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This APTS course will cover a variety of methods which enable data to be modelled in a
flexible manner. As preparation, it would be helpful to revise the following topics covered
in earlier APTS courses:

e linear models, including the Bayesian version;

e generalised linear models;

e R programming;

e Taylor series expansions and standard asymptotic methods.

The main emphasis will be on regression settings, because of the widespread use and
application of this kind of data structure. However, the preliminary material covers
various aspects of density estimation, to introduce some of the main ideas of nonparametric
smoothing and to highlight some of the main issues involved. It is likely that many people
will have come across these ideas in one form or another. The preliminary material aims
to

e explore simple kernel methods;

e show how these can be used to construct smooth density estimates;
e investigate some simple theoretical properties;

e experiment with software available in R;

e consider some illustrations of their use in analysing data.

Exercises are provided to assist in engaging with the material.



1 The idea of density estimation

A probability density function is a key concept through which variability can be expressed
precisely. In statistical modelling its role is often to capture variation sufficiently well,
within a model where the main interest lies in structural terms such as regression coeffi-
cients. However, there are some situations where the shape of the density function itself
is the focus of attention. The example below illustrates this.

Example: Aircraft data
These data record six characteristics of aircraft designs which appeared during the twen-
tieth century. The variables are:

Yr: year of first manufacture

Period: a code to indicate one of three broad time periods
Power: total engine power (kW)

Span: wing span (m)

Length: length (m)

Weight: maximum take-off weight (kg)

Speed: maximum speed (km/h)

Range: range (km)

A brief look at the data suggests that the six measurements on each aircraft should be
expressed on the log scale to reduce skewness. Span is displayed on a log scale below, for
Period 3 which corresponds to the years after the second World War.
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The pattern of variability shown in both the histogram and the density estimate exhibits
some skewness. There is perhaps even a suggestion of a subsidiary mode at high values



of log span, although this is difficult to evaluate.

The histogram is a very familiar object. It can be written as
fly) =) Iy —gsh),
i=1

where {yi,...,yn} denote the observed data, §; denotes the centre of the interval in
which y; falls and I(z;h) is the indicator function of the interval [—h, h]. The form of
the construction of f highlights some feature which are open to criticism if we view the
histogram as an estimator of the underlying density function. Firstly the histogram is
not smooth, when we expect that the underlying density usually will be. Secondly, some
information is lost when we replace each observation y; by the bin mid-point g;. Both of
the issues can be addressed by using a density estimator in the form

n

fly) = L > w(y =i h),
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where w is a probability density, called here a kernel function, whose variance is controlled
by the smoothing parameter h.

Large changes in the value of the smoothing parameter have large effects on the smooth-
ness of the resulting estimates, as the plots below illustrate.

Exercise: The effect of the smoothing parameter

To experiment with density estimates, download the sm, rpanel and tkrplotpackages for
R. The code below should launch a new window with interactive controls. Try altering the
smoothing parameter through the slider. Does this help you assess whether the subsidiary
mode is a genuine feature or an artefact of random variation?

library(sm)
y <- log(aircraft$Span[aircraft$Period == 3])
sm.density(y, panel = TRUE)

One advantage of density estimates is that it is a simple matter to superimpose these to



allow different groups to be compared. Here the groups for the three different time periods
are compared. It is interesting that the ‘shoulder’ appears in all three time periods.
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Exercise: Computing density estimates
Write some R code which will take a vector of data y and return a density estimate. See
if you can do this without using a for loop!




2 Extending the idea

The simple idea of density estimation is to place a kernel function, which in fact is itself
a density function, on top of each observation and average these functions. This extends
very naturally to a wide variety of other types of data and sample spaces.

For example, a two-dimensional density estimate can be constructed from bivariate data

{(y15,y2:) : 1 =1,...,n} by employing a two-dimensional kernel function in the form
R 1 <
[y, ye) = n Zw(?ﬁ = y1i; ) wlyr — y2i; ho).
i=1

Notice that there are now two smoothing parameters, (hi,hs). A more general two-

dimensional kernel function could be used, but the simple product form is very convenient
and usually very effective.

Here is an example which uses the scores from the first two principal components of the
aircraft data, again focussing on the third time period. The left hand scatterplot shows
the individual scores while the right hand plot shows a density estimate, from which
suggests three separate modes. This feature is not so easily seen from the raw scatterplot.
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Here are alternative ways of presenting a two-dimensional estimate, using a coloured image
on the left and contour lines on the right. Notice that the contours on the right have been
chosen carefully to contain the quarters of the data with successively higher density, in a
manner which has some similarities with a box plot.
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This principle extends to all kinds of other data structures and sample spaces by suitable
choice of an appropriate kernel function.

