
APTS 2012/13: Spatial and Longitudinal Data Analysis

Preliminary Material

Module leader: Peter J. Diggle (Faculty of Health and Medicine, Lancaster University
and Institute of Infection an dGlobal Heath, University of Liverpool))

Aims: This module will introduce students to the statistical concepts and tools involved
in modelling data which are correlated in time and/or space.

Learning outcomes: By the end of the module, students should have achieved:
• a clear understanding of the meaning of temporal and spatial correlation;
• a good working knowledge of standard models to describe both the systematic and the
random parts of an appropriate model;
• the ability to implement and interpret these models in standard applications;
• an understanding of some of the key concepts which lie at the heart of current research
in this area;
• appreciation of at least one substantial case study.

Prerequisites: Preparation for this module should establish familiarity with:
• standard models and tools for time series data, at the level of a typical undergraduate
course on time series;
• standard models and tools for spatial data at its simplest level;
• inferential methods, including classical and Bayesian likelihood-based methods, to at
least the level of the earlier APTS modules Statistical Inference and Statistical Modelling.

Topics:
• Introduction: motivating examples; the fundamental problem – analysing dependent
data.
• Longitudinal data: linear Gaussian models; conditional and marginal models; why lon-
gitudinal and time series data are not the same thing.
• Continuous spatial variation: stationary Gaussian processes; variogram estimation
(what not to do and how to do it); likelihood-based estimation; spatial prediction.
• Discrete spatial variation: Markov random field models.
• Spatial point patterns: exploratory analysis; Cox processes and the link to continuous
spatial variation; pairwise interaction processes and the link to discrete spatial variation.
• Spatio-temporal modelling: spatial time series; spatio-temporal point processes.
• Conclusion: review of available software (as preparation for mini-project); connections
between spatial and longitudinal data analysis.

Assessment:
• a critique, in essay form, of a specified research paper, including both modelling and
application aspects;
• a mini-project involving the analysis of a data-set, selected by the student from several
on offer.
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Preliminary Lecture 1: standard models and tools for time series
data

Try working through the following material in your own time – without consulting any
book on time series analysis. Don’t worry if you can’t complete all of the exercises – there
will be an opportunity to ask about them during the week of the course itself.

1.1 A meteorological time series: maximum daily temperatures at Bailrigg,
Lancashire, UK

Figure 1 shows a time series of daily maximum temperatures recorded at Bailrigg (the
Lancaster University campus) over a period of one year, 1 September 1995 to 31 August
1996.
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Figure 1: Daily maximum temperatures (degrees celsius) at the bailrigg field station, 1
September 1995 to 31 August 1996.

The goals of a statistical analysis of a data-set such as this could include:

• describing the historical pattern of variation

• predicting future maximum daily temperatures:

– tomorrow?

– next week?

– next year?

In this preliminary lecture, we focus for the most part on the first of these goals.
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Exercise 1.1

(a) describe the main features of this data-set in a few sentences
(b) download the data from www.lancaster.ac.uk/staff/diggle/APTS-data-sets and
reproduce the plot shown in Figure 1
(c) fit a suitable linear multiple regression model to the data

#

1.2 Time series models

A discrete-time real-valued stochastic process is a collection of random variables,
{Yt : t = 1, 2, ...}, where t denotes time. A partial realisation of a process of this kind, for
t = 1, 2, ..., n, is called a time series.

A simple class of time series models is given by the specification

Yt = µt +Rt (1)

where µt = E[Yt] is the trend and Rt is the residual.

Note that in (1), E[Rt] = 0 for all t by construction. If additionally, Var(Rt) = σ2

and Cov(Yt, Yt−u) = σ2ρ(u) then Yt is second-order stationary, and ρ(u) is called the
autocorrelation function of the process {Yt : t = 0, 1, 2, ...}.

The term second-order stationary is sometimes abbreviated to stationary. A stronger
condition than this is strictly stationary, whose definition is that, for all positive integers
m and all sets of integers {u1, ..., um}, the joint distribution of {Yt−uk

: k = 1, ..., m} does
not depend on t.

A discrete-time process Yt is Gaussian if, for all positive integers m and all sets of integers
{u1, ..., um}, the joint distribution of {Yuk

: k = 1, ..., m} is multivariate Normal.

