Statistical Modelling

Dave Woods
(Chapters 1-2 closely based on original notes by Anthony Davison and Jon Forster)

(C)2014
Statistical Modelling 2

1. Model Selection 3
Overview 4
Basic Ideas 5
Why model? 6
Criteria for model selection 7
Motivation 8
Setting 11
Logistic regression 12
Nodal involvement 13
Log likelihood 16
Wrong model 17
Out-of-sample prediction 19
Information criteria 20
Nodal involvement. 22
Theoretical aspects 23
Properties of AIC, NIC, BIC 24
Linear Model 25
Variable selection 26
Stepwise methods 27
Nuclear power station data 28
Stepwise Methods: Comments 30
Prediction error 31
Example 33
Cross-validation 34
Other criteria 36
Experiment 37
Sparse Variable Selection 41
Motivation 42
Desiderata 43
Example: Lasso 44
Soft thresholding 45
Example 47
Penalties 48
Threshold functions 49
Properties of penalties 50
Oracle 51
Bayesian Inference 52
Thomas Bayes (1702-1761) 53
Bayesian inference 54
Encompassing model 56
Inference 57
Lindley's paradox 58
Model averaging 59
Cement data 60
DIC. 64
2. Beyond the Generalised Linear Model 65
Overview 66
Generalised Linear Models 67
GLM recap 68
GLM failure 69
Overdispersion 70
Example 1 71
Quasi-likelihood 75
Reasons 77
Direct models 79
Random effects 81
Dependence 83
Example 1 revisited 84
Reasons 85
Random effects 86
Marginal models 87
Clustered data 89
Example 2: Rat growth 90
Random Effects and Mixed Models 94
Linear mixed models 95
Discussion 98
LMM fitting 100
REML 101
Estimating random effects 102
Bayesian LMMs 103
Example 2 revisited 105
GLMMs 109
GLMM fitting 112
Bayesian GLMMS 116
Example 1 revisited 117
Conditional independence and graphical representations 119
Conditional independence 120
Graphs. 123
DAGs 124
Undirected graphs 130
3. Design of Experiments 135
Overview 136
Introduction and principles of experimentation 137
Modes of data collection 138
Role of experimentation 139
Definitions 140
A unit-treatment statistical model 141
Example 142
Principles of experimentation 143
Factorial designs 145
Example revisited 146
Treatments and a regression model 147
(Two-level) Factorial design 148
Regression model 149
Main effects and interactions 150
Orthogonality 153
Replication 154
Principles of factorial experimentation 155
Regular fractional factorial designs 156
Example 157
Choosing subsets of treatments 158
The defining relation and alias scheme 161
The alias matrix 162
The role of fractional factorial designs in a sequential strategy 164
D-optimality and non-regular designs 165
Introduction 166
D-optimality 167
Comments 168
Example: Plackett-Burman design 169
Example: supersaturated design 171
Approximate designs 175
A generalised definition of a design 176
Information matrix 177
Example: logistic regression 178
General equivalence theorem 180

Statistical Modelling

1. Model Selection
2. Beyond the Generalised Linear Model
3. Design of Experiments

APTS: Statistical Modelling
April 2014 - slide 2

Overview

1. Basic ideas
2. Linear model
3. Sparse variable selection
4. Bayesian inference

Basic Ideas

Why model?

George E. P. Box (1919-2013):
All models are wrong, but some models are useful.
$\square \quad$ Some reasons we construct models:

- to simplify reality (efficient representation);
- to gain understanding;
- to compare scientific, economic, ... theories;
- to predict future events/data;
- to control a process.
\square We (statisticians!) rarely believe in our models, but regard them as temporary constructs subject to improvement.Often we have several and must decide which is preferable, if any.
APTS: Statistical Modelling
April 2014 - slide 6

Criteria for model selection

Substantive knowledge, from prior studies, theoretical arguments, dimensional or other general considerations (often qualitative)Sensitivity to failure of assumptions (prefer models that are robustly valid)Quality of fit—residuals, graphical assessment (informal), or goodness-of-fit tests (formal)Prior knowledge in Bayesian sense (quantitative)Generalisability of conclusions and/or predictions: same/similar models give good fit for many different datasets... but often we have just one dataset ...

