting low-order polyno-

mials in each interval. As we can see from figure 3.5(a) fitting polynomials independently

of each other does not yield satisfactory results. We will thus introduce additional con-

straints which make the function continuous and (potentially) differentiable (cf. panel

(b)).
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(a) Discontinuous piecewise polynomials
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(b) Piecewise polynomials which form a continuously

differentiable function (derivatives at knots shown as

dashed lines)

Figure 3.5. Piece-wise polynomials fitted to the data from example 3.3 with an without smoothness constraints.

The back triangles show the positions of the knots.

1 The condition number of a matrix is defined as the ratio of the largest singular value divided by the smallest

singular value. For a symmetric positive-definite matrix this is the same as the ratio of the largest over the

smallest eigenvalue. The condition number is of measure of how numerically unstable matrix operations like

taking the inverse will be.
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3.2.2 Polynomial splines

In this section we will introduce polynomial splines which are piecewise polynomials,

which “glued together” at the knots so that the resulting function is r-times continuously

differentiable.

Definition 3.1 (Polynomial spline). Given a set of knots a = κ1 < κ2 < . . . < κl = b,

a function m : [a, b]→ R is called a (polynomial) spline of degree r if

– m(·) is a polynomial of degree r on each interval (κj, κj+1) (j = 1, . . . , l − 1).

– m(·) is r − 1 times continuously differentiable.2

Historically, a spline was an elastic ruler used to draw technical designs, notably in

shipbuilding and the early days of aircraft engineering. Figure 3.6 shows such a spline.3

Figure 3.6. A spline.

Choice of degree r. The degree r of the spline controls the smoothness in the sense

of controlling its differentiability. For r = 0 the spline is a discontinuous step function.

For r = 1 the spline is a polygonal line. For larger values of r the spline is increasingly

smooth, but also behaves more and more like one global polynomial. It is worth noting

that assuming too smooth a function can have significant detrimental effects on the

fitted regression function (e.g. oscillations, ballooning). In practice it is rarely necessary

to go beyond r = 3.

Example 3.4 (Radiocarbon dating). In a scientific experiment high-precision measure-

ments of radiocarbon were performed on Irish oak. To construct a calibration curve

2 For a spline of degree 0 the function m(·) does not need to be continuous. For a spline of degree 1 the function

m(·) needs to be continuous, but does not need to be differentiable.
3 See http://pages.cs.wisc.edu/~deboor/draftspline.html for a picture (probably from the 1960’s) of a

Boeing engineer using a spline.
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we need to learn the relationship between the radiocarbon age and the calendar age.

Figure 3.7 shows spline fits to the data using splines of different degrees. /
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(a) Degree r = 0 (discontinuous).
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(b) Degree r = 1 (continuous).

●
●

●
● ● ●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

2.0 2.2 2.4 2.6 2.8 3.0

2.
2

2.
4

2.
6

2.
8

Calibrated age (1000s)

R
ad

io
−

ca
rb

on
 a

ge
 (

10
00

s)

(c) Degree r = 2 (continuous first derivative).
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(d) Degree r = 3 (continuous second derivative).

Figure 3.7. Splines of degree r ∈ {0, 1, 2, 3} fitted to the radiocarbon data.

Choice of the number of knots l. In an (unpenalised) spline the number of knots acts

as a smoothing parameter. The more knots are used, the more flexible the regression

function can become. As we have seen in chapter 2 a more flexible regression function

has a lower bias, but a higher variance.
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(a) l = 3 knots.
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(b) l = 9 knots.

●
●

●
● ● ●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

● ●

2.0 2.2 2.4 2.6 2.8 3.0

2.
2

2.
4

2.
6

2.
8

Calibrated age (1000s)

R
ad

io
−

ca
rb

on
 a

ge
 (

10
00

s)

(c) l = 15 knots.
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(d) l = 31 knots.

Figure 3.8. Cubic spline with different number of knots l ∈ {3, 9, 15, 31} fitted to the radiocarbon data.
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Example 3.5 (Radiocarbon dating (continued)). Figure 3.8 shows a cubic spline fitted to

the radiocarbon data using an increasing number of knots. Too few knots lead to an

underfit to the data: the fitted function does not fully represent the relationship between

radiocarbon age and calendar age. Too many knots on the other hand lead to an overfit:

the spline does not only pick up the signal, but also adapts to artefacts in the noise. /

Especially when the number of knots is small, the positioning of the knots can be

important. The simplest strategy consist of using a set of equally spaced knots; this is

computationally the simplest. Alternatively, we can place the knots according to the

quantiles of the covariate. This makes the spline more flexible in regions with more

data (and thus potentially more information) and less flexible in areas with less data

(and potentially less information). A third strategy consists of trying to find an optimal

placement of the knots. This usually is computationally very demanding.

Yet another approach consists of using “too many” knots — one knot per observation

in the most extreme case — and use a penalty term to control for the smoothness.

This avoid the need to select the number of knots altogether. We will study two such

approaches in sections 3.2.3 and 3.3.

Splines as a vector space. For a given set of l knots and given degree r, the space

of polynomial splines is a vector space, i.e. the sum of two splines as well as a scalar

multiples of each spline are again splines. To find the dimension of the vector space have

to find the number of “free parameters”.

– Each polynomial has r+1 parameters and there are l−1 polynomials. Thus the spline

model has (r+ 1) · (l− 1) parameters. However we cannot choose all these parameters

freely, as the resulting function needs to be r − 1 times continuously differentiable.

– At the l − 2 inside knots we have to guarantee that m(·) is r − 1 times continuously

differentiable. This corresponds to r constraints (r − 1 constraints for each derivative

and one for m(·) to be continuous). Thus there are r · (l − 2) constraints (which are

all linearly independent).

Thus there are (r + 1) · (l− 1)− r · (l− 2) = r + l− 1 free parameters. Thus the vector

space of polynomial splines of degree r with l knots is r + l − 1.

In section 3.2.4 we will explore different ways of constructing a basis for this space.

The dimension will come in handy when proving that a given set of basis functions

is indeed a basis of this space, as we only need to show that the basis functions are

independent and that we use the correct number of basis functions.

Natural cubic splines. Finally, we will introduce the concept of a natural cubic spline.

It is based on the idea that it is “safer” (or more “natural”) to assume that the curvature
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of the spline at the first and last knot is zero. If we were to extrapolate, we would then

extrapolate linearly.

Definition 3.2 (Natural cubic spline). A polynomial spline m : [a, b] → R of degree 3

is called a natural cubic spline if m′′(a) = m′′(b) = 0.

Given a set of l knots the vector space of all cubic splines has dimension l+2. Natural

cubic splines introduce two additional constraints, thus they form a vector space of

dimension l. This makes natural cubic splines perfectly suited for interpolation.

Proposition 3.3. A set of l points (xi, yi) can be exactly interpolated using a natural

cubic spline with the x1 < . . . < xl as knots. The interpolating natural cubic spline is

unique.

Proof. The space of natural cubic splines with knots at x1, . . . , xl is vector space of

dimension l. Introducing l additional constraints (yi = m(xi) for i = 1, . . . , l) yields a

system of l equations and l free parameters, which yields a unique solution.4 �

In the next section we will show that natural cubic spline have an important opti-

mality property.

3.2.3 Optimality of splines

This section provides a theoretical justification for the choice of splines for flexible

regression.

In this section we will ask a rather general question. Given a data set (xi, yi) with

a ≤ xi ≤ b we try to find, amongst all twice continuously differentiable functions, the

function which “best” models the relationship between response yi and covariate xi.

First of all, we need to specify what we mean by “best”. We could look for the

function m(·) which yields the smallest least-squares criterion
n∑
i=1

(yi −m(xi))
2

This is however not a good idea. Any function which interpolates all the observations

(xi, yi) would be optimal in this sense, yet such a function would typically not describe

4 Strictly speaking, we would need to show that the system of equations cannot be rank-deficient, which could

cause the solution to be either non-unique or non-existing.
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the relationship between xi and yi but rather model the artefacts of the random noise.

Thus we will consider a so-called penalised (or regularised) criterion which tries to bal-

ance out two aspects which are important to us:

Fit to the data. We want m(·) to follow the data closely.

Simplicity/smoothness. We want the function m(·) not to be too complicated so that it

generalises well to future unseen data.

We will thus the following penalised fitting criterion

n∑
i=1

(yi −m(xi))
2

︸ ︷︷ ︸
Fit to the data

+λ

∫ b

a

m′′(x)2 dx︸ ︷︷ ︸
Roughness penalty

, (3.1)

where λ > 0 is a tuning parameter which controls the trade off between following the

data and preventing m(·) from being too rough.

We will now show that the minimiser of (3.2) over all twice continuously differentiable

functions has to be a natural cubic spline, i.e. natural cubic splines with knots at each

of the unique xi are in this sense the optimal class functions.

We will start by showing that natural cubic splines are optimal interpolators, in the

sense that they minimise the roughness penalty
∫ b
a
m′′(x)2 dx.

Lemma 3.4. Amongst all functions on [a, b] which are twice continuously differentiable

and which interpolate the set of points (xi, yi), a natural cubic spline with knots at the

xi yields the smallest roughness penalty∫ b

a

m′′(x)2 dx.

Proof. Let m(·) be the natural cubic spline with knots at the xi, interpolating the data.

Suppose there is another function g(·), which is twice continuously differentiable and

which also interpolates the data. Denote by h(x) = g(x)−m(x) the difference between

the two functions.

1. We will first of all show that we can decompose∫ b

a

g′′(x)2 dx =

∫ b

a

m′′(x)2 dx+

∫ b

a

h′′(x)2 dx

i. As both m(·) and g(·) interpolate the (xi, yi) we have that m(xi) = g(xi) = yi,

thus h(xi) = g(xi)−m(xi) = 0.

ii. Using integration by parts we obtain that
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∫ b

a

m′′(x)h′′(x) dx = [m′′(x)h′(x)]
b
x=a︸ ︷︷ ︸

=0 (as m′′(a) = m′′(b) = 0)

−
∫ b

a

m′′′(x)h′(x) dx

= −
n−1∑
i=1

∫ xi+1

xi

m′′′(x)h′(x) dx

= −
n−1∑
i=1

m′′′
(
xi + xi+1

2

)
·
∫ xi+1

xi

h′(x) dx︸ ︷︷ ︸
=h(xi+1)︸ ︷︷ ︸

=0

−h(xi)︸ ︷︷ ︸
=0

=0

= 0

In the second line we have used that the natural cubic spline is piece-wise cubic

polynomial, i.e. between two knots xi and xi+1 the third derivative m′′′(x) is

constant.

iii. Thus∫ b

a

g′′(x)2 dx =

∫ b

a

(g′′(x)−m′′(x) +m′′(x))2 dx =

∫ b

a

(h′′(x) +m′′(x))2 dx

=

∫ b

a

h′′(x)2 dx+ 2

∫ b

a

h′′(x)m′′(x) dx︸ ︷︷ ︸
=0

+

∫ b

a

m′′(x)2 dx

=

∫ b

a

h′′(x)2 dx+

∫ b

a

m′′(x)2 dx

2. Because of
∫ b
a
h′′(x)2 dx ≥ 0 we have that∫ b

a

g′′(x)2 dx =

∫ b

a

m′′(x)2 dx+

∫ b

a

h′′(x)2 dx︸ ︷︷ ︸
≥0

≥
∫ b

a

m′′(x)2,

i.e. the natural cubic spline cannot have a larger roughness penalty.