Exercise 1.2

The standard assunption in linear multiple regression modelling is that the residuals are
mutually independent with common variance.

(a) calculate the residuals from the regression model that you fitted in Exercise 1.1 (c)
(b) is it reasonable to assume that the residuals have a common variance?
(c) is it reasonable to assume that the residuals are independent?
(d) let ρ(u) denote the autocorrelation function of the residual time series; suggest a way
of estimating ρ(u) for u = 1, 2, 3, ...
(e) plot your estimates ρ̂(u) against u; what does the plot suggest about the general shape
of ρ(u)?

#

1.3 Two ways to define a first-order autoregressive process

The usual way to specify a first-order autoregressive process is

Yt − µt = α(Yt−1 − µt−1) + Zt : t = 2, 3, ... (2)
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where Zt is a sequence of independent random variables with common mean zero and
common variance τ 2. We will also assume that the process is Gaussian, hence Zt ∼
N(0, τ 2).

Exercise 1.3.1

(a) show that E[Yt] = µt

(b) show that, if |α| < 1 and we assume that Yt is stationary with variance σ2 then
σ2 = τ 2/(1− α2)
(c) hence, what distribution must we specify for Y1 so as to define a stationary Gaussian
process Yt?
(d) what happens when α = 1?

#

A less conventional way to specify a first-order autoregressive process is the following.
Let Ht denote the history of the process Yt, i.e. all values of the process at times t′ < t
(this definition is worded so that it extends immediately to processes in continuous time,
which we shall need later). Then, Yt is a Gaussian first-order autoregressive process if

Yt|Ht ∼ N(µt + α(Yt−1 − µt−1), τ
2) : t = 2, 3, ... (3)

You should be able to convince yourself that (2) and (3) are equivalent.

Exercise 1.3.2

(a) using whichever of (2) or (3) you consider the more natural, how would you define a
non-Gaussian first-order autoregressive process?
(b) give an explicit construction for a Poisson first-order autoregressive process, and write
an R function to simulate realisations of it
(c) for your model, does the unconditional, marginal distribution of Yt have a simple form?
(d) why is the answer to (c) of limited interest?

#

1.4 Inference

The log-likelihood for a realisation Yt : t = 1, ..., n of the stationary Gaussian first-order
autoregressive process takes the form

L(µ, α, τ 2) = log f(Y1) +
n∑

t=2

gt(Yt, Yt−1) (4)

where
f(Y1) = {2πτ 2/(1− α2)}−0.5 exp{(Y1 − µ1)

2(1− α2)/(2τ 2)}

and
gt(yt, yt−1) = (2πτ 2)−0.5 exp[{(Yt − µt − α(Yt−1 − µt−1)}

2/(2τ 2)].

Exercise 1.4

Consider the above model in which µ = (µ1, ..., µn) is specified by a linear model, µ = Xβ.
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(a) show that, if α is known and we condition on Y1, the maximum likelihood estimates
of β and τ 2 can be obtained by a weighted least squares calculation
(b) hence, again conditioning on Y1, obtain the profile log-likelihood for α
(c) hence, fit the Gaussian first-order autoregressive process, with a suitable defined trend
µt, to the Bailrigg maximum daily temperature data
(d) discuss, informally, how well (or how badly) this model fits the data.

#

1.5 Prediction (forecasting)

We will have more to say about prediction in the lecture course itself, although in a spatial
rather than at time-series setting. For the time being, a good test of your understanding
of this preliminary material is the following.

Exercise 1.5

(a) how would you predict the Bailrigg maximum temperature tomorrow? next week?
next year?
(b) does your suggested method of prediction differ according to the required forecast
lead-time, and if so why?

#

1.6 Further preliminary reading on time series

As suggested at the outset, you should have been able to work through this preliminary
material without any previous knowledge of time series analysis. Having done so, you
might like to read one or more introductory text-book accounts to get a different perspec-
tive on the subject. Two possibilities are Chatfield (2003, Chapters 1, 2) or Diggle (1990,
Chapters 1, 2).

If you want to read a little about more advanced topics, have a look at Diggle (1990,
Chapters 3 and 4) on spectral analysis and Durbin and Koopman (2001, Chapter 1) on
state-space models.