Motivation

Even after applying these criteria (but also before!) we may compare many models:
\square linear regression with p covariates, there are 2^{p} possible combinations of covariates (each in/out), before allowing for transformations, etc.- if $p=20$ then we have a problem;
\square choice of bandwidth $h>0$ in smoothing problems
\square the number of different clusterings of n individuals is a Bell number (starting from $n=1$): 1, 2, $5,15,52,203,877,4140,21147,115975, \ldots$
\square we may want to assess which among 5×10^{5} SNPs on the genome may influence reaction to a new drug;...
For reasons of economy we seek 'simple' models.
APTS: Statistical Modelling
April 2014 - slide 8

Albert Einstein (1879-1955)

'Everything should be made as simple as possible, but no simpler.'
APTS: Statistical Modelling
April 2014 - slide 9

William of Occam (?1288-?1348)

Occam's razor: Entia non sunt multiplicanda sine necessitate: entities should not be multiplied beyond necessity.

Setting

To focus and simplify discussion we will consider parametric models, but the ideas generalise to semi-parametric and non-parametric settings
$\square \quad$ We shall take generalised linear models (GLMs) as example of moderately complex parametric models:

- Normal linear model has three key aspects:
\triangleright structure for covariates: linear predictor $\eta=x^{\mathrm{T}} \beta$;
\triangleright response distribution: $y \sim N\left(\mu, \sigma^{2}\right)$; and
\triangleright relation $\eta=\mu$ between $\mu=\mathrm{E}(y)$ and η.
- GLM extends last two to
$\triangleright \quad y$ has density

$$
f(y ; \theta, \phi)=\exp \left\{\frac{y \theta-b(\theta)}{\phi}+c(y ; \phi)\right\}
$$

where θ depends on η; dispersion parameter ϕ is often known; and
$\triangleright \quad \eta=g(\mu)$, where g is monotone link function.
APTS: Statistical Modelling
April 2014 - slide 11

Logistic regression

Commonest choice of link function for binary reponses:$$
\operatorname{Pr}(Y=1)=\pi=\frac{\exp \left(x^{\mathrm{T}} \beta\right)}{1+\exp \left(x^{\mathrm{T}} \beta\right)}, \quad \operatorname{Pr}(Y=0)=\frac{1}{1+\exp \left(x^{\mathrm{T}} \beta\right)}
$$

giving linear model for log odds of 'success',

$$
\log \left\{\frac{\operatorname{Pr}(Y=1)}{\operatorname{Pr}(Y=0)}\right\}=\log \left(\frac{\pi}{1-\pi}\right)=x^{\mathrm{T}} \beta
$$

Log likelihood for β based on independent responses y_{1}, \ldots, y_{n} with covariate vectors x_{1}, \ldots, x_{n} is

$$
\ell(\beta)=\sum_{j=1}^{n} y_{j} x_{j}^{\mathrm{T}} \beta-\sum_{j=1}^{n} \log \left\{1+\exp \left(x_{j}^{\mathrm{T}} \beta\right)\right\}
$$

Good fit gives small deviance $D=2\{\ell(\tilde{\beta})-\ell(\widehat{\beta})\}$, where $\widehat{\beta}$ is model fit MLE and $\tilde{\beta}$ is unrestricted MLE.

Nodal involvement data

Table 1: Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r), with five binary covariates age etc.

m	r	age	stage	grade	xray	acid
6	5	0	1	1	1	1
6	1	0	0	0	0	1
4	0	1	1	1	0	0
4	2	1	1	0	0	1
4	0	0	0	0	0	0
3	2	0	1	1	0	1
3	1	1	1	0	0	0
3	0	1	0	0	0	1
3	0	1	0	0	0	0
2	0	1	0	0	1	0
2	1	0	1	0	0	1
2	1	0	0	1	0	0
1	1	1	1	1	1	1
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
1	1	0	0	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	0

APTS: Statistical Modelling
April 2014 - slide 13

Nodal involvement deviances

Deviances D for 32 logistic regression models for nodal involvement data. + denotes a term included in the model.

age	st	gr	xr	ac	df	D	age	st	gr	xr	ac	df	D
					52	40.71	+	+	+			49	29.76
+					51	39.32	+	$+$		$+$		49	23.67
	+				51	33.01	+	+			+	49	25.54
		+			51	35.13	+		+	+		49	27.50
			+		51	31.39	+		+		+	49	26.70
				+	51	33.17	+			+	+	49	24.92
+	$+$				50	30.90		+	$+$	$+$		49	23.98
+		+			50	34.54		$+$	+		+	49	23.62
+			+		50	30.48		+		+	+	49	19.64
+				$+$	50	32.67			+	$+$	+	49	21.28
	+	+			50	31.00	+	$+$	+	$+$		48	23.12
	+		+		50	24.92	+	+	+		$+$	48	23.38
	+			+	50	26.37	+	$+$		+	+	48	19.22
		+	+		50	27.91	+		+	+	+	48	21.27
		+		+	50	26.72		+	+	+	+	48	18.22
			+	+	50	25.25	+	+	+	+	+	47	18.07