3. In the above inequality equality holds if and only if
∫ b
a
h′′(x)2 dx = 0, which, given

that h(xi) = 0, can only be the case if g(x) = m(x) for all x ∈ [a, b]. �

Spline-based interpolation is implemented in the Rfunctions spline and splinefun.

We will now generalise the result about interpolation to the case of smoothing.

n∑
i=1

(yi −m(xi))
2

︸ ︷︷ ︸
Model fit

+λ

∫ b

a

m′′(x)2 dx︸ ︷︷ ︸
Roughness penalty

, (3.2)

where λ is a tuning parameter which controls the trade off between following the data

and preventing m(·) from being too rough.
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Theorem 3.5. The minimiser of

n∑
i=1

(yi −m(xi))
2 + λ ·

∫ b

a

m′′(x)2 dx

amongst all twice continuously differentiable functions on [a, b] is given by a a natural

cubic spline with knots in the unique xi.

This is an extremely powerful theorem. Even though we consider the entire infinite-

dimensional vector space of all twice continuously differentiable functions, we only need

to consider the finite-dimensional vector space of natural cubic splines. We have thus

reduced the complexity of the optimisation problem to the comparatively simple problem

of finding the optimal coefficients of the natural cubic spline. This can be done using

least-squares.

Proof. Let g(·) be a twice continuously differentiable function. We will now create a

competitor to g(·), which is a natural cubic spline with knots in the xi. We will now

show that, unless g(·) is already a natural cubic spline, m(·) leads to a smaller value of

the objective function. We choose the natural cubic spline m(·) such that it interpolates

the fitted values g(·) generates, i.e. m(xi) = g(xi). Thus
∑n

i=1(yi−m(xi))
2 =

∑n
i=1(yi−

g(xi))
2, i.e. both functions model the data equally well, however as we have shown in

Lemma 3.4 the natural cubic spline m(·) has the smaller roughness penalty. �

Note that the proof did not make use of the fact that we have used the least-squares

loss function. In fact, the theorem holds for any pointwise loss function.

The technique of smoothing splines is based on this theoretical result and finds the

natural cubic spline minimising (3.2), and, due to the theorem, the optimal function

amongst all twice continuously differentiable functions. This approach is implemented

in the Rfunction smooth.spline. We will study this method in more detail in section

3.3.

3.2.4 Constructing splines

In this section we will studies two ways of constructing a basis for the vector space of

polynomial splines: the truncated power basis and the B-spline basis. We will only cover

the case of generic polynomial splines. However one can modify these bases to only span

the space of natural cubic splines.
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Truncated power basis. The simplest basis for polynomial splines is the truncated

power basis.

Definition 3.6 (Truncated power basis). Given a set of knots a = κ1 < . . . < κl = b

the truncated power basis of degree r is given by(
1, x, . . . , xr−1, (x− κ1)r+, (x− κ2)r+, . . . , (x− κl−1)r+

)
,

where (z)r+ =

{
zr for z > 0

0 otherwise.

The truncated power basis has r + l − 1 basis functions. It is easy to see that they

are linearly independent. Thus the truncated power basis is indeed a basis of the vector

space of polynomial splines. Figure 3.9 shows the truncated power series basis of degree

3 for six equally spaced knots.
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(a) Truncated power series
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(b) B-splines

Figure 3.9. Basis functions Bj(x) of the cubic truncated power series basis (left panel) and B-splines (right

panel). The vertical lines indicate the location of the knots.

To fit a polynomial spline to data we can exploit the fact the truncated power basis

is a basis of the vector space of polynomial splines of the given degree and with the

given set of knots. Thus we can write any spline m(·) as a linear combination of the

basis functions, i.e.

m(x) = β0 + β1x+ . . .+ βr−1x
r−1 + βr(x− κ1)r+ + . . .+ βr+l−2(x− κl−1)r+

We can thus find the optimal spline m(·) by just finding the optimal set of coefficients

βj, which is nothing other than a linear regression problem with design matrix
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B =


1 x1 . . . xr−1

1 (x1 − κ1)r+ . . . (x1 − κl−1)r+
...

...
. . .

...
...

. . .
...

1 xn . . . xr−1
n (xn − κ1)r+ . . . (xn − κl−1)r+


We can use the design matrix B in exactly the same way as we would use the design

matrix of a classical linear model.

We can interpret the truncated power series as a regression model in which the leading

coefficient changes at each knot. At each knot, the remaining coefficients change as well.

However they are fully constrained by the condition that the spline has to be r−1 times

continuously differentiable at each knot.

Example 3.6 (Radiocarbon data (continued)). Figure 3.10 illustrates the use of a trun-

cated power series basis for fitting a spline-based flexible regression model for the radio-

carbon data.

As one can see from the middle panel of figure 3.10 and from figure 3.11, some of

the estimated coefficients are very large: some of the basis functions are scaled up by

a factor of more than 1000, with “neighbouring” basis functions having opposite signs.

The reason for this is the high correlation between the columns of the design matrix of

the truncated power series. The largest correlation between columns is 0.99921, which

is very close to 1.

Figure 3.12 shows a scree plot of the singular values of the design matrix B. The

condition number of the matrix B is 225333.0, with the condition number of B>B being

5, 857, 413, 839, i.e. B>B is close to being numerically singular. This suggests that finding

the least-squares estimate of the coefficients is close to being numerically unstable. /

As we have seen in the above example the truncated power basis can easily lead to

numerical instability. Thus we will turn to an alternative basis, the so-called B-spline

basis.

B-splines. B-splines form a numerically more stable basis. They also make the definition

of meaningful penalty matrices easier, which we will exploit in section 3.3.

The key idea of B-splines is to use basis functions which are local, i.e. only non-zero

for a “small” proportion of the range of the covariate and which are bounded above.

We can think of B-splines as a sequence of “bumps”. Figure 3.13 shows a B-spline basis

function for degrees r ∈ {0, 1, 2, 3}. We will define B splines recursively.

Definition 3.7 (B-spline basis). (a) Given a set of l knots the B-spline basis of degree

0 is given by the functions (B0
1(x), . . . , B0

l−1) with
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Figure 3.10. Illustration of flexible regression using the truncated power series basis of degree 3 applied to the

radiocarbon data. The top panel shows the unscaled basis functions Bj(x). The middle panel shows the scaled

basis functions β̂jBj(x). The bottom panel shows a scatter plot of the data together with the fitted function

m̂(x) =
∑

j β̂jBj(x).
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Figure 3.11. Bar plot of the coefficients β̂ estimated using the truncated power series regression model shown

in figure 3.10.
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Figure 3.12. Scree plot of the singular values of the design matrix B (square root of the eigenvalues of the

cross-product matrix B′B) for the truncated power series regression model shown in figure 3.10.
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degree r = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

B
(x

)

(c) One basis function of

degree r = 2
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degree r = 3

Figure 3.13. One basis function of a B-spline basis with degree r ∈ {0, 1, 2, 3} using r + 1 knots.
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B0
j (x) =

{
1 for κj ≤ x < κj+1

0 otherwise.

(b) Given a set of l knots the B-spline basis of degree r > 0 is given by the functions

(Br
1(x), . . . , Br

l+r−1) with

Br
j (x) =

x− κj−r
κj − κj−r

Br−1
j−1(x) +

κj+1 − x
κj+1 − κj+1−r

Br−1
j (x).

In order to be able to construct the splines recursively we have to introduce additional

outside knots to the left of κ1 and to the right of κl. In order to be able to construct a

basis of degree r we need r additional outside knots on each side. Figure 3.15 illustrates

this idea. These outside knots are just used to construct the basis.

From their recursive definition one can derive that B-splines have the following prop-

erties. These can also be seen in figure 3.15.

– A B-spline basis function of degree r is made up of r + 1 polynomials of degree r.

Outside these r+1 intervals, the basis function is zero. This makes the basis functions

local.

– At every x ∈ (a, b) only r + 1 basis functions are non-zero.

– The basis functions sum to 1 for all x ∈ [a, b]. This implies that we do not need to

include an intercept in the design matrix.

– One can show (homework exercise) that the derivative of a B-spline of degree r is a

B-spline of degree r − 1.

We can fit a B-spline model to data by using the design matrix

B =


Br

1(x1) . . . Br
l+r−1(x1)

...
. . .

...

Br
1(xn) . . . Br

l+r−1(xn)

 .

Example 3.7 (Radiocarbon data (continued)). Figure 3.15 illustrates the use of a B-spline

basis for fitting a spline-based flexible regression model for the radiocarbon data.

The B-spline basis is numerically much better behaved. The coefficient values (cf.

figure 3.16) are not too large and the columns of the design matrix B are much less

correlated than the columns of the truncated power basis; the maximum correlation is

0.8309. The condition number of B is 25.664 (cf. figure 3.17) and the condition number

of B>B is 358.263. /
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Figure 3.14. B spline bases for degrees r ∈ {1, 2, 3}.
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Figure 3.15. Illustration of flexible regression using the B-spline basis applied to the radiocarbon data. The top

panel shows the unscaled basis functions Bj(x). The middle panel shows the scaled basis functions β̂jBj(x).

The bottom panel shows a scatter plot of the data together with the fitted function f̂(x) =
∑

j β̂jBj(x).
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Figure 3.16. Bar plot of the coefficients β̂ estimated using the B-spline regression model shown in figure 3.15.
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Figure 3.17. Scree plot of the singular values of the design matrix B (square root of the eigenvalues of the

cross-product matrix B′B) for the B-spline regression model shown in figure 3.15. The condition number of

B′B is 395.661.

3.3 Penalised splines (P-splines)

A reminder of ridge regression

Ridge regression solves the penalised (or regularised) least-squares criterion

‖y −Bβ‖2 + λ‖β‖2,

where B is the matrix of covariates. The solution of this problem is given by

β̂ridge = (B>B + λIp)
−1B>y

To compute β̂ridge it is numerically more stable to use a QR decomposition to

minimise the augmented system∥∥∥∥∥
(

y

0

)
−

(
B
√
λI

)
β

∥∥∥∥∥
2

When using splines the positioning of the knots can have a large influence on the

fitted function, especially if a comparatively small number of basis functions is used.

One way of avoiding this problem is to use penalised splines. They are based on the idea

of not using the number of basis functions to control the smoothness of the estimate, but
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to use a roughness penalty to this end. This is similar in spirit to the approach discussed

in section 3.2.3, though in most cases it is not necessary to use one basis function per

observation. Around 20 to 30 basis functions should be sufficient. Without including

a penalty in the fitting criterion this would most likely lead to an overfit to the data.

Thus we need to consider a penalised criterion which, just like in section 3.2.3, contains

a roughness penalty. In this section we will use ‖Dβ‖2 as roughness penalty, i.e. we

choose the regression coefficients β by minimising

n∑
i=1

(yi −m(xi))
2 + λ‖Dβ‖2. (3.3)

This objective function is, with the exception of the inclusion of the matrix D, the ob-

jective function of ridge regression. As before, λ controls the trade-off between following

the data (small λ) and obtaining a strongly regularised curve (large λ). In analogy with

ridge regression one can show that the optimal β is given by

β = (B>B + λD>D)−1B>y,

where B is the design matrix corresponding to the B-spline basis used for m(·). Numer-

ically, it is more advantageous to represent the penalty term λ‖Dβ‖2 by including it

into an expanded design matrix, i.e. to solve∥∥∥∥∥
(

y

0

)
−

(
B
√
λD

)
β

∥∥∥∥∥
2

using a QR decomposition.