1.7 Longitudinal data

Longitudinal data are replicated time series data. This apparently innocuous change has
major implications for how one approaches data analysis. Independent replication admits
the possiblity of design-based, rather than model-based inference. Put another way, and
depending on the scientific purpose of the investigation in hand, in longitudinal data
analysis we may choose to accommodate the correlation between the different observations
within each time series without explicitly modelling it, because the replication makes it
possible to estimate the correlation structure non-parametrically.

A second distinction in practice is that time series analysis typically focuses on under-
standing the nature of the correlation structure within the single series, whereas in longi-
tudinal data analysis, the scientific focus is more often on understanding the trend, µ(t),
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and in particular how this is affected by explanatory variables associated with each of the
many replicated series.

The introductory chapter of either Diggle, Heagerty, Liang and Zeger (2002) or Fitzmau-
rice, Laird and Ware (2004) will give you more background information for this part of
the course.

Exercise 1.7

Consider a study-design in which children’s performance on an educational attainment
test is recorded at ages 5, 6 and 7. Let Yij denote the jth score for the ith child and
assume a model

Yij = α + βxj + Ui + Zij ,

where xj denotes age minus 6 (so x1 = −1, x2 = 0, x3 = 1), the Ui are mutually indepen-
dent N(0, ν2) and the Zij are mutually independent N(0, τ 2).

(a) Deduce the distribution of Yi = (Yi1, Yi2, Yi3)

(b) Find the maximum likelihood estimators of α and β and their variances, assuming ν2

and τ 2 are known.

(c) Compare your answers to (b) with the maximum likelihood estimators and their
variances when the Yij follow the model

Yij = α+ βxj + Z∗

ij,

where now the Z∗

ij are mutually independent, Normally distributed with mean zero and
variances σ2 = ν2 + τ 2.

#
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Preliminary Lecture 2: standard models and tools for spatial
data

In this preliminary lecture, my main aim is to introduce you to the three different kinds
of spatial data that have been most widely studied. In the course itself, I will say a little
more about all three kinds, but will focus particularly on real-valued continuous spatial
variation. As with Preliminary Lecture 1, try working through the material without using
any specialised text-books but don’t worry if you can’t (or don’t have time to) complete
all the exercises.

2.1 A simple taxonomy of spatial statistics

My preferred taxonomy is a minor variant on the one used by Cressie (1991) in his
encyclopaedic coverage of the subject. Note that this is a taxonomy of spatial processes
rather than of spatial data.

1. Discrete spatial variation

2. Continuous spatial variation:

(a) real-valued processes

(b) point processes

The primary distinction here is between a phenomenon that is defined on a finite (or
countably infinite) set of locations, and one that is defined on a continuous spatial region,
A ∈ IR2. Within the second category, I distinguish real-valued processes, {S(x) : x ∈ IR2},
from point processes whose realisations are countable sets of points,
X = {xi ∈ IR2 : i = 1, 2, ...}. I make a secondary distinction between spatially continuous
real-valued processes and point processes because the tools needed to analyse data from
the two types of process turn out to be somewhat different.

2.2 Discrete spatial variation (Markov random fields)

A model for discrete spatial variation specifies the joint distribution of a random vector
Y = (Y1, ..., Yn), where it is assumed that each Yi is associated with a spatial location xi.
The model has nothing to say about any other location, which at first sight casts some
doubt on its relevance as a spatial model except in the rather rare circumstance that the
spatial phenomenon being modelled is genuinely discrete; an example would be when the
Yi represent the yields of individual fruit-trees in an orchard (and even then, a sceptical
response might be to plant an additional tree). In practice, the models are very useful,
either when a spatial continuum is approximated by a lattice or when data are derived
from a spatial continuum by averaging over contiguous sub-areas. Examples of these two
situations are image analysis and disease risk mapping, respectively; see Figure 2.