Exercise: Circular data

If you were given a sample of circular data, consisting of angles (in radians) between 0
and 27 (where, of course, these two end points are coincident), how could you construct
a smooth density estimate by choice of an appropriate kernel function? (Hint: the von
Mises distribution provides a natural model for a distribution on a circle.) Can you write
some code in R which will construct a density estimate from a sample of circular data.
(Hint: you might find the R function besselI useful.)




3 Simple properties of density estimates

Without any real restriction, we can assume that the kernel function can be written in

the simple form w(y — y;; h) = +w (52). The mean of a density estimator can then be

R h
written as

B0 ) = [ o (457 5= [uw(y - mdu

where the last expression simply involves a change of variable u = *-=. A Taylor series
expansion of the term involving f in the last expression gives

Fly = hu) = F(y) — huf(5) + 512 () + o(?)

and, on insertion into the expression for the mean, this produces the approximation

E{} f(y) =~ f(y) + %Ui (),

where we assume that the kernel function is symmetric so that [ ww(u)du = 0, and where
o2, denotes the variance of the kernel, namely [ u?w(u)du.

The variance of the density estimate can be written as

var{} f(y) = %vaf{Y} %“’ (¥)
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A similar change of variable and Taylor series expansion produces the approximation
var{} f(y) = - f () aw) + 0
=tV nh)’

where a(w) = [ w?(u)du.

These expressions capture the essential features of smoothing. In particular, bias is in-
curred and we can see that this is controlled by f”, which means that where the density has
peaks and valleys the density estimate will underestimate and overestimate respectively.
This makes intuitive sense.

Similar expressions can be derived in higher dimensions.



Exercise: Asymptotic properties
A useful global measure of performance is the mean integrated squared error (MISE) which
balances squared bias and variance.

MISE() = E{} [1f(0) - f0)Pdy
= /[E{}f(y)—f(y)rdy+/var{}f(y)dy-

(i) Verify the expression given for var{} f(y) above by employing a change of variable
and a Taylor series expansion.

(ii) Use the Taylor expansions discussed above to show that MISE can be expressed as

MISE(f) ~ 3 hto, [ 1@Pdy+ - atuw).

(iii) Now show that the value of A which minimizes MISE in an asymptotic sense is
b = { y(w) }”5
Pr B S
where y(w) = a(w)/oy, and B(f) = [ f"(y)*dy.

(iv) Show that when f is a normal density this yields the simple formula

1/5
h = (i) o,
3n

where o denotes the standard deviation of the distribution.

(v) Considering f(y) as a density function in y, what is the mean and variance of the
distribution which this density function represents? Consider what this says about
the operation of smoothing.




4 Deciding how much to smooth

The theory sketched in the exercise above shows that an optimal smoothing parameter
can be defined as the value which minimises MISE. This has the form

1/5
I { 7(w) } /
op B(f)n
Of course, this is of rather limited use because it is a function of the unknown density.
However, there are two practical approaches which can be taken to deciding on a suitable
smoothing parameter to use. One is to construct an estimate of MISE and minimise

this. Another is to estimate the optimal smoothing parameter. These two approaches are
outlined below.

Cross-validation

The integrated squared error (ISE) of a density estimate is

Jtiw - sy = [ fora -2 [ sy [ fora

Only the first two of these terms involve h and these terms can be estimated by
1 — " 2 e -
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where f,i(y) denotes the estimator constructed from the data without the observation ;.
The value of A which minimises this expression is known as the cross-validatory smoothing
parameter.

Plug-in methods

By inserting suitable estimates of the unknown quantities in the formula for the optimal
smoothing parameter, a plug-in choice can be constructed. The difficult part is the esti-
mation of (f) as this involves the second derivative of the density function. Sheather &
Jones (JRSSB 53, 683-90) came up with a good, stable way of doing this. The Sheather-
Jones remains one of the most effective strategies for choosing the smoothing parameter.

A very simple plug-in approach is to use the normal density function in the expression
for the optimal smoothing parameter. An earlier exercise showed that this produces the
simple formula (%) 1/ o, where the standard deviation o can be estimated from the data.
This approach is surprisingly effective, in large part because it is very stable.



Exercise: Smoothing parameter selection in practice

The R expression sm.density(y, panel = TRUE) allows interactive experimentation in
the construction of density estimates from a data vector y. Try this function out with
data of your own choice and look at the comparative performances of the methods of
smoothing parameter section outlined here.

Try this out with two-dimensional data, using the aircraft data or some simple ran-
domly generated data, for example by y <- cbind(rnorm(50), rnorm(50)). The sm.
density function operates similarly, although the Sheather-Jones plug-in method is not
available because it is trickier to implement beyond the one-dimensional setting.