There are (at least) two possible approaches for choosing D. We can choose D to be

a difference matrix, or we can choose D such that ‖Dβ‖2 =
∫ b
a
m′′(x)2 dx. The former is

both conceptually and computationally simpler; the latter is closer to what the theory

suggests as optimal.

3.3.1 Difference penalties

The simplest choice of D is to use a difference penalty. Using the identity matrix for D,

as we would in ridge regression, is usually not appropriate: it shrinks all coefficients to

zero, i.e. it shrinks the regression function m(·) to zero as well, which rarely desirable

(cf. figure 3.18(a)). As we can see from the middle panel of figure 3.15, we obtain a

smooth function when neighbouring βj’s are similar.

This can be achieved by using one of the following choices. We assume that we are

using equally-spaced knots.

First-order differences. We can set



Nonparametric Smoothing 3.3 Penalised splines (P-splines) 51

D1 =


1 −1 . . . 0
...

. . . . . . 0

0 . . . 1 −1

 .

This calculates the roughness penalty as the sum of the squared first-order differences

between the neighbouring βj, i.e.

‖D1β‖2 =
l+r−2∑
j=1

(βj+1 − βj)2

This penalty shrinks the coefficients towards a common constant (cf. figure 3.18(b))

and thus shrinks the regression function m(·) towards a constant function. Adding

a constant to m(·) does thus not change the penalty.

This penalty is the natural choice if B-splines of order 2 are used.

Second-order differences. We can set

D2 =


1 −2 1 . . . 0
...

. . . . . . . . . 0

0 . . . 1 −2 1

 .

This calculates the roughness penalty as the sum of the squared second-order differ-

ences between the neighbouring βj, i.e.

‖D2β‖2 =
l+r−3∑
j=1

(βj+2 − 2βj+1 + βj)
2

This penalty shrinks the coefficients towards a linear sequence (cf. figure 3.18(c))

and thus shrinks the regression function m(·) towards a linear function. Adding a

linear function to m(·) does thus not change the penalty.

This penalty is the natural choice if B-splines of order 3 are used.

Higher-order differences. Higher-order difference matrices can be constructed using the

recursive formula Dr = D1Dr−1 where Dr denotes the penalty matrix of order r.

Example 3.8 (Radiocarbon dating (continued)). Figure 3.19 shows the model fit obtained

when fitting a P-spline model with different values of the smoothing parameter λ. The

smaller λ the closer the fitted function m̂(·) is to the data, which leads for very small

values of λ to an overfit to the data. /
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Penalty interpretation: Only an

all-zero coefficient vector incurs

no penalty.

Bayesian interpretation: Inde-

pendent zero-mean Gaussian

prior.

0 ● ●

β1 β2

(a) Illustration of a 0-th order

penalty (ridge regression).

Penalty interpretation: Only an

all constant coefficient vector in-

curs no penalty.

Bayesian interpretation: Condi-

tional distribution of β2 given β1

is Gaussian with mean β1.

(First-order random walk)

0

● ●

β1 β2

(b) Illustration of a first-order

penalty.

Penalty interpretation: Only a co-

efficient vector which forms a lin-

ear sequence incurs no penalty.

Bayesian interpretation: Condi-

tional distribution of β3 given β1

and β2 is Gaussian with mean

2 · β2 − β1.

(Second-order random walk)

0

●

●

●

β1 β2 β3

(c) Illustration of a second-order

penalty.

Figure 3.18. Illustration of difference penalties of order 0 to 2.

3.3.2 Other penalties

Difference penalties are not the only choice of penalty matrix. An alternative choice

consists of choosing D such that ‖Dβ‖2 =
∫ b
a
m′′(x)2 dx, which is the roughness penalty

we have used in section 3.2.3.

Using that m′′(x) =
∑l+r−1

j=1 βjB
′′
j (x) we have that

∫ b

a

m′′(x)2 dx =
l+r−1∑
j=1

l+r−1∑
k=1

βjβk

∫ b

a

B′′j (x)B′′k(x) dx

= β>


∫ b
a
B′′1 (x)B′′1 (x) dx . . .

∫ b
a
B′′1 (x)B′′l+r−1(x) dx

...
. . .

...∫ b
a
B′′1 (x)B′′l+r−1(x) dx . . .

∫ b
a
B′′l+r−1(x)B′′l+r−1(x) dx

β
Thus we just need to choose D such that

D>D =


∫ b
a
B′′1 (x)B′′1 (x) dx . . .

∫ b
a
B′′1 (x)B′′l+r−1(x) dx

...
. . .

...∫ b
a
B′′1 (x)B′′l+r−1(x) dx . . .

∫ b
a
B′′l+r−1(x)B′′l+r−1(x) dx

 .

3.3.3 Effective degrees of freedom

Finally we introduce the notion of effective degrees of freedom, also sometimes called

the effective number of parameters. In an un-penalised regression problem, the number

of parameters provides us with information about the complexity of the model. More
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(b) λ = 0.01.
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(c) λ = 1.
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(d) λ = 10.

Figure 3.19. P-spline with different values of the smoothing parameter λ fitted to the radiocarbon data.
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complex models have more parameters than simpler models. For penalised regression

problems counting the parameters is however not meaningful. Due to the roughness

penalty not all parameters are “free”. Recall that in linear regression the hat matrix

S = B(B>B)−1B> is a projection matrix and thus the trace tr(S) equals the number of

parameters. We can generalise this to penalised models and define the effective degrees

of freedom as

edf(λ) = tr(Sλ),

where Sλ = B(B>B + λD>D)−1B>.

3.3.4 Random effects interpretation

Random effect models – Likelihood

In the random effects model

y = Xα+ Zγ + ε

with error term ε ∼ N(0, σ2I) and random effect γ ∼ N(0, τ 2I) twice the loglikelihood

is (ignoring the variance parameters) given by

− 1

σ2

n∑
i=1

(yi − x>i α− z>i γ)2 − 1

τ 2

q∑
j=1

γ2
j

Comparing the penalised least squares criterion (3.3) to the loglikelihood suggests

that we can interpret the penalised regression model as a random effects model with no

fixed effect and random effect β. However the problem is that, at least for difference

matrices, D>D is not of full rank, thus we cannot take its inverse matrix square root.

In order to obtain a proper random-effects representation we need to “split” β into an

(unpenalised) fixed effect and a (penalised) random effect.

In the following we will only consider the case of a difference penalty of order 1

or 2. In the case of a first-order difference penalty we define G = (1, . . . , 1). For a

second-order difference penalty we define G =

(
1 1 . . . 1

1 2 . . . l + r − 1

)
. The rows in

G are parameter sequences which do not incur a penalty, i.e. GD = 0. We also define

H = D>(DD>)−1. We can now write

β = Gα+ Hγ

Because DD> is of full rank we have that DH = DD>(DD>)−1 = I. Plugging this into

the objective function (3.3) gives
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‖y −BGα−BHγ‖2 + λ
(
αG>D>DGα︸ ︷︷ ︸

=0

+2αG>D>DHγ︸ ︷︷ ︸
=0

+γ>H>D>DH︸ ︷︷ ︸
=I

γ
)

= ‖y −BGα−BHγ‖2 + λ‖γ‖2

Defining X = BG and Z = BH and denoting rows of X and Z by xi and zi respectively,

this is equivalent to
n∑
i=1

(yi − x>i α− z>i γ)2 + λ

q∑
j=1

γ2
j ,

which is −σ2 times the loglikelihood of a random-effects model, which we have stated

above. Hereby we have used λ = σ2/τ 2.

Thus the penalised regression model is nothing other than a random effects effect

and we can use standard mixed model software to fit these models. Most importantly

we can estimate the variances σ2 and τ 2 is a mixed model (using (restricted) maximum

likelihood, which gives us a way of estimating the otherwise rather elusive smoothing

parameter λ̂ = σ̂2/τ̂ 2.

3.3.5 Bayesian interpretation

Rather than interpreting the penalised fitting criterion as a random effects model we

can treat the penalised regression model as a fully Bayesian model with the following

prior and data model.

Dβ|τ 2 ∼ N(0, τ 2I)

y|β, σ2 ∼ N(Bβ, σ2I)

The prior distribution of β is improper if D is not of full rank, which is the case for all

difference penalties. However in the case of difference penalties the prior distribution of

β can be expressed in terms of random walks (cf. figure 3.18).

First-order random walk The first-order penalty corresponds to an improper flat prior on

β1 and βj|βj−1 ∼ N(βj−1|τ 2) (for j ≥ 2).

Second-order random walk The second-order penalty corresponds to an improper flat

prior on β1 and β2 and βj|βj−1, βj−2 ∼ N(2βj−1 − βj−2|τ 2) (for j ≥ 3).

It seems natural to complement the model with priors for σ2 and τ 2

σ2 ∼ IG(aσ2 , bσ2)

τ 2 ∼ IG(aτ2 , bτ2)

Inference can then be carried out efficiently using a Gibbs sampler. This model and

many other Bayesian smoothing models are implemented in the software BayesX.
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Rather than placing a independent inverse-gamma prior on τ 2 we can set τ 2 = σ2/λ

and place a prior of our choice on λ. In this model the posterior distribution distribution

of λ does not follow a known distribution, but can be evaluated efficiently, as all the other

parameters can be integrated out in closed form. The drawback is that the integration

over λ would need to be carried out numerically, which suggests that this approach is

better suited for an empirical Bayes strategy for estimating λ.

3.4 Splines in more than one dimension

3.4.1 Tensor-product splines

So far we have only covered the construction of spline bases in one dimension. In this

section we will see how we can turn a one-dimensional spline basis into a spline basis of

any dimension. To keep things simple we shall start with the bivariate case.

Suppose we have two covariates and want to fit a regression model of the form

E(Yi) = m(xi1, xi2),

where m(·, ·) is a bivariate surface.

We start by placing a basis on each dimension separately. Denote byB
(1)
1 (x1), . . . , B

(1)
l1+r−1(x)

the basis functions placed on the first covariate and by B
(2)
1 (x1), . . . , B

(2)
l2+r−1(x) the basis

functions placed on the second covariate. We now define a set of basis functions

Bjk(x1, x2) = B
(1)
j (x1) ·B(2)

k (x2)

for j ∈ 1, . . . , l1 + r − 1 and k ∈ 1, . . . , l2 + r − 1. Figure 3.20 shows how one such

bivariate basis function looks like for different degrees of the underlying univariate B-

spline. Figure 3.21 shows all 36 bivariate basis functions resulting from two B-spline

bases with six basis functions each.

We will now use the basis expansion

m(xi1, xi2) =

l1+r−1∑
j=1

βjkBjk(x1, x2)

which corresponds to the design matrix

B =

(
B11(x11, x12) . . . Bl1+r−1,1(x11, x12) B12(x11, x12) . . . Bl1+r−1,2(x11, x12) . . . Bl1+r−1,l+2+r−1(x11, x12)

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

B11(xn1, xn2) . . . Bl1+r−1,1(xn1, xn1) B12(xn1, xn2) . . . Bl1+r−1,2(xn1, xn2) . . . Bl1+r−1,l+2+r−1(xn1, xn2)

)

and coefficient vector β = (β11, . . . , βl1+r−1,1, β12, . . . , βl2+r−1,2, . . . , βl1+r−1,l2+r−1)>.

We can generalise this principle of constructing a basis to dimension p by multiplying

all combinations of basis functions of the p covariates.
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(a) Basis of degree 0 (b) Basis of degree 1

(c) Basis of degree 2 (d) Basis of degree 3

Figure 3.20. Illustration of the construction of a single bivariate B-spline basis function Bjk(x1, x2) = Bj(x1) ·
Bk(x2) for B-spline bases of different degree.