Nodal involvement

Adding terms

- always increases the log likelihood $\widehat{\ell}$ and so reduces D,
- increases the number of parameters,
so taking the model with highest $\widehat{\ell}$ (lowest D) would give the full modelWe need to trade off quality of fit (measured by D) and model complexity (number of parameters)
APTS: Statistical Modelling
April 2014 - slide 15

Log likelihood

Given (unknown) true model $g(y)$, and candidate model $f(y ; \theta)$, Jensen's inequality implies that$$
\begin{equation*}
\int \log g(y) g(y) d y \geq \int \log f(y ; \theta) g(y) d y \tag{1}
\end{equation*}
$$

with equality if and only if $f(y ; \theta) \equiv g(y)$.If θ_{g} is the value of θ that maximizes the expected log likelihood on the right of (1), then it is natural to choose the candidate model that maximises

$$
\bar{\ell}(\widehat{\theta})=n^{-1} \sum_{j=1}^{n} \log f(y ; \widehat{\theta})
$$

which should be an estimate of $\int \log f(y ; \theta) g(y) d y$. However as $\bar{\ell}(\widehat{\theta}) \geq \bar{\ell}\left(\theta_{g}\right)$, by definition of $\widehat{\theta}$, this estimate is biased upwards.We need to correct for the bias, but in order to do so, need to understand the properties of likelihood estimators when the assumed model f is not the true model g.

Wrong model

Suppose the true model is g, that is, $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} g$, but we assume that $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} f(y ; \theta)$. The \log likelihood $\ell(\theta)$ will be maximised at $\widehat{\theta}$, and

$$
\bar{\ell}(\widehat{\theta})=n^{-1} \ell(\widehat{\theta}) \xrightarrow{\text { a.s. }} \int \log f\left(y ; \theta_{g}\right) g(y) d y, \quad n \rightarrow \infty,
$$

where θ_{g} minimizes the Kullback-Leibler discrepancy

$$
K L\left(f_{\theta}, g\right)=\int \log \left\{\frac{g(y)}{f(y ; \theta)}\right\} g(y) d y
$$

θ_{g} gives the density $f\left(y ; \theta_{g}\right)$ closest to g in this sense, and $\widehat{\theta}$ is determined by the finite-sample version of $\partial K L\left(f_{\theta}, g\right) / \partial \theta$, i.e.

$$
0=n^{-1} \sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta}
$$

Wrong model II

Theorem 1 Suppose the true model is g, that is, $Y_{1}, \ldots, Y_{n} \stackrel{i i d}{\sim} g$, but we assume that
$Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} f(y ; \theta)$. Then under mild regularity conditions the maximum likelihood estimator $\widehat{\theta}$ satisfies

$$
\begin{equation*}
\widehat{\theta} \dot{\sim} N_{p}\left\{\theta_{g}, I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right) I\left(\theta_{g}\right)^{-1}\right\} \tag{2}
\end{equation*}
$$

where $f_{\theta_{g}}$ is the density minimising the Kullback-Leibler discrepancy between f_{θ} and g, I is the Fisher information for f, and K is the variance of the score statistic. The likelihood ratio statistic

$$
W\left(\theta_{g}\right)=2\left\{\ell(\widehat{\theta})-\ell\left(\theta_{g}\right)\right\} \dot{\sim} \sum_{r=1}^{p} \lambda_{r} V_{r}
$$

where $V_{1}, \ldots, V_{p} \stackrel{\text { iid }}{\sim} \chi_{1}^{2}$, and the λ_{r} are eigenvalues of $K\left(\theta_{g}\right)^{1 / 2} I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)^{1 / 2}$. Thus $\mathrm{E}\left\{W\left(\theta_{g}\right)\right\}=\operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}$.

Under the correct model, θ_{g} is the 'true' value of $\theta, K(\theta)=I(\theta), \lambda_{1}=\cdots=\lambda_{p}=1$, and we recover the usual results.