5 Some simple inferential tools

Once an estimate has been constructed, a natural next step is to find its standard error.
The earlier result on the variance of f is a natural starting point, but this expression
involves the unknown density. A helpful route is to consider a ‘variance stabilising’ trans-
formation. For any transformation ¢(-), a Taylor series argument shows that

var{}t(7(w) ~ var{} f0) [t (B fw)]

When ¢(+) is the square root transformation, the principal term of this expression becomes

var{}\/7() = ra(w),

which does not depend on the unknown density f. This forms the basis of a useful
variability band. We cannot easily produce proper confidence intervals because of the
bias present in the estimate. However, if the standard error is constructed and the in-
tervals corresponding to two s.e.’s on the square root scale are transformed back to the
origin scale, then a very useful indication of the variability of the density estimate can be
produced. This is shown below for the aircraft span data from period 3.
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A useful variation on this arises when the true density function is assumed to be normal
with mean p and variance o2, and the kernel function w is also normal. If the standard
normal density function is denoted by ¢, then the mean and variance of the density
estimate at the point y are then
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These expressions allow the likely range of values of the density estimate to be calculated,
under the assumption that the data are normally distributed. This can be expressed
graphically through a reference band.

Exercise: Icelandic tephra layer

Data on the percentages of aluminium oxide found
in samples from a tephra layer resulting from a| =-
volcanic eruption in Iceland around 3500 years ago
are available in the tephra dataset in the sm package.
TO deal with the percentage scale, apply the logit
transformation

logit <- log(tephra$A1203/(100-tephra$A1203)).
Now use the sm.density function with the inter-
active controls provided by panel = TRUE to add
standard errors and a reference band for a normal| - >
model. Is there convincing evidence that the tephra 19 18 17 16
data exhibit non-normal features?

Probability density function

Exercise: Means and variance again

Verify the results stated above on the approximate variance of 4/ f (y) and the exact mean

and variance of f (y) when the underlying distribution is normal with mean p and variance

o




The bootstrap is sometimes a useful way of gaining information about the properties and
sampling variation of quantities of interest. Here is a simple version of the bootstrap for
density estimation.

1. Construct a density estimate f from the observed data {y1,...,yn}.
2. Resample the data with replacement to produce a bootstrap sample {y7,...,y"}.
3. Construct a bootstrap density estimate f* from the bootstrap data {yi,...,y*}.

4. Repeat steps 2 and 3 a large number of times to create a collection of bootstrap
density estimates {f7,..., f5}.

5. Use the empirical distribution of f* about f to mimic the distribution of f about
f.

However, we need to be careful about the interpretation of this. Since the distribution of
y¥ is uniform over {yi,...,y,}, it follows that

E{x} /*(y) = E{x} w(y —ysh) = f(y)

and so the bias which we know is present in the distribution of f is absent in the bootstrap
version. However, the bootstrap does usefully mimic the variance of f.

Exercise: Bootstrapped variability bands

Write a few lines of R code which will construct and plot bootstrap density estimates of
the aircraft log span data. Compare the results with the variability band shown near the
start of Section 5.




6 A quick look at flexible regression

The emphasis of the preliminary material has been density estimation. However, here are
two problems which might whet your appetite for regression, which will be the main focus

of the APTS course.

Exercise: Great Barrier Reef

In a study of the effects of trawling on
the Great Barrier Reef, measurements of
the quantity of marine life sampled from
the sea bed were taken at a variety of
locations. These data are available in the
data frame trawl in the sm package. The
plot on the right shows the response variable
Scorel against Longitude, which here is
an approximate proxy for distance offshore.
Try sm.regression(trawl$Latitude,
trawl$Scorel, panel = TRUE) to see
whether you gain any further insight
into the relationship between these two
variables.
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Exercise: SOy over Europe

Europe has an extensive system of air mon-
itoring stations at which levels of SO, are
regularly measured. The dataset S02 in the
rpanel package for R contains measurements
from these stations over several years. We
should expect spatial effects, seasonal effects
and time effects. How might we construct a
flexible regression model which could capture
and explore the nature of these effects? Feel
free to experiment with the dataset, if you
have some ideas.

Latitude

70

65

60

55

50

45

40

Longitude




7 Further reading

A classic text on density estimation:

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman
& Hall, London.

A variety of texts on flexible regression:

Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall:
London.

Bowman, A.W. & Azzalini, A. (1996). Applied Smoothing Techniques for Data Analysis.
OUP: Oxford.

Ruppert, D., Wand, M.P. & Carroll, R.J. (2003). Semiparametric Regression. CUP:
Cambridge.

Wood, S. (2006). Generalized additive models: an introduction with R. Chapman & Hall,
London.