Figure 3.21. Illustration of the construction of a bivariate B-spline basis created from a univariate B-spline

basis.
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Finally, we need to explain how a penalty matrix can be constructed for this bivariate

spline basis. We will explain the basic idea using figure 3.21. A simple way of constructing

a roughness penalty consist of applying the univariate roughness penalties to the rows

and columns of the basis functions. More mathematically, this corresponds to taking

Kronecker products, i.e. using the difference matrix

D =

(
D(2) ⊗ Il1+r−1

Il2+r−1 ⊗D(1)

)
,

where D(1) is the univariate difference matrix used for the first dimension and D(2) is

the univariate difference matrix used for the second dimension.

Example 3.9 (Great Barrier Reef (continued)). Figure 3.22 shows the result of fitting a

tensor-product-spline model to the data from example 1.3. The objective is to model

a score which represents the composition of the catch as a function of longitude and

latitude. /
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Figure 3.22. Predicted score obtained from a tensor-product-spline model fitted to the Great Barrier Reef data.
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3.4.2 Thin-plate splines

In this section we generalise natural cubic splines to the bivariate case, which provides

an alternative way of bivariate spline smoothing. In section 3.2.3 we have seen that the

minimiser of
n∑
i=1

(yi −m(xi))
2

︸ ︷︷ ︸
Fit to the data

+λ

∫ b

a

m′′(x)2 dx︸ ︷︷ ︸
Roughness penalty

,

has to be a natural cubic spline.
Generalising this variational problem to the bivariate case leads to the objective

function
n∑

i=1

(yi −m(xi1, xi2))2︸ ︷︷ ︸
Fit to the data

+λ

∫ ∫ (
∂2

∂x21
m(x1, x2) + 2

∂2

∂x1∂x2
m(x1, x2) +

∂2

∂x22
m(x1, x2)

)2

dx2 dx1︸ ︷︷ ︸
Roughness penalty

,

The roughness penalty can be interpreted as the bending energy of thin plate of metal.

One can show that the solution to his problem has to be a so-called thin-plate spline of

the form

m(ξ1, ξ2) = β0 + β1ξ1 + β2ξ2 +
n∑
i=1

β2+iK ((ξ1, ξ2) , (xi1, xi2)) ,

where K ((ξ1, ξ2) , (ζ1, ζ2)) = 1
2

((ζ1 − ξ1)2 + (ζ2 − ξ2)2) · log ((ζ1 − ξ1)2 + (ζ2 − ξ2)2).

Similar to what we have discussed in section 3.3 we can estimate the coefficients

βj using a penalised least squares criterion. In fact, we need to minimise the objective

function
n∑
i=1

(yi −m(xi1, xi2))2 + λβ′Pβ

subject to the constraints that
∑n

i=1 β2+i =
∑n

i=1 xi1β2+i =
∑n

i=1 xi2β2+i = 0, where

P =



0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 K ((x11, x12) , (x11, x12)) . . . K ((x11, x12) , (xn1, xn2))
...

...
...

...
. . .

...

0 0 0 K ((xn1, xn2) , (x11, x12)) . . . K ((xn1, xn2) , (xn1, xn2))



Example 3.10 (Great Barrier Reef (continued)). Figure 3.23 shows the result of fitting a

tensor-product-spline model to the data from example 1.3. /
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Figure 3.23. Predicted score obtained from a thin-plate-spline model fitted to the Great Barrier Reef data.

3.5 How much to smooth

In 2.5 we have introduced criteria for selecting the optimal amount of smoothness. In

this section we will compare AIC and GCV to the empirical Bayesian approach set out in

this chapter. Figure 3.24 shows both the profile of the criterion as well as the resulting

model fit when choosing the supposedly optimal value. The example shows that the

criteria can give markedly different result and that care should be taken when blindly

using criteria such as the AIC, which in our example leads to a pronounced overfit.
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(b) Regression function obtained using λ chosen

by AIC.
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(c) Profile plot of GCV.
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(d) Regression function obtained using λ chosen

by GCV.
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(e) Profile plot of the log-posterior.
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(f) Regression function obtained using λ chosen

by the empirical Bayes appraoch.

Figure 3.24. Comparison of the different criteria for choosing the smoothing parameter lambda λ.
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4

More general models and inference

4.1 Reference bands

In chapter 2, standard errors of nonparametric regression curves were discussed and

these can provide helpful information on the variability of the estimate. However, there

are situations where we might wish to examine the suitability of particular parametric

models by comparing this with a nonparametric model and here careful use of standard

errors can be particularly helpful.

For example, consider the case of a single covariate x where interest lies in comparing

a linear model whose mean function is α+βx with the nonparametric model whose mean

function is the smooth curve m(x). Under the linear model, the estimate of the regression

function at a particular point x can be expressed as a simple linear function
∑

i liyi,

where the weights li come from the ‘hat’ matrix. In a similar manner, the nonparametric

estimate has the form
∑

i siyi, where the weights si come from the ‘smoothing matrix’.

Instead of using the standard errors about m̂(x) to judge the suitability of a linear

regression, a more direct approach is to consider the standard errors of the difference

between the two models. This is easily calculated as

s.e.
{
α̂ + β̂x− m̂(x)

}
=

√∑
i

(li − si)2 σ.

By plugging in an estimate of σ and highlighting a band, centred at the linear model,

whose width is ±2 s.e.’s, a reference band is created. This shows where we should expect

a nonparametric estimate to lie most of the time, when the true model is linear.

The procedure is illustrated below on the Reef data, where there is clear, informal

evidence that the linear model is not an adequate description of the data.
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Bowman and Azzalini (1997) give further examples of reference bands and inferential

methods.

4.2 Comparing models

A more global method for comparing models would be useful. Again, an analogy with

linear models is helpful. There we would compute the residual sums-of-squares (RSS0,

RSS1) and degrees of freedom (ν0, ν1) of each model, where model 0 is nested within

model 1, and construct an F-statistic as

(RSS0 − RSS1)/(df1 − df0)

RSS1/(n− df1)
.

This would then be compared to an Fdf1−df0,n−df1 distribution. In the nonparametric

setting, all of the RSS’s and df’s are available and an approximate F-test would be

carried out in the same manner.

While this is a useful benchmark, the distribution is no longer F in the nonparametric

case. In some cases, a more accurate probability calculation can be performed with

a little more effort. Suppose again that we have two competing models, linear and

nonparametric, whose fit is expressed in the RSS’s and df’s. Each RSS is a quadratic

form.

RSS0 = yT (I − P )T (I − P )y = yT (I − P )yT

RSS1 = yT (I − S)T (I − S)y

Ignoring the degrees of freedom factors, the F-statistic can then be written as

F =
yTBy

yTAy
,
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where A = (I−S)T (I−S) and B = I−P −A. Helpfully, Johnson and Kotz (1972) give

general results about quadratic forms in normal random variables, where the matrices

involved are required only to be symmetric. A p-value can then be written as

p = P
{
yTBy

yTAy
> Fobs

}
= P

{
yTCy > 0

}
,

where C = B − FobsA. In the case of both local linear and b-spline estimators, the

estimator is unbiased under a linear regression. The problem then reduces to the calcu-

lation

p = P
{
εTCε > 0

}
,

where ε has a multivariate normal distribution. The distribution of this type of quadratic

form can be conveniently and accurately approximated by an aχ2
b + c distribution. The

cumulants of the quadratic form are given by

κj = 2j−1(j − 1)! tr
{

(V C)j
}
,

where V is the covariance matrix of the multivariate normal distribution. This leads to

the approximating parameters

a = |κ3|/(4κ2), b = 8κ3
2/κ

2
3, c = κ1 − ab.

When these calculations are applied to the Reef data, to assess a linear model in longi-

tude, the p-value is effectively 0, confirming that there is clear evidence of non-linearity

in the effect of longitude.

4.3 Smoothing binary data

Example 4.1 (Ascaris lumbricoides). A survey of the occurence of the human parasitic

worm infection Ascaris lumbricoides was carried out in residents of a rural community

in China. The variables are:
Age age of the resident

Infection presence (1) or absence (0) of infection

Sex male (1) or female (2)

The background to the data, and an analysis, are described by Weidong et al. (1996),

Ascaris, people and pigs in a rural community of Jiangxi province, China, Parasitology

113, 545-57. /

A natural extension to non-normal data is to apply weights to the log-likelihood

rather than the sum-of-squares as
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∑
i

`i(α, β)w(xi − x;h),

where `i(α, β) is the contribution to the usual log-likelihood from the ith observation.

For example, in the case of logistic regression for binary responses, we have the model

log

(
pi

1− pi

)
= α + βxi (i = 1, . . . , n)

and then the likelihood contributions

`i(α, β) = yi log

(
pi

1− pi

)
+ log(1− pi).

Here pi denotes the probability of a 1 at design point xi, and as usual the logit link

function is assumed to relate pi to a linear predictor in xi. Maximisation of the weighted

likelihood with respect to (α, β) provides local estimates (α̂, β̂) and by solving the model

definition for p we obtain a fitted value

m̂(x) =
exp(α̂ + β̂x)

1 + exp(α̂ + β̂x)
.

This sounds a bit complicated but it is really just fitting a glm locally by using weights to

pay attention only to data points which are near the point of interest x. The procedure

will be illustrated below on the worm data.
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The form of smoothing described above corresponds to the ‘local fitting’ approach

to nonparametric modelling. The penalty approach is also available. Recall from earlier

APTS work that a generalised linear model involves a linear predictor plus an error

distribution, usually from the exponential family, and that the model can be fitted by

maximum likelihood through an iteratively reweighted least squares algorithm. In the

nonparametric setting, we can simply replace the linear predictor by a linear term in

spline bases and fit the model by a similar algorithm, but this time adding to the log-

likelihood a penalty term based on differencing of the spline coefficients. Wood (2006)

gives the details of this.
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4.4 A simple additive model

Now that we have tools available to estimate smooth curves and surfaces, linear regres-

sion models can be extended to additive models as

yi = β0 +m1(x1i) + . . .+mp(xpi) + εi, i = 1, . . . , n,

where the mi are functions whose shapes are unrestricted, apart from an assumption of

smoothness. This gives a very flexible set of modelling tools. To see how these models

can be fitted, consider the case of only two covariates,

yi = β0 +m1(x1i) +m2(x2i) + εi, i = 1, . . . , n,

A rearrangement of this as yi−β0−m2(x2i) = m1(x1i) + εi suggests that an estimate

of component m1 can then be obtained by smoothing the residuals of the data after

fitting m̂2,

m̂1 = S1(y − ȳ − m̂2)

and that, similarly, subsequent estimates of m2 can be obtained as

m̂2 = S2(y − ȳ − m̂1).

Repetition of these steps gives a simple form of the backfitting algorithm. The same

idea applies when we have more than two components on the model. At each step we

smooth over a particular variable using as response the y variable with the current

estimates of the other components subtracted.

A simple example of an additive model for the Reef data was shown in Chapter 1

and this is repeated below.
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4.5 More general additive models

For the more general model

yi = α +m1(x1i) + . . .+mp(xpi) + εi.

a simple extension of the steps outlined for two covariates gives a form of the backfitting

algorithm. In order to ensure identifiability, we assume that
∑

imj(xji) = 0, for each j.

At each step we smooth over a particular variable using as response the y variable with

the current estimates of the other components subtracted.

The backfitting algorithm can be expressed as:

m̂
(r+1)
j = Sj

(
y − α̂1−

∑
k<j

m̂
(r+1)
k −

∑
k>j

m̂
(r)
k

)
.