Note: 'Proof' of Theorem 1

Expansion of the equation defining $\widehat{\theta}$ about θ_{g} yields

$$
\widehat{\theta} \doteq \theta_{g}+\left\{-n^{-1} \sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \theta_{g}\right)}{\partial \theta \partial \theta^{\mathrm{T}}}\right\}^{-1}\left\{n^{-1} \sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \theta_{g}\right)}{\partial \theta}\right\}
$$

and a modification of the usual derivation gives

$$
\widehat{\theta} \dot{\sim} N_{p}\left\{\theta_{g}, I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right) I\left(\theta_{g}\right)^{-1}\right\},
$$

where the information sandwich variance matrix depends on

$$
\begin{aligned}
K\left(\theta_{g}\right) & =n \int \frac{\partial \log f(y ; \theta)}{\partial \theta} \frac{\partial \log f(y ; \theta)}{\partial \theta^{\mathrm{T}}} g(y) d y, \\
I\left(\theta_{g}\right) & =-n \int \frac{\partial^{2} \log f(y ; \theta)}{\partial \theta \partial \theta^{\mathrm{T}}} g(y) d y .
\end{aligned}
$$

If $g(y)=f(y ; \theta)$, so that the supposed density is correct, then θ_{g} is the true θ, then

$$
K\left(\theta_{g}\right)=I(\theta),
$$

and (2) reduces to the usual approximation.
In practice $g(y)$ is of course unknown, and then $K\left(\theta_{g}\right)$ and $I\left(\theta_{g}\right)$ may be estimated by

$$
\widehat{K}=\sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta^{\mathrm{T}}}, \quad \widehat{J}=-\sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta \partial \theta^{\mathrm{T}}} ;
$$

the latter is just the observed information matrix. We may then construct confidence intervals for θ_{g} using (2) with variance matrix $\widehat{J}^{-1} \widehat{K} \widehat{J}^{-1}$.
Similar expansions lead to the result for the likelihood ratio statistic.
APTS: Statistical Modelling
April 2014 - note 1 of slide 18

Out-of-sample prediction

We need to fix two problems with using $\bar{\ell}(\widehat{\theta})$ to choose the best candidate model:

- upward bias, as $\bar{\ell}(\widehat{\theta}) \geq \bar{\ell}\left(\theta_{g}\right)$ because $\widehat{\theta}$ is based on Y_{1}, \ldots, Y_{n};
- no penalisation if the dimension of θ increases.

If we had another independent sample $Y_{1}^{+}, \ldots, Y_{n}^{+} \stackrel{\text { iid }}{\sim} g$ and computed

$$
\bar{\ell}^{+}(\widehat{\theta})=n^{-1} \sum_{j=1}^{n} \log f\left(Y_{j}^{+} ; \widehat{\theta}\right),
$$

then both problems disappear, suggesting that we choose the candidate model that maximises

$$
\mathrm{E}_{g}\left[\mathrm{E}_{g}^{+}\left\{\bar{\ell}^{+}(\widehat{\theta})\right\}\right],
$$

where the inner expectation is over the distribution of the Y_{j}^{+}, and the outer expectation is over the distribution of $\widehat{\theta}$.

Information criteria

Previous results on wrong model give

$$
\mathrm{E}_{g}\left[\mathrm{E}_{g}^{+}\left\{\bar{\ell}^{+}(\widehat{\theta})\right\}\right] \doteq \int \log f\left(y ; \theta_{g}\right) g(y) d y-\frac{1}{2 n} \operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
$$

where the second term is a penalty that depends on the model dimension.
\square We want to estimate this based on Y_{1}, \ldots, Y_{n} only, and get

$$
\mathrm{E}_{g}\{\bar{\ell}(\widehat{\theta})\} \doteq \int \log f\left(y ; \theta_{g}\right) g(y) d y+\frac{1}{2 n} \operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
$$

To remove the bias, we aim to maximise

$$
\bar{\ell}(\widehat{\theta})-\frac{1}{n} \operatorname{tr}\left(\widehat{J}^{-1} \widehat{K}\right),
$$

where

$$
\widehat{K}=\sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta^{\mathrm{T}}}, \quad \widehat{J}=-\sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta \partial \theta^{\mathrm{T}}}
$$

the latter is just the observed information matrix.
APTS: Statistical Modelling
April 2014 - slide 20

Note: Bias of log likelihood

To compute the bias in $\bar{\ell}(\widehat{\theta})$, we write

$$
\begin{aligned}
\mathrm{E}_{g}\{\bar{\ell}(\widehat{\theta})\} & =\mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\mathrm{E}\left\{\bar{\ell}(\widehat{\theta})-\bar{\ell}\left(\theta_{g}\right)\right\} \\
& =\mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\frac{1}{2 n} \mathrm{E}\left\{W\left(\theta_{g}\right)\right\} \\
& \doteq \mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\frac{1}{2 n} \operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
\end{aligned}
$$

where E_{g} denotes expectation over the data distribution g. The bias is positive because I and K are positive definite matrices.