The core idea in the Markov random field approach to discrete spatial models is that
the joint distribution of Y should be specified indirectly through its full conditionals, i.e.
the set of n univariate conditional distributions of Yi given {Yj : j 6= i}. The following
exercise shows that the full conditionals do indeed specify the joint distribution.
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Figure 2: A digital image (left-hand-panel) and a cancer risk map (right-hand panel)
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Figure 3: First-order to fourth-order neighbours of a central location in a regular square
lattice

Exercise 2.2.1

Show that, for any random vector Y with joint density f(y) and full conditionals
fi(yi|{yj : j 6= i}), then for any two feasible realisations y and z,

f(y)

f(z)
=

n∏

i=1

fi(yi|y1, ..., yi−1, zi+1, ..., zn)

fi(zi|y1, ..., yi−1, zi+1, ..., zn)

To be useful, a model needs to impose some structure on the full conditionals. To do
this, we define the neighbours N (i) of location i to be those locations j such that the full
conditional of Yi depends on Yj, hence fi(yi|{yj : j 6= i}) = fi(yi|{yj : j ∈ N (i)}). For a
process on a regular lattice this gives a natural hierarchy of Markov random field models,
as illustrated in Figure 3. For a process on an irregular set of locations, it is not obvious
how the neighbourhoods should be defined.

Note that the probabilistic structure of a Markov random field is identical to that of a
graphical model for general multivariate data; the graph with edges between pairs of neigh-
bours in a Markov random field is the conditional independence graph of the equivalent
graphical model. For an introduction to graphical models, see Whittaker (1990).
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In the early days of spatial statistics (i.e. the early 1970’s), the specification of models
through their full conditionals was considered somewhat controversial (see, for example,
the Discussion of Besag, 1974). To a statistician brought up in the age of hierarchical
models and the ubiquitous Gibbs sampler, this might seem rather quaint, but it gives me
an excuse to show through a simple example why space is not like time.

As we have seen in Section 1 of this preliminary material, a first-order autoregressive time
series model Yt (with zero mean for simplicity) can equally be defined as

Yt = αYt−1 + Zt : ZtN(0, τ
2) (5)

or
Yt|{Ys : s < t} ∼ N(αYt−1, τ

2). (6)

The one-dimensional spatial analogues of (5) and (6) are

Yi = α(Yi−1 + Yi+1) + Zt : Zt ∼ N(0, τ 2) (7)

or
Yi|{Yj : j 6= i} ∼ N(α(Yi−1 + Yi+1), τ

2), (8)

but these are not equivalent.

Exercise 2.2.2

Show that for the model (7) the full conditional of Yi depends on Yi−2, Yi−1, Yi+1 and
Yi+2.

The so-called simultaneous autoregressive construction (7) turned out to be a bit of a
dead-end, not least because it cannot be easily adapted either to non-lattice or to non-
Gaussian models (although it survives in a body of work called spatial econometrics, see
for example Pace and Le Sage, 2010).

2.3 Real-valued continuous spatial variation (geostatistics)

Real-valued continuous spatial variation is arguably the most widely encountered form of
spatial process in nature. Our interest in this Section is with processes that are measured
at a finite set of sampled locations, leading to data of the form (Yi, xi) : i = 1, ..., n, where
Yi is a measured value at a location xi in a spatially continuous region of interest A.
Probably the earliest systematic development of a statistical methodology for analysing
data of this kind is the Fontainebleau school of geostatistics led by the late Georges
Matheron. The name geostatistics derives from its origins in mineral exploration, where
Yi represents the grade of mineral extracted from a sample of material at a location xi in
a region A under consideration for future exploitation.

Geostatistical models are naturally hierarchical, consisting of a first-level model for an
underlying spatially continuous process {S(x) : x ∈ IR2}, and a second-level model for the
sampling distribution of the Yi conditional on S(·). The simplest, and most widely used,
model specifies S(·) to be a Gaussian process and the Yi as conditionally independent
Gaussian with E[Yi|S(·)] = S(xi) and Var{Yi|S(·)} = τ 2. Equivalently,

Yi = S(xi) + Zi, (9)
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where the Zi are independent N(0, τ 2).

Note that (9) is somewhat reminiscent of the simultaneous autoregressive specification
(7). However, the model (9), unlike a Markov random field model, does adjust itself
automatically to any augmentation of the data by measurements at additional locations.
I still favour the conditional formulation rather than the joint formulation (9) because
it extends naturally to non-Gaussian processes. For example, a geostatistical model for
count data can be obtained by retaining the Gaussian specification for S(·) and making
the conditional distribution of Yi given S(·) Poisson with expectation exp{S(xi)}.