We can also express these in terms of projection matrices.

P
(l)
j = (In − P0)Sj(In −

∑
k<j

P
(l)
k −

∑
k>j

P
(l−1)
k ),

ŷ = Py = (P0 +

p∑
j=1

Pj)y
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If a regression splines or p-splines model is adopted, the each of the functions mi(x) is

represented by a linear expression and so the model itself remains linear. It can then be

fitted be standard linear regression, incorporating a set of penalties in the p-splines case.

This has the advantage of direct, rather than iterative, fitting but it has the potential

disadvantage of needing to invert very large matrices if the model has many terms.

The plots below show data from a survey of dissolved oxygen (DO) in the RIver

Clyde at a single sampling station, related to potential explanatory variables of interest.

The additive terms usefully capture the underlying trends. The following plots build a

model for the whole river, using data at many sampling stations. Some care has to be

taken here because of the repeated measures nature of the data. Also, we are likely to

need interaction terms and these are shown in the surface plots.



70 4. More general models and inference Nonparametric Smoothing

1975 1980 1985 1990 1995

0
2

4
6

8
10

12
14

Year

DO

5 10 15 20

0
2

4
6

8
10

12
14

Temperature
DO

0.0 0.5 1.0 1.5 2.0 2.5

0
2

4
6

8
10

12
14

log(Salinity + 1)

DO

1975 1980 1985 1990 1995

!5
0

5

Year

s(
Ye
ar
)

5 10 15 20

!5
0

5

Temperature

s(
Te
m
pe
ra
tu
re
)

0.0 0.5 1.0 1.5 2.0 2.5

!5
0

5

lSalinity
s(
lS
al
in
ity
)

1975 1980 1985 1990 1995

0
2

4
6

8
10

12
14

Year

DO

5 10 15 20

0
2

4
6

8
10

12
14

Temperature

DO

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
2

4
6

8
10

12
14

log(Salinity + 1)

DO

0 5 10 15 20

0
2

4
6

8
10

12
14

Station

DO

1975 1980 1985 1990 1995

!5
0

5

Year

s(
Ye
ar
)

5 10 15 20

!5
0

5

Temperature

s(
Te
m
pe
ra
tu
re
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

!5
0

5

lSalinity

s(
lS
al
in
ity
)

0 5 10 15 20

!5
0

5

Station

s(
St
at
io
n)

lSalinity
1

2

3

Station

5

10

15

20

s(lSalinity, Station)

!4

!2

0

2

Temperature

5
10

15
20

St
at

ion

5

10

15

20

s(Tem
perature, Station) !4

!2

0

2

4

Year

1980
1985

1990
1995Station

5

10

15

20

s(Year, Station)

!1.5

!1.0

!0.5

0.0

0.5

1.0



Nonparametric Smoothing 4.6 Comparing additive models 71

4.6 Comparing additive models

While models of this type provide very flexible and visually informative descriptions of

the data, it is also necessary to consider how models can be compared and inferences

drawn. Hastie and Tibshirani (1990) recommend the use of residual sums-of-squares

and their associated approximate degrees of freedom to provide guidance for model

comparisons.

For an additive model, the residual sum-of-squares can easily be defined as

RSS =
n∑
i=1

(yi − ŷi)2,

where ŷi denotes the fitted value, produced by evaluating the additive model at the

observation xi. We can write the residual sum-of-squares as

RSS =
n∑
i=1

(yi − ŷi)2 = y>(I − P )>(I − P )y,

where P denotes the projection matrix discussed earlier. The approximate degrees of

freedom for error can be defined as

df = tr
{

(I − P )>(I − P )
}
.

In an obvious notation, comparisons of two models can expressed quantitatively in

F =
(RSS2 − RSS1)/(df2 − df1)

RSS1/df1
,

by analogy with the F -statistic used to compare linear models. Unfortunately, this

analogy does not extend to distributional calculations and no general expression for

the distribution of (??) is available. However, Hastie and Tibshirani (1990, sections 3.9

and 6.8) suggest that at least some approximate guidance can be given by referring the

observed nonparametric F -statistic to an F distribution with (df2−df1) and df1 degrees

of freedom. Wood (2006) gives a formulation in terms of testing whether relevant spline

coefficients might be 0.

The reef data provide a simple illustration of how model comparisons may be made.

There are three obvious models of interest.

Model RSS df

1: β0 +m1(Latitude) +m2(Longitude) 4.541 33.99

2: β0 +m2(Longitude) 6.128 37.46

3: β0 +m1(Latitude) 27.306 37.54

The observed F -statistic for the latitude component is



72 4. More general models and inference Nonparametric Smoothing

(6.128− 4.541)/(37.46− 33.99)

4.541/33.99
= 3.42.

Referring this to an F3.47,33.99 distribution produces an approximate p-value of 0.023.

This therefore suggests that there is some evidence that the underlying regression surface

changes with latitude.

The observed F -statistic for the longitude component is 48.08 on 3.54 and 33.99

degrees of freedom, which is highly significant, and so confirms the importance of the

effect of longitude.
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A further example uses data from a multi-country survey of mackerel eggs in the

Eastern Atlantic. An additive model for egg density might reasonably contain terms for

depth and temperature, plus a joint term for latitude and longitude, to reflect spatial

position. This leads to the model

y = β0 +m12(x1, x2) +m3(x3) +m4(x4) + ε,

where m12 represents a smooth two-dimensional function of latitude (x1) and longitude

(x2), and m3 and m4 represent additive terms of the usual type for depth (x3) and

temperature (x4). Two-dimensional terms require restrictions to define the functions

uniquely, as in the one-dimensional case. A simple convention is
∑n

i=1 m12(x1i, x2i) = 0.
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Model RSS df

1: β0 +m12(Lat, Long) +m3(log(Depth)) +m4(Temp) 261.13 262.80

2: β0 +m12(Lat, Long) +m4(Temp) 360.24 266.51

3: β0 +m12(Latitude, Longitude) +m3(log(Depth)) 272.08 266.10

4: m3(Depth) +m4(Temp) 335.53 270.99

The large change in residual sum-of-squares between models 1 and 2 confirms that

depth is an important variable. Similarly, the change between models 1 and 4 shows that

there are additional geographical effects which should be accounted for in the model by

the presence of the term involving latitude and longitude. However, the F-value for the

temperature effect, namely

(272.08− 261.13)/(266.10− 262.80)

262.13/262.80
= 3.33

when compared to an F3.30,262.80 distribution suggests that the effect of temperature may

also be significant.

4.7 Generalised additive models

In the mackerel survey above, the data collected by Spanish vessels in the Bay of Biscay

exhibit rather different features from the remainder of the survey. One of these features
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is that no eggs were detected at all at a substantial number of the sampling points.

The sampling positions, together with an indication of the presence or absence of eggs,

are displayed below. Depth and sea surface temperature are again available as potential

covariates.
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The right panel shows a local logistic regression curve fitted to the relationship be-

tween presence and depth, on a log scale. As in the earlier investigation of the density

of eggs, log(depth) appears to have an approximately quadratic effect on presence, with

an optimal depth around exp(6) ≈ 400m.

The framework of generalized linear models is extremely useful in providing a unified

description of a very wide class of parametric models, along with methods of fitting

and analyses. In the nonparametric setting a corresponding framework of generalised

additive models provides a very flexible form of extension.

Excellent overviews of this area are provided in the texts by Hastie and Tibshirani

(1990), Green and Silverman (1994) and Wood (2006). A brief introduction to the main

ideas is provided in this section, based on an illustration. Another very useful text is

Ruppert et al. (2003) which discusses semiparametric regression.

In the case of logistic regression, a linear model with four covariates takes the form

log

(
p

1− p

)
= β0 + β1x1 + β2x2 + β3x3 + β4x4,

A logistic form of a generalised additive model therefore extends this by replacing each

linear component with a nonparametric one.

For the Spanish mackerel data, where the covariates represent latitude, longitude,

log(depth) and temperature respectively, a natural model is

log

(
p

1− p

)
= β0 +m12(x1, x2) +m3(x3) +m4(x4),

since latitude and longitude merely define a convenient two-dimensional co-ordinate

system.
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In order to fit a generalised additive model the corresponding fitting procedure for

generalised linear models again provides a helpful guide. The likelihood function is the

natural starting point and a Newton-Raphson, or Fisher scoring, procedure allows the

parameter estimates to be located by an iterative algorithm. Each step of these algo-

rithms can be formulated as a weighted least squares linear regression. This immediately

provides provides a natural analogue in the generalised additive model setting, by em-

ploying a weighted nonparametric regression at each step.

Hastie & Tibshirani (1990), Green & Silverman (1994) and Wood (2006) provide

detailed discussion of this approach.
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The expected concave effect of log(depth) is apparent. A more complex non-linear

curve describes the effect of temperature and a two-dimensional function in latitude and

longitude captures the additional spatial variation.

In order to explore which of these terms can be regarded as evidence of an underly-

ing systematic effect, rather than random variation, different models for the data can

be compared. A deviance can also be defined in an analogous manner for a generalised

additive model. As with additive models for data with normal responses, general distri-

bution theory for model comparisons is not available, even asymptotically. However, by

applying suitable quadratic approximations, degrees of freedom can be associated with

each model, and so some guidance on model comparisons can be taken by comparing

differences in deviance to χ2 distributions indexed by the difference in the approximate

degrees of freedom.

For the Spanish mackerel data, the deviances for a number of models of interest are

shown below.
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Model Deviance df

1: β0 +m12(Lat, Long) +m3(log(Depth)) +m4(Temp) 384.22 401.30

2: β0 +m12(Lat, Long) +m4(Temp) 394.32 404.75

3: β0 +m12(Lat, Long) +m3(log(Depth)) 398.43 404.68

4: m3(Depth) +m4(Temp) 431.95 409.20

An analysis of this type suggests that all of the three components in model 1 con-

tribute significantly. The temperature effect looks rather implausible from a scientific

point of view and should perhaps be treated with some caution. Hastie and Tibshirani

(1986, section 6.10) provide some discussion on the dangers of over-interpreting additive

fits in models of this kind.
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Kernel methods, Gaussian Processes and

Support Vector Machines

5.1 Making linear methods nonlinear

Most of the basic statistical methods are “linear”. There are many examples of such

methods

– In linear regression the mean response is assumed to be a linear function E(Yi) = x>i β.

– In linear discriminant analysis the different classes are separated by linear hyperplanes.

– In linear principal component analysis the linear projection of the data which has the

largest variance is sought.

This assumption of linearity typically yields simple computations and allows for deriving

a simple theoretical framework. In this course you have already seen two ways of turning

a linear method into a non-linear method.

Basis expansions This approach is based on considering a function B(x) rather than

(1,x) itself when constructing the linear combination, i.e. we consider B(x)>β in-

stead of (1,x)>β. Because B(·) is a non-linear function E(Yi) is now a non-linear

function of xi. Polynomial regression and splines are an example of this method.

Local methods In chapter 2 we have studied locally linear methods. The basic idea was

to use a weighted linear model in which the weights change for every prediction. Just

like in density estimation we have used a kernel function to give observed data close

to the observation fort which we want to predict a larger weight that observed data

which is further away.