APTS: Statistical Modelling
April 2014 - note 1 of slide 20

Information criteria

Let $p=\operatorname{dim}(\theta)$ be the number of parameters for a model, and $\widehat{\ell}$ the corresponding maximised log likelihood.
For historical reasons we choose models that minimise similar criteria

- $2(p-\widehat{\ell})$ (AIC—Akaike Information Criterion)
- $2\left\{\operatorname{tr}\left(\widehat{J}^{-1} \widehat{K}\right)-\widehat{\ell}\right\}$ (NIC—Network Information Criterion)
- $2\left(\frac{1}{2} p \log n-\widehat{\ell}\right)$ (BIC—Bayes Information Criterion)
- $\mathrm{AIC}_{\mathrm{c}}, \mathrm{AIC}_{\mathrm{u}}$, DIC, EIC, FIC, GIC, SIC, TIC, ...
- Mallows $C_{p}=R S S / s^{2}+2 p-n$ commonly used in regression problems, where $R S S$ is residual sum of squares for candidate model, and s^{2} is an estimate of the error variance σ^{2}.

Nodal involvement data

AIC and BIC for 2^{5} models for binary logistic regression model fitted to the nodal involvement data. Both criteria pick out the same model, with the three covariates st, xr, and ac, which has deviance $D=19.64$. Note the sharper increase of BIC after the minimum.

APTS: Statistical Modelling
April 2014 - slide 22

Theoretical aspects

We may suppose that the true underlying model is of infinite dimension, and that by choosing among our candidate models we hope to get as close as possible to this ideal model, using the data available.If so, we need some measure of distance between a candidate and the true model, and we aim to minimise this distance.A model selection procedure that selects the candidate closest to the truth for large n is called asymptotically efficient.An alternative is to suppose that the true model is among the candidate models.If so, then a model selection procedure that selects the true model with probability tending to one as $n \rightarrow \infty$ is called consistent.
Properties of AIC, NIC, BIC

We seek to find the correct model by minimising IC $=c(n, p)-2 \widehat{\ell}$, where the penalty $c(n, p)$ depends on sample size n and model dimension $p$$\square$ Crucial aspect is behaviour of differences of IC.
\square We obtain IC for the true model, and IC+ for a model with one more parameter. Then

$$
\begin{aligned}
\operatorname{Pr}\left(\mathrm{IC}_{+}<\mathrm{IC}\right) & =\operatorname{Pr}\left\{c(n, p+1)-2 \widehat{\ell}_{+}<c(n, p)-2 \widehat{\ell}\right\} \\
& =\operatorname{Pr}\left\{2\left(\widehat{\ell}_{+}-\widehat{\ell}\right)>c(n, p+1)-c(n, p)\right\} .
\end{aligned}
$$

and in large samples

$$
\begin{aligned}
& \text { for AIC, } c(n, p+1)-c(n, p)=2 \\
& \text { for NIC, } c(n, p+1)-c(n, p) \quad \dot{\sim} 2 \\
& \text { for BIC, } c(n, p+1)-c(n, p)=\log n
\end{aligned}
$$

In a regular case $2\left(\widehat{\ell}_{+}-\widehat{\ell}\right) \dot{\sim} \chi_{1}^{2}$, so as $n \rightarrow \infty$,

$$
\operatorname{Pr}\left(\mathrm{IC}_{+}<\mathrm{IC}\right) \rightarrow \begin{cases}0.16, & \text { AIC, NIC } \\ 0, & \text { BIC. }\end{cases}
$$

Thus AIC and NIC have non-zero probability of over-fitting, even in very large samples, but BIC does not.