To specify the Gaussian process S(·), we need only specify its mean and covariance struc-
ture. For simplicity, assume that the mean is constant. For a stationary process, we
require Var{S(x)} = σ2 for all x and Corr{S(x), S(x′)} = ρ(x − x′) for all x and x′. If
S(·) is also isotropic, then ρ(x− x′) = ρ(||x− x′||) where || · || denotes distance.

The Matérn family of correlation functions, named after Matérn (1986) is given by

ρ(u) = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ), (10)

in which Kκ(·) denotes a modified Bessel function of order κ, φ > 0 is a scale parameter
with the dimensions of distance, and κ > 0 is a shape parameter which determines the
mean-square differentiability of S(·).

Exercise 2.3

For a variety of reasons, geostatisticans traditionally do not work directly with the covari-
ance function. Instead, they characterise the second-moment structure of their models in
terms of the variogram,

V (u) =
1

2
Var{S(x)− S(x− u)}, (11)

if this is well-defined.

(a) Show that for any stationary process S(·), V (u) = σ2{1− ρ(u)}.

(b) Find a non-stationary process S(·) whose variogram is well-defined.

2.4 Spatial point processes

The simplest model for a spatial point process is the homogeneous planar Poisson process.
One way to define this process is through the following postulates:

PP1. The number of points of the process in any planar region A follows a Poisson
distribution with mean λ|A| where | · | denotes area and the constant λ > 0 is the intensity
of the process.

PP2. Numbers of points of the process in disjoint regions are stochastically independent.

One consequence of PP1 and PP2, which is sometimes used as part of the definition of
the Poisson process, is:

PP3. Conditional on there being n points of the process in a region A, the positions of
the points form an independent random sample from the uniform distribution on A.

The Poisson process is rarely satisfactory as a model for naturally occurring point pro-
cesses, but it is the foundation on which many more interesting models are built. It is not
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Figure 4: Locations of 42 biological cells (left-hand panel), 65 Japanese black pine saplings
(centre panel) and 62 redwood seedlings (right-hand panel).

immediately obvious that PP1, PP2 and PP3 are mutually consistent, and they certainly
would not be if the Poisson distribution in PP1 were replaced by an arbitrary discrete
distribution.

Exercise 2.4.1

(a) Prove that PP1 and PP2 imply PP3.

(b) Derive the distribution of the distance from the origin to the closest point in a homo-
geneous planar Poisson process of intensity λ

(c) Generalise the result of (b) to obtain the joint distribution of the distances X1, ..., Xk

from the origin to the first, second, ..., kth nearest points of the process.

The Poisson process provides a standard of complete spatial randomness. We can use
this as a dividing hypothesis, and so characterise spatial point process data as regular,
completely random or aggregated. Figure 4 shows three data-sets that exemplify this
classification.
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Exercise 2.4.2

Think of a simple stochastic model that would generate regular spatial point patterns,
and one that would generate aggregated patterns. Write an R function to simulate each
of your models on the unit square.

2.5 Further preliminary reading on spatial statistics

Cressie (1991) remains a standard reference for spatial statistical models and methods.
Possibly more accessible accounts of each of the three sub-areas I have described in this
preliminary material are the introductory chapters of Rue and Held (2005) on discrete
spatial variation, Diggle and Ribeiro (2007) on geostatistics and Diggle (2003) on point
processes. Waller and Gotway (2004) cover all three sub-areas at an introductory level,
with a focus on public health applications. Gelfand et al (2010) is an edited compilation
that covers both spatial and spatio-temporal models and methods.
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Computing resources

I shall be using R throughout the course. Useful R packages that you might like to look
at beforehand (all available from CRAN) include (amongst many others):

For longitudinal data analysis: gee, lme4, nlme, joineR

For spatial analysis: spBayes, geoR, geoRglm, mgcv, spatstat, splancs, lgcp, stpp

Note that CRAN also offers R2WinBUGS and rbugs, packages that allow the WinBUGS
and OpenBUGS software to be accessed within R

Note also that I claim no special expertise in any of these!

PJD, 10 July 2012
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