In this chapter we will focus on kernel methods. Kernel methods are a class of methods

which were proposed in the Machine Learning community in the early 1990s. Just like

kernel density estimation and local linear methods these methods use a kernel function,
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which often is the Gaussian kernel. However in kernel methods the kernel is used as

as inner product, i.e. as a measure of angle and lengths. In linear methods we often

compute quantities like x>i xj, which is a special case of an inner product. Often (but

not always) all computations done by a linear method can be written only using such

inner products. We can turn such a linear method into nonlinear method by using a

different inner product, i.e. by measuring angles and lengths differently using the kernel

function instead of the standard inner product.

Kernel functions - notation

In section 1.2 we have seen kernel density estimation. We have estimated the

density at x0 by

m(x̂0) =

∑n
i=1w(xi − x0;h)

n

We have referred to the function w(·), which takes the scaled difference between xi and

x0 as argument as kernel function. A popular choice of w(·) is the Gaussian kernel,

which corresponds to w(t;h) = 1√
2π

exp(−t2/2h).

Because kernel methods were first proposed in the machine learning community,

kernel methods use a slightly different notation. We will also use this notation in this

chapter. Basically the difference is that we write the kernel function as function with

two arguments. In this notation we would write the kernel density estimate as

m(x̂0) =

∑n
i=1 Kh(xi, x0)

n

If we set Kh(x1, x2) = w(x1−x2;h) we can recover the notation from chapters 1 and

2. In this new notation the univariate Gaussian kernel is Kh(x1, x2) = 1√
2π

exp(−(x1−
x2)2/2h).

This new notation is more general as it allows kernels which are not a function of

the difference between x1 and x2, such as K(x1, x2) = x1x2.

5.2 Kernelisation

5.2.1 Kernel ridge regression

Ridge regression revisited Recall from section 3.3 that the ridge regression estimate of

the regression coefficient in linear regression is given by

β̂ridge = (X>X + λIp)
−1X>y

Using the identity (X>X + λIp)
−1X> = X>(XX> + λIn)−1, which holds for λ > 0,

we can rewrite β̂ridge as
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β̂ridge = X>(XX> + λIn)−1y.

The prediction for a new observation with covariates x>0 can thus be written as

ŷ0 = x>0 β̂ridge = x>0 X
>(XX> + λIn)−1y = k0(K + λIn)−1y,

where k0 = x>0 X
> and K = XX>. At first sight it seems unclear whether this new way

of writing down the estimate from ridge regression is of any benefit to us. The most

obvious difference is that instead of inverting a p × p matrix, we now need to invert a

n× n matrix, which unless p > n is not an advantage. In order to realise the benefits of

this new way of writing down the solution to ridge regression we need to take a closer

look at the entries of the vector k0 and the matrix K.

k0 = x>0 X
> =

(
p∑
j=1

x0jx1j, . . . ,

p∑
j=1

x0jx1j

)
=
(
x>o x1, . . . ,x

>
o xn

)
= (〈xo,x1〉 , . . . , 〈xo,xn〉)

K = XX> =


∑p

j=1 x
2
1j . . .

∑p
j=1 x1jxnj

...
. . .

...∑p
j=1 xnjx1j . . .

∑p
j=1 x

2
nj

 =


x>1 x1 . . . x>1 xn

...
. . .

...

x>nx1 . . . x>nxn



=


〈x1,x1〉 . . . 〈x1,xn〉

...
. . .

...

〈xn,x1〉 . . . 〈xn,xn〉


We can see that both the entries of the matrix k0 and the matrix K> and thus also

ŷ0 only depend on the covariates through inner products, i.e. measures of angles and

length. Thus we can kernel ridge regression a nonlinear regression technique by using a

different inner product.

Non-linear ridge regression We start by using the same idea as we have used when

looking at basis expansions. Rather than working with the data xi itself, we work with a

basis expansion φ(xi), i.e. an extended design matrix B =


φ(x1)>

...

φ(xn)>

.1 Now k0 and

K become, using b0 = φ(x0),

k0 = b>0 B
> = (〈φ(xo),φ(x1)〉 , . . . , 〈φ(xo),φ(xn)〉)

K = BB> =


〈φ(x1),φ(x1)〉 . . . 〈φ(x1),φ(xn)〉

...
. . .

...

〈φ(xn),φ(x1)〉 . . . 〈φ(xn),φ(xn)〉


1 In the lecture on basis expansions we have called the functions B(·), rather than φ(·). In the kernel literature

the function is however almost always called φ(·), so we will use this notation as well.
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The function φ(·) appears only inside inner products, i.e. we do not need to know much

about φ(·), except for how to compute inner products

k(xi,xj) = 〈φ(xi),φ(xj)〉 .

Actually, we don’t even need to specify φ(·), we can simply write down the function

k(·, ·). Before we spend more time looking at possible choices for this kernel function

k(·, ·) we rewrite the solution to kernel ridge regression so that we can see an interesting

theoretical pattern. Using this new kernel function k(·, ·) we can write

k0 = (k(xo,x1), . . . , k(xo,xn)) K =


k(x1,x1) . . . k(x1,xn)

...
. . .

...

k(xn,x1) . . . k(xn,xn)


Using α = (K + λIn)−1y we can rewrite ŷ0 as

ŷ0 = k>0 (K + λIn)−1y︸ ︷︷ ︸
=α=(α1,...,αn)

=
n∑
i=1

αik(x0,xi),

i.e. the prediction ŷ0 is just a linear combination of kernel functions. This simple form is

no coincidence. Later on in this chapter we will derive a result that states that optimal

solutions to penalised fitting criteria must be of this simple form.

Inner products

An inner product space is a vector space with a function 〈·, ·〉, called inner product,

which satisfies the following three properties.

(Conjugate) symmetry 〈x,y〉 = 〈y,x〉 (in case of a real-valued inner products 〈x,y〉 =

〈y,x〉)
Linearity 〈αx1 + βx2,y〉 = α 〈x1,y〉+ β 〈x2,y〉.

Together with the (conjugate) symmetry, linearity in the first argument implies

(conjugate) symmetry in the second argument.

Positive-definiteness 〈x,x〉 ≥ 0 with equality if and only if x = 0.

One can show that then ‖x‖ =
√
〈x,x〉 is a norm and thus d(x,y) = ‖x − y‖ =√

〈x− y,x− y〉 is a distance. Examples of inner products are:

– In the vector space of Rp the classical inner product 〈x,y〉 =
∑p

i=1 xiyi satisfies the

above definition.

– In the vector space of Cp the classical inner product 〈x,y〉 =
∑p

i=1 xiȳi satisfies the

above definition.

– In the vector space of random variables with finite variance, the covariance Cov(X, Y )

satisfies the properties of an inner product.
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5.2.2 Choosing a kernel

We have seen above that the predictions in ridge regression only depend on the covariates

through inner products k(xi,xj) = 〈φ(xi),φ(xj)〉, so rather than choosing φ(·) we can

choose k(·, ·). There are however some constraints as k(xi,xj) has to be a valid inner

product.

An important result from functional analysis, called Mercer’s theorem2, guarantees

that if

i. k(·, ·) is symmetric in its arguments, i.e. k(xi,xj) = k(xj,xi), and

ii. k(·, ·) is positive semi-definite, i.e. for any choice of x1, . . . ,xn the matrix

K =


k(x1,x1) . . . k(x1,xn)

...
. . .

...

k(xn,x1) . . . k(xn,xn)


is positive semi-definite,

then there exists a unique basis expansion (“feature map”) φ(·) such that k(xi,xj) =

〈φ(xi),φ(xj)〉.
Examples of kernel functions are the usual dot product in Rp

k(xi,xj) := x>i xj.

Using this kernel simply corresponds to linear ridge regression. Other choices of kernels

are the homogeneous polynomial kernel (q ∈ N)

k(xi,xj) := (x>i xj)
q

and the Gaussian kernel (γ > 0)

k(xi,xj) := exp
(
−γ‖xi − xj‖2

)
.

Using the polynomial kernel or the Gaussian kernel leads to a non-linear fitted function.

For the Gaussian kernel the corresponding φ(·) is infinite-dimensional and cannot be

written down in closed form.

There are of course many other possible kernel functions. The properties a valid

covariance function of a stochastic process must have are the same as the properties a

kernel function must have, so every covariance function can be a kernel and vice versa.

The kernel trick also allows incorporating non-numeric covariates. All we need to be

able to do is construct a function k(·, ·) which expresses some of distance between its

2 named after James Mercer FRS (1883 –1932), a British mathematician.
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two arguments. Kernels have, for example, been constructed that work on DNA data

and text.

Many linear methods commonly used in Statistics can be kernelised: principal compo-

nent analysis, (penalised) discriminant analysis, etc. There are however some exceptions:

linear regression, which is nothing other than ridge regression with λ = 0, cannot be

kernelised.

5.2.3 Reproducing Kernel Hilbert Spaces and the Representer The-

orem

We have seen that the optimal solution in kernel ridge can be written as m̂(x0) =∑n
i=1 αik(x0,xi). In this section we will generalise this result.

Let k : X ×X 7→ R be a kernel. We have then seen that we can construct a mapping

φ(·) from X to a suitable inner product space such that

〈φ(x), φ(x′)〉 = k(x, x′) ∀x, x′ ∈ X .

Furthermore the Riesz representation theroem3 tells us that in a reproducing kernel

Hilbert space4 k is the so-called representer of evaluation, i.e. for all x ∈ X and all

functions f ∈ H we have that

m(x) = 〈f, k(·, x)〉

Having set out the mathematical foundations we will now return to the our statistical

problem. In ridge regression we optimise the criterion

‖y −Xβ‖2︸ ︷︷ ︸
empirical loss on training data

+λ ‖β‖2︸ ︷︷ ︸
penalty

,

We will now generalise this result using a generic loss function L instead of the least

squares loss ‖y −Xβ‖2. More precisely, let

L : Rn × Rn → R ∪ {+∞},

(y1, . . . , yn,m(x1), . . . ,m(xn)) 7→ L(y1, . . . , yn,m(x1), . . . ,m(xn))

be a pointwise defined loss function which associates a loss L to a set of predictions

m(x1), . . . ,m(xn) with respect to the observed responses y1, . . . , yn (x1, . . . ,xn ∈ X ,

f ∈ H).

3 named after Frigyes Riesz (1880 – 1956), a Hungarian mathematician
4 A Hilbert space is an inner product space which is complete, i.e. every Cauchy sequence converges. A repro-

ducing kernel Hilbert space is a Hilbert space of functions where the linear map δx which maps each function

m(·) to the value m(x) it takes at some x is continuous for every choice of x. Essentially, a reproducing kernel

Hilbert space is a “reasonably well behaved” Hilbert space.
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Similarly we will consider a more general penalty Ω(‖f‖2), where Ω : [0,+∞] → R
is a strictly increasing function.

We now want to find the function m(·) in the Hilbert space H induced by the kernel

k(·, ·) which minimises the regularised loss (λ ∈ R+)

L(y1, . . . , yn,m(x1), . . . ,m(xn)) + λ ·Ω(‖f‖2). (5.1)

This is similar to the tasked studied is section 3.2.3.

We will now show that even though the space H might be of infinite dimension, we

will show that the minimisation problem is actually finite-dimensional as any minimiser

of (5.1) in H admits the representation

m̂(x0) =
n∑
i=1

αik(xi,x0) (5.2)

for suitable α1, . . . , αn ∈ R. In other words, the minimisation problem is only finite-

dimensional as we just have to find the right α1, . . . , αn. This is an extremely powerful

result, which was first derived in he late 1970s by Kimeldorf and Wahba.