Variable selection

Consider normal linear model

$$
Y_{n \times 1}=X_{n \times p}^{\dagger} \beta_{p \times 1}+\varepsilon_{n \times 1}, \quad \varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I_{n}\right),
$$

where design matrix X^{\dagger} has full rank $p<n$ and columns x_{r}, for $r \in \mathcal{X}=\{1, \ldots, p\}$. Subsets \mathcal{S} of \mathcal{X} correspond to subsets of columns.
\square Terminology

- the true model corresponds to subset $\mathcal{T}=\left\{r: \beta_{r} \neq 0\right\}$, and $|\mathcal{T}|=q<p$;
- a correct model contains \mathcal{T} but has other columns also, corresponding subset \mathcal{S} satisfies $\mathcal{T} \subset \mathcal{S} \subset \mathcal{X}$ and $\mathcal{T} \neq \mathcal{S}$;
- a wrong model has subset \mathcal{S} lacking some x_{r} for which $\beta_{r} \neq 0$, and so $\mathcal{T} \not \subset \mathcal{S}$.

Aim to identify \mathcal{T}.
\square If we choose a wrong model, have bias; if we choose a correct model, increase variance-seek to balance these.

Stepwise methods

Forward selection: starting from model with constant only,

1. add each remaining term separately to the current model;
2. if none of these terms is significant, stop; otherwise
3. update the current model to include the most significant new term; go to 1Backward elimination: starting from model with all terms,
4. if all terms are significant, stop; otherwise
5. update current model by dropping the term with the smallest F statistic; go to 1
\square Stepwise: starting from an arbitary model,
6. consider 3 options-add a term, delete a term, swap a term in the model for one not in the model;
7. if model unchanged, stop; otherwise go to 1

APTS: Statistical Modelling
April 2014 - slide 27

Nuclear power station data

Nuclear power station data

	Full model		Backward		Forward	
	Est (SE)	t	Est (SE)	t	Est (SE)	t
Constant	-14.24 (4.229)	-3.37	-13.26 (3.140)	-4.22	-7.627 (2.875)	-2.66
date	0.209 (0.065)	3.21	0.212 (0.043)	4.91	0.136 (0.040)	3.38
$\log (\mathrm{T} 1)$	0.092 (0.244)	0.38				
$\log (\mathrm{T} 2)$	0.290 (0.273)	1.05				
$\log ($ cap $)$	0.694 (0.136)	5.10	0.723 (0.119)	6.09	0.671 (0.141)	4.75
PR	-0.092 (0.077)	-1.20				
NE	0.258 (0.077)	3.35	0.249 (0.074)	3.36		
CT	0.120 (0.066)	1.82	0.140 (0.060)	2.32		
BW	0.033 (0.101)	0.33				
$\log (\mathrm{N})$	-0.080 (0.046)	-1.74	-0.088 (0.042)	-2.11		
PT	$-0.224(0.123)$	-1.83	-0.226 (0.114)	-1.99	-0.490 (0.103)	-4.77
s (df)	0.164 (21)		0.159 (25		0.195 (28)	

Backward selection chooses a model with seven covariates also chosen by minimising AIC.

APTS: Statistical Modelling

April 2014 - slide 29

Stepwise Methods: Comments

Systematic search minimising AIC or similar over all possible models is preferable-not always feasible.
\square Stepwise methods can fit models to purely random data—main problem is no objective function.
$\square \quad$ Sometimes used by replacing F significance points by (arbitrary!) numbers, e.g. $F=4$
\square Can be improved by comparing AIC for different models at each step-uses AIC as objective function, but no systematic search.

APTS: Statistical Modelling
April 2014 - slide 30

Prediction error

To identify \mathcal{T}, we fit candidate model

$$
Y=X \beta+\varepsilon
$$

where columns of X are a subset \mathcal{S} of those of X^{\dagger}.
$\square \quad$ Fitted value is

$$
X \widehat{\beta}=X\left\{\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} Y\right\}=H Y=H(\mu+\varepsilon)=H \mu+H \varepsilon
$$

where $H=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is the hat matrix and $H \mu=\mu$ if the model is correct.
\square Following reasoning for AIC, suppose we also have independent dataset Y_{+}from the true model, so $Y_{+}=\mu+\varepsilon_{+}$
$\square \quad$ Apart from constants, previous measure of prediction error is

$$
\Delta(X)=n^{-1} \mathrm{E} \mathrm{E}_{+}\left\{\left(Y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(Y_{+}-X \widehat{\beta}\right)\right\}
$$

with expectations over both Y_{+}and Y.

Prediction error II

$\square \quad$ Can show that

$$
\Delta(X)= \begin{cases}n^{-1} \mu^{\mathrm{T}}(I-H) \mu+(1+p / n) \sigma^{2}, & \text { wrong model } \tag{3}\\ (1+q / n) \sigma^{2}, & \text { true model } \\ (1+p / n) \sigma^{2}, & \text { correct model }\end{cases}
$$

recall that $q<p$.
Bias: $n^{-1} \mu^{\mathrm{T}}(I-H) \mu>0$ unless model is correct, and is reduced by including useful termsVariance: $(1+p / n) \sigma^{2}$ increased by including useless termsIdeal would be to choose covariates X to minimise $\Delta(X)$: impossible-depends on unknowns μ, σ.
Must estimate $\Delta(X)$
APTS: Statistical Modelling
April 2014 - slide 32

Note: Proof of (3)

Consider data $y=\mu+\varepsilon$ to which we fit the linear model $y=X \beta+\varepsilon$, obtaining fitted value

$$
X \widehat{\beta}=H y=H(\mu+\varepsilon)
$$

where the second term is zero if μ lies in the space spanned by the columns of X, and otherwise is not. We have a new data set $y_{+}=\mu+\varepsilon_{+}$, and we will compute the average error in predicting y_{+}using $X \widehat{\beta}$, which is

$$
\Delta=n^{-1} \mathrm{E}\left\{\left(y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(y_{+}-X \widehat{\beta}\right)\right\}
$$

Now

$$
y_{+}-X \widehat{\beta}=\mu+\varepsilon_{+}-(H \mu+H \varepsilon)=(I-H) \mu+\varepsilon_{+}-H \varepsilon
$$

Therefore

$$
\left(y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(y_{+}-X \widehat{\beta}\right)=\mu^{\mathrm{T}}(I-H) \mu+\varepsilon^{\mathrm{T}} H \varepsilon+\varepsilon_{+}^{\mathrm{T}} \varepsilon_{+}+A
$$

where $\mathrm{E}(A)=0$; this gives that

$$
\Delta(X)= \begin{cases}n^{-1} \mu^{\mathrm{T}}(I-H) \mu+(1+p / n) \sigma^{2}, & \text { wrong model } \\ (1+q / n) \sigma^{2}, & \text { true model } \\ (1+p / n) \sigma^{2}, & \text { correct model. }\end{cases}
$$

Example

$\Delta(X)$ as a function of the number of included variables p for data with $n=20, q=6, \sigma^{2}=1$. The minimum is at $p=q=6$:
\square there is a sharp decrease in bias as useful covariates are added;there is a slow increase with variance as the number of variables p increases.
APTS: Statistical Modelling
April 2014 - slide 33

Cross-validation

If n is large, can split data into two parts $\left(X^{\prime}, y^{\prime}\right)$ and $\left(X^{*}, y^{*}\right)$, say, and use one part to estimate model, and the other to compute prediction error; then choose the model that minimises$$
\widehat{\Delta}=n^{\prime-1}\left(y^{\prime}-X^{\prime} \widehat{\beta}^{*}\right)^{\mathrm{T}}\left(y^{\prime}-X^{\prime} \widehat{\beta}^{*}\right)=n^{\prime-1} \sum_{j=1}^{n^{\prime}}\left(y_{j}^{\prime}-x_{j}^{\prime} \widehat{\beta}^{*}\right)^{2}
$$Usually dataset is too small for this; use leave-one-out cross-validation sum of squares

$$
n \widehat{\Delta}_{\mathrm{CV}}=\mathrm{CV}=\sum_{j=1}^{n}\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}_{-j}\right)^{2}
$$

where $\widehat{\beta}_{-j}$ is estimate computed without $\left(x_{j}, y_{j}\right)$.Seems to require n fits of model, but in fact

$$
\mathrm{CV}=\sum_{j=1}^{n} \frac{\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}\right)^{2}}{\left(1-h_{j j}\right)^{2}}
$$

where $h_{11}, \ldots, h_{n n}$ are diagonal elements of H, and so can be obtained from one fit.

Cross-validation II

Simpler (more stable?) version uses generalised cross-validation sum of squares

$$
\mathrm{GCV}=\sum_{j=1}^{n} \frac{\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}\right)^{2}}{\{1-\operatorname{tr}(H) / n\}^{2}}
$$

\square Can show that

$$
\begin{equation*}
\mathrm{E}(\mathrm{GCV})=\mu^{\mathrm{T}}(I-H) \mu /(1-p / n)^{2}+n \sigma^{2} /(1-p / n) \approx n \Delta(X) \tag{4}
\end{equation*}
$$

so try and minimise GCV or CV.
\square Many variants of cross-validation exist. Typically find that model chosen based on CV is somewhat unstable, and that GCV or k-fold cross-validation works better. Standard strategy is to split data into 10 roughly equal parts, predict for each part based on the other nine-tenths of the data, and find model that minimises this estimate of prediction error.