In the remainder of this section we will prove this important result. We start by

assuming that we have a minimiser f ∈ H and will show that we can write it as

m(·) =
∑n

i=1 αik(xi, ·).

i. As k(xi, ·) ∈ H, we can decompose any function f into a part f‖ ∈ span (k(x1, ·), . . . , k(xn, ·))
and a part f⊥ that is orthogonal to the span (i.e. 〈f⊥, k(xi, ·)〉 = 0). Furthermore

we can find α1, . . . , αn such that f‖ =
∑n

i=1 αik(xi, ·). Thus

m(·) =
n∑
i=1

αik(xi, ·) + f⊥(·), (5.3)

ii. We will now show that at any of the training points xj we can compute m(·) as

m(xj) =
n∑
i=1

αik(xi,xj).

We can show this by using the representer property

m(xj) = 〈f, k(·,xj)〉 =

〈
n∑
i=1

αik(xi, ·) + f⊥(·), k(·,xj)

〉
=

=
n∑
i=1

αi 〈k(xi, ·), k(·,xj)〉︸ ︷︷ ︸
=k(xi,xj)

+ 〈f⊥(·), k(·,xj)〉︸ ︷︷ ︸
=0

=
n∑
i=1

αik(xi,xj)
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iii. We can now rewrite the penalty as

Ω(‖f‖2) = Ω

( ∥∥∥∥∥
n∑
i=1

αik(xi, ·) + f⊥(·)

∥∥∥∥∥
2

︸ ︷︷ ︸
=‖

∑n
i=1 αik(xi,·)‖2+‖f⊥(·)‖2︸ ︷︷ ︸

≥0

)
≥ Ω

(∥∥∥∥∥
n∑
i=1

αik(xi, ·)

∥∥∥∥∥
2)

iv. We have just seen in ii. that f⊥(·) has no influence on m(xj) at the training points

xj, so f⊥(·) has no influence on the training loss L(y1, . . . , yn,m(x1), . . . ,m(xn)).

We have also seen in iii. that f⊥(·) only makes Ω(‖f‖2) bigger, so a minimser must

have f⊥(·) = 0, i.e. f ∈ span (k(x1, ·), . . . , k(xn, ·)), which is nothing other than

m(·) =
∑n

i=1 αik(xi, ·).

Note that the proof is very similar to the proof of theorem 3.5 — just view∫ b
a
m′′(x)g′′(x) dx as an inner product between the two functions m(·) and g(·).

5.3 Gaussian processes

5.3.1 Ridge regression from a Bayesian point of view

In this section we will study Gaussian processes. Gaussian processes have been used for

decades in geostatistics where they are often referred to kriging models5. About 10 to

15 years ago they became popular in the machine learning community.

Just like in section 5.2.1 we will start with ridge regression, however in this session

we will focus on its Bayesian interpretation.

Remember that in ridge regression we wanted to find the regression parameters β

which minimise the penalised least squares criterion

n∑
i=1

(yi − x>i β)2 +
σ2

τ 2

p∑
j=1

β2
j ,

where we have written λ = σ2

τ2
. The objective function of ridge regression can be given a

Bayesian interpretation. Suppose that we want to use a normal distribution with mean

0 and variance τ 2 as prior distribution for the regression coefficients βj and assume that

each observation has, given β, a normal distribution with mean x>i β and variance σ2,

i.e.

β ∼ N(0, τ 2I) (5.4)

yi|β ∼ N(x>i β, σ
2) (5.5)

5 named after Daniel Gerhardus Krige, a South African mining engineer and professor at the University of the

Witwatersrand, who first suggested kriging to model mineral deposits.
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To keep things simple we shall assume for the moment that the variance σ2 is known.6

Then we can write the p.d.f. of the posterior distribution of β as

f(β|y1, . . . , yn) ∝

(
n∏
i=1

f(yi|β)

)
︸ ︷︷ ︸

Likelihood

· f(β)︸︷︷︸
prior

=

(
n∏
i=1

1√
2πσ2

exp

(
−(yi − x>i β)2

2σ2

))
·
(

1√
2πτ 2

)p
exp

(
−
∑p

j=1 β
2
j

2τ 2

)

Collecting terms, taking logs and keeping only terms involving β yields the log-posterior

density

log f(β|y1, . . . , yn) = const− 1

2σ2

n∑
i=1

(yi − x>i β)2 − 1

2τ 2

p∑
j=1

β2
j ,

which is, up to a multiplicative constant, the objective function used in ridge regression.

The estimated regression coefficient β̂
ridge

= (X>X + σ2

τ2
I)−1X>y is thus the Bayesian

maximum-a-posteriori (MAP) estimate of β.

In full Bayesian inference we do not just look for the maximiser of the posterior, but

at the entire posterior distribution of β. One can show (by completing the square) that

the posterior distribution of β is

β|y1, . . . , yn ∼ N

((
X>X +

σ2

τ 2
I

)−1

X>y,

(
X>X +

σ2

τ 2
I

)−1
)
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(a) Samples from the prior distribution.
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(b) Data and samples from the posterior distribution.

Figure 5.1. Draws from the prior distribution and the posterior distribution of a Bayesian linear model. The

bold line corresponds to the mean, the shaded area corresponds to pointwise 95% credible intervals.

6 To incorporate an unknown variance σ2 into the model we could use a normal-inverse gamma prior jointly

placed on (β, σ2).
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Figure 5.1 illustrates this idea of Bayesian inference for a linear model with design

matrix X =


1 x1

...
...

1 xn

. Panel (a) shows ten draws from the prior distribution, whereas

panel (b) shows draws from the posterior distribution given the data.

Suppose we are not interested in the regression coefficients β, but only in predictions

for the training data or unseen data. Thus we will try to re-express the model behind

ridge regression without reference to the parameter β. Essentially we have to combine

(5.4) and (5.5) to find the marginal distribution of y. The theory of the normal distri-

bution tells us that the marginal distribution of y is also a normal distribution, so we

only need to find its expected values and its variance.

E(y) = Eβ

(
Ey|β (y)

)
= Eβ (Xβ) = XEβ(β) = 0

Var(y) = Varβ
(
Ey|β (y)

)
+ Eβ

(
Vary|β (y)

)
= Varβ (Xβ) + Eβ

(
σ2I
)

= XVarβ(β)X> + σ2I

= τ 2XX> + σ2I

thus ridge regression corresponds to assuming that

y ∼ N
(
0, τ 2XX> + σ2I

)
.

What we have achieved by eliminating β7 is moving the linear model assumption of

ridge regression from the mean into the covariance of the Gaussian distribution. This

is the key idea which allows us to generalise the Bayesian linear model to Gaussian

processes.

Recall that XX> =


〈x1,x1〉 . . . 〈x1,xn〉

...
. . .

...

〈xn,x1〉 . . . 〈xn,xn〉

, which suggests that we can resort

to kernelisation again. This is what we will look at in the next section, however we will

interpret the kernel matrix as a covariance matrix.

5.3.2 Gaussian processes

Basic idea In the Bayesian linear model we have placed a prior distribution on the

regression coefficients and Bayesian inference yields a posterior distribution on the re-

gression coefficients. The coefficients of a linear function fully determine a linear function

(and vice versa), so we have done nothing other than having placed a prior distribution

on all linear functions.

7 To be mathematically more precise, we have integrated out β.
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Gaussian processes generalise this idea by placing a prior distribution on a much

more general space of functions.

We start by defining what a Gaussian process actually is. We define a Gaussian

process to be a collection of random variables yi = y(xi) (i = 1, 2, 3, . . .) depending

on covariates xi such that any finite subset of random variables y = (y1, . . . , yn) =

(y(x1), . . . , y(xn)) has a multivariate Normal distribution.

A Gaussian process is fully specified by the mean and the covariance of this Gaussian

distribution. To keep things simple (and without loss of generality) we shall assume that

the mean of this Gaussian distribution is always 0. With a bit of rewriting we have that

y is from a Gaussian process if and only if

y ∼ N(0, τ 2K(x1, . . . ,xn) + σ2I)

To keep the notation simple and consistent I have, without loss of generality, added σ2I

to the covariance and added the factor τ 2.

The Bayesian linear model is a special case of a Gaussian process, because for any

set of x1, . . . ,xn we have seen that y ∼ N
(
0, τ 2XX> + σ2I

)
, thus K(x1, . . . ,xn) =

XX>. Other covariance functions (kernel functions) give nonlinear regression functions.

Covariance functions have been covered in the APTS course on Spatial Statistics and

are thus not discussed here.

5.3.3 Predictions from Gaussian processes

Conditionals of Gaussian distributions

Assume that (
y1

y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Then the conditional distribution of y2 given y1 is

y2|y1 ∼ N
(
µ2 +Σ21Σ

−1
11 (y1 − µ1),Σ22 −Σ21Σ

−1
11Σ12

)

We can compute predictions for a new test case with covariates x0 by looking at the

joint distribution(
y

y0

)
∼ N

((
0

0

)
,

(
τ 2K + σ2I τ 2k0

τ 2k>0 τ 2k00 + σ2

))
,

where K is as defined is the preceding section, k0 = (k(x0,x1), . . . , k(x0,xn)) is the

covariance between the training data and the test case and k00 = k(x0,x0). Then using

the formula for the conditional distribution of a Gaussian we obtain
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y0|y ∼ N

(
k>0

(
K +

σ2

τ 2
I

)−1

y, τ 2

(
k00 − k>0

(
K +

σ2

τ 2
I

)−1

k0

)
+ σ2

)
The mean of the posterior distribution of y0 is nothing other than the point estimate

of y0 obtained from kernel ridge regression. The formula above gives the variance to be

used for a prediction interval for a new observation. If we want to get the variance for a

confidence interval for its mean we have to omit the σ2 accounting for the error on the

unseen data, i.e. the variance of the predicted mean is τ 2

(
k00 − k>0

(
K + σ2

τ2
I
)−1

k0

)
.

Figure 5.2 shows five draws each from the prior distribution (panel (a)) and the

posterior distribution (panel (b)) from a simple Gaussian process fitted to data.
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(a) Samples from the prior distribution.
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(b) Samples from the posterior distribution.

Figure 5.2. Draws from the prior distribution and the posterior distribution of a simple Gaussian process

(Matérn covariance with κ = 2.5). The bold line corresponds to the mean, the shaded area corresponds to

pointwise 95% credible intervals.

5.3.4 Learning hyperparameters

Given that Gaussian processes are based on a proper probabilistic model can do not

have to resort to cross-validation to find the hyperparameters. We can use an empirical

Bayes strategy (sometime also referred to as maximum-likelihood) and maximise the

posterior density with respect to the hyperparameters.

However, a Gaussian process can use many hyperparameters and there is often little

information in the data about the hyperparameters. This is especially true for the pa-

rameter κ of the Matérn covariance function. Full Bayesian models thus typically fare

better as they take into account the uncertainty about the values of the hyperparam-

eters. However, with the possible exception of σ2, none of the hyperparameters can be

integrated out in closed form, thus one has to resort to either using a discrete grid or

sampling techniques such as Markov Chain Monte Carlo (MCMC).
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5.3.5 Gaussian processes in R

There are many packages in R (such as mlegp, tgp or kernlab) which implement Gaus-

sian processes in R. We will use the package tgp which performs full Bayesian inference

using MCMC. We will illustrate the functionality of this package using the motorcycle

data.

R 2 # Load the required libraries

R 3 library(mlegp)

R 4 library(MASS)

R 5 # Fit a GP model (only squared exponential kernels , hyperparameters estimated by MLE)

R 6 model <- mlegp(mcycle$times , mcycle$accel)

R 7 # Compute predictions

R 8 predicted <- predict(model , se.fit=TRUE)

R 9 # Plot data

R 10 plot(mcycle)

R 11 # Add fitted line

R 12 lines(mcycle$times , predicted$fit)

R 13 # Add CI for mean function

R 14 lines(mcycle$times , predicted$fit+qnorm (0.975)*predicted$se.fit , lty=2, col=3)

R 15 lines(mcycle$times , predicted$fit -qnorm (0.975)*predicted$se.fit , lty=2, col=3)

R 16 # Add prediction interval

R 17 lines(mcycle$times , predicted$fit+qnorm (0.975)*(sqrt(model$nugget )+ predicted$se.fit), lty=3, col =2)

R 18 lines(mcycle$times , predicted$fit -qnorm (0.975)*(sqrt(model$nugget )+ predicted$se.fit), lty=3, col =2)

The tgp package performs full Bayesian inference. This takes into account the un-

certainty in the hyperparameters, but does require using a sampling algorithm, which

is much slower.

R 20 # Load the TGP package

R 21 library(tgp)

R 22 # Fit the model using MCMC

R 23 model <- bgp(mcycle$times , mcycle$accel)

R 24 # Plot the results

R 25 plot(model)

The tgp packages also implements a generalisation of Gaussian processes, called tree-

based Gaussian processes, which implements “piecewise” GP’s. These are actually better

suited to the motorcycle data, as they can account for the heteroscedasticity of the data.

However this would be beyond the scope of the course.

5.3.6 Classification using Gaussian processes and other extensions

So far we have only studied Gaussian processes for regression. Suppose the response

variable of interest is zi, which does not have a Gaussian distributions, i.e. zi could be

a -1/1 indicator, which would correspond to binary classification. We can handle this

problem using Gaussian processes by assuming that there is an unobserved Gaussian

process (y1, . . . , yn) and that we can only observe a process zi = zi(yi), which is defined
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such that zi only depends on yi
8. In the case of binary classification zi ∈ {−1, 1} and

we could assume a probit model, i.e. P{zi = 1|yi} = Φ(yi), where Φ(·) is the Gaussian

c.d.f.

This idea of latent Gaussian processes can be applied to many others settings.

5.4 Support Vector Machines

5.4.1 Introduction

The history of support vector machines reaches back to the 1960s. The “Generalised

Portrait” algorithm, which constructs a separating hyperplane with maximal margin,

was originally proposed by the Soviet mathematicians Vapnik and Chernovenkis. Over

last decade, support vector machines have become an increasingly popular learning

algorithm.

Though support vector machines are mostly used for classification, we will only cover

support vector machines for regression.

5.4.2 Robust Statistics

You probably remember from your introductory undergraduate Statistics course that

the median is more robust than the mean. In other words, the median is less affected

by outliers than the mean. In this section we will relate this to loss functions and use

these to propose robust methods for regression.

One can show that the mean ȳ = 1
n

∑n
i=1 yi of a sample minimises the sum of squares,

i.e.
n∑
i=1

(yi − a)2

is minimal for a = ȳ. Similarly one can show than the median ỹ minimises the sum of

absolute differences, i.e.
n∑
i=1

|yi − a|

is minimal for a = ỹ.

Remember that in standard linear regression we choose the regression coefficients β

such that
n∑
i=1

(yi − x>i β)2,

is minimal, i.e. (standard) linear regression is using a quadratic loss function (just like

the mean). One can obtain a robust version of linear regression by choosing β such that

8 More precisely, this corresponds to assuming that the zi are conditionally independent given the yi.
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n∑
i=1

|yi − x>i β|,

is minimal. This robust approach to regression yields an algorithm that can cope much

better with outliers. However computing the regression coefficients is computationally

more demanding and there is no “nice” theory for tests and confidence / prediction

intervals.

A compromise between two loss functions is Huber’s loss function which is defined as

n∑
i=1

LHδ (yi − x>i β) where LHδ (z) =

{
z2

2
for −δ ≤ z ≤ δ

δ(|z| − δ/2) otherwise,

where δ > 0 is a suitably chosen constant. Huber’s loss function is implemented in the

function rlm in MASS. Figure 5.3 (a) to (c) compares the three loss functions.

#1

(a) Quadratic loss

#2

(b) Linear loss

#3

(c) Huber’s loss

#4

(d) ε-insensitive loss

Figure 5.3. Different loss functions for regression.

Support Vector Regression

Support vector regression is yet another way of performing robust regression. All meth-

ods described in the previous section yield estimates of the regression coefficients which

depend on all observations. In order to obtain a sparse solution which depends only on a

small subset of the observations a modification of the above loss functions is used. This

new “ε-insensitive” loss function is defined as

Lε(z) = (|z| − ε)+ =

{
0 for −ε ≤ z ≤ ε

|z − ε| otherwise,

where ε is a suitably chosen constant. Small errors (i.e. errors less than ε) will not incur

any loss with this new loss function, thus ε is typically chosen rather small (often as

small as 10−3).
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As common in the support vector literature we will denote the regression coefficients

by w, rather than β. In linear support vector regression we fit a linear function b+〈xi,w〉
to a response yi by minimising the criterion

1

2
‖w‖2︸ ︷︷ ︸

regularisation

+C
n∑
i=1

Lε (yi − b− 〈xi,w〉)︸ ︷︷ ︸
training loss

Note that the objective function is almost the same as in ridge regression. The only

difference is that we use the ε-insensitive loss function for the training loss rather than

the quadratic loss used in ridge regression.

Before we go into the details of solving the optimisation problem we will first gener-

alise the problem to the nonlinear case. Suppose we want to use a feature map φ(·), i.e.

fit the function b+ 〈φ(xi),w〉. In this case the objective function becomes

1

2
‖w‖2 + C

n∑
i=1

Lε (yi − b− 〈φ(xi),w〉)
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Figure 5.4. Slack variables ξ̃i and ξi used in support vector regression

The above optimisation can be written as an optimisation problem using slack vari-

ables ξ̃i and ξi. We want to minimise

1

2
‖w‖2 + C

n∑
i=1

(ξ̃i + ξi)

subject to yi − (〈φ(xi),w〉+ b) ≤ ε + ξ̃i and (〈φ(xi),w〉+ b) − yi ≤ ε + ξi with slack

variables ξ̃i, ξi ≥ 0. This is illustrated in figure 5.4. The corresponding dual is

D(α̃,α) = −1

2

∑
i,j

(α̃i − αi)(α̃j − αj) 〈φ(xi),φ(xj)〉 − ε
n∑
i=1

(α̃i + αi) +
n∑
i=1

yi(α̃i − αi),

which is to be maximised over α̃i, αi ∈ [0, C] with
∑n

i=1(α̃i−αi) = 0 and α̃iαi = 0. The

estimated regression curve can be expressed as a function of (α̃i − αi) and b:

m̂(x0) =
r∑
i=1

(α̃i − αi) 〈φ(x0),φ(xi)〉+ b

Once again the optimisation problem and its solution only depend on a subset of

the learning dataset (those vectors having α̃i > 0 or αi > 0) and only through inner
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products, i.e. we can use a kernel k(xi,xj) = 〈φ(xi),φ(xj))〉. In this case the estimated

regression curve becomes

m̂(x0) =
r∑
i=1

(α̃i − αi)k(x0,xi) + b,

which is again of the optimal form suggested by the representer theorem.

Example 5.1. We will now use a support vector machine to fit a smooth function to the

motorcycle data. To illustrate its robustness we will set the 111-th observation to a

unrealistically large value.

R 27 # Get hold of the data

R 28 library(MASS)

R 29 data(mcycle)

R 30 # Put in outlier

R 31 mcycle$accel [111] <- 500

R 32 # Fit the SVM

R 33 # (We should have used tune.svm to get good values for the tuning parameters)

R 34 my.svm <- svm(accel~times , data=mcycle , type=” eps−r e g r e s s i o n ”, kernel=” r a d i a l ”,

R 35 cost=1, gamma =10, eps =0.01)

R 36 # Plot the data

R 37 plot(mcycle)

R 38 # Plot the fitted SVM

R 39 lines(mcycle$times , predict(my.svm , mcycle ))

/

Example 5.2 (Great Barrier Reef (continued)). Figure 5.5 shows support-vector-regression

fits to the Great Barrier Reef data for different values of the hyperparameters. /

5.4.3 Practical considerations

The performance of a support vector machines depends crucially on the hyperparameters

chosen: Big values of C generally yield an overfit to the data. The bigger the degree q of

the polynomial or the smaller the “width” γ of the Gaussian kernel is selected, the more

wigglier the fitted function will be and the more likely the fit will result in an overfit. The

hyperparameters are typically tuned using either a validation set or cross-validation.

Support vector machines are not scale-invariant, so it is necessary to scale the data

beforehand. However most implementations of SVM (like the one used in R) perform

the standardisation automatically.

Support vector machines have been successfully trained with huge amounts of data.

This applies to the number of observations as well as to the number of covariates.
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(a) C = 0.1, γ = 0.1
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(b) C = 1, γ = 1
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(c) C = 10, γ = 1
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Figure 5.5. Suppport vector machine fits to the Great Barrier Reef data for different values of the hyperparam-

eters.
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Support vector machines do not make any model assumption. This makes them a

very versatile tool, but it makes assessing the uncertainty difficult to impossible: we

cannot define proper confidence intervals or compute criteria like the AIC or the BIC.

There are some probabilistic upper bounds like the Vapnik-Chernovenkis bound, but

these bounds are typically very loose and thus only of limited use.

5.4.4 SVMs and Gaussian processes compared

Support vector regression machines and Gaussian processes perform very similar tasks,

however they have different strengths and weaknesses.

+Gaussian processes are based on proper probabilistic model, so hyperparameters can be

learnt using standard statistical techniques such as maximum likelihood (or “Empirical

Bayes”) or full Bayesian inference. There is little need to resort to ad-hoc techniques

such as cross-validation.

Gaussian processes also give confidence/credible intervals.

- SVMs are much faster, as they only rely on the support vectors. Gaussian processes

require the inversion of a large covariance matrix, which can be very slow. However

there are many approximation techniques which speed up computations for Gaussian

processes a lot.

- SVMs are also more robust: they are based on the robust ε-insensitive loss function,

whereas Gaussian processes are based on the quadratic loss functions. However, Gaus-

sian processes can be robustified by assuming a more complex model for variance: each

observation in this model is assumed to have its own variance, which is drawn from

an inverse χ2-distribution, which corresponds to assuming t-distributed, rather than

Gaussian noise, which is much more robust.

5.4.5 ν-SVMs

So far we have stated all objective functions in terms of a cost C which is used to scale

the training loss. Interpreting C and choosing an appropriate value for C is however

difficult. There exists an alternative formulation of support vector machines, called the

ν-SVM, which introduces a parameter ν instead of the cost C. ν which takes values in

the interval (0, 1) has an easier interpretation.

– The proportion of support vectors will be at least ν.

– The proportion of observations lying on the “wrong” side of the margin is at most ν.

The optimisation problem (and theory) behind ν-SVMs however is more difficult. For

this reason we have only studied C-SVMs so far. It is also worth noting that the opti-
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misation problem is not always feasible for low values of ν, unless the kernel is positive

definite (like for example the Gaussian kernel).

The R package e1071 also implements ν-SVMs



6

Case studies

The final lecture will give some examples of the use of smoothing in addressing modelling

issues which arise in real applications. These are likely to include:

– the patterns of SO2 pollution over Europe;

– the dispersion of pollution in groundwater;

– the changes in pollution over a river network;

– the modelling of human facial shape.
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