APTS: Statistical Modelling

April 2014 - slide 35

Note: Derivation of (4)

We need the expectation of $(y-X \widehat{\beta})^{\mathrm{T}}(y-X \widehat{\beta})$, where $y-X \widehat{\beta}=(I-H) y=(I-H)(\mu+\varepsilon)$, and squaring up and noting that $\mathrm{E}(\varepsilon)=0$ gives

$$
\mathrm{E}\left\{(y-X \widehat{\beta})^{\mathrm{T}}(y-X \widehat{\beta})\right\}=\mu^{\mathrm{T}}(I-H) \mu+\mathrm{E}\left\{\varepsilon^{\mathrm{T}}(I-H) \varepsilon\right\}=\mu^{\mathrm{T}}(I-H) \mu+(n-p) \sigma^{2} .
$$

Now note that $\operatorname{tr}(H)=p$ and divide by $(1-p / n)^{2}$ to give (almost) the required result, for which we need also $(1-p / n)^{-1} \approx 1+p / n$, for $p \ll n$.

APTS: Statistical Modelling

April 2014 - note 1 of slide 35

Other selection criteria

Corrected version of AIC for models with normal responses:

$$
\mathrm{AIC}_{\mathrm{c}} \equiv n \log \widehat{\sigma}^{2}+n \frac{1+p / n}{1-(p+2) / n}
$$

where $\widehat{\sigma}^{2}=\mathrm{RSS} / n$. Related (unbiased) $\mathrm{AIC}_{\mathrm{u}}$ replaces $\widehat{\sigma}^{2}$ by $S^{2}=\mathrm{RSS} /(n-p)$.
\square Mallows suggested

$$
C_{p}=\frac{S S_{p}}{s^{2}}+2 p-n,
$$

where $S S_{p}$ is RSS for fitted model and s^{2} estimates σ^{2}.
\square Comments:

- AIC tends to choose models that are too complicated; $\mathrm{AIC}_{\mathrm{c}}$ cures this somewhat
- BIC chooses true model with probability $\rightarrow 1$ as $n \rightarrow \infty$, if the true model is fitted.

Simulation experiment

Number of times models were selected using various model selection criteria in 50 repetitions using simulated normal data for each of 20 design matrices. The true model has $p=3$.

n		Number of covariates						
		1	2	3	4	5	6	7
10	C_{p}		131	504	91	63	83	128
	BIC		72	373	97	83	109	266
	AIC		52	329	97	91	125	306
	$\mathrm{AIC}_{\mathrm{c}}$	15	398	565	18	4		
20	C_{p}		4	673	121	88	61	53
	BIC		6	781	104	52	30	27
	AIC		2	577	144	104	76	97
	$\mathrm{AIC}_{\mathrm{c}}$		8	859	94	30	8	1
40	C_{p}			712	107	73	66	42
	BIC			904	56	20	15	5
	AIC			673	114	90	69	54
	$\mathrm{AIC}_{\mathrm{c}}$			786	105	52	41	16

APTS: Statistical Modelling
April 2014 - slide 37

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=20, p=1, \ldots, 16$, and $q=6$.

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=40, p=1, \ldots, 16$, and $q=6$.

APTS: Statistical Modelling
April 2014 - slide 39

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=80, p=1, \ldots, 16$, and $q=6$.

As n increases, note how
$\square \quad \mathrm{AIC}$ and $\mathrm{AIC}_{\mathrm{c}}$ still allow some over-fitting, but BIC does not, and
$\square \quad \mathrm{AIC}_{\mathrm{c}}$ approaches AIC.

Motivation

\square 'Traditional' analysis methods presuppose that $p<n$, so the number of observations exceeds the number of covariates: tall thin design matrices
$\square \quad$ Many modern datasets have design matrices that are short and fat: $p \gg n$, so the number of covariates (far) exceeds the number of observations-e.g., survival data (n a few hundred) with genetic information on individuals (p many thousands)
$\square \quad$ Need approaches to deal with this
\square Only possibility is to drop most of the covariates from the analysis, so the model has many fewer active covariates

- usually impracticable in fitting to have $p>n$
- anyway impossible to interpret when p too large
\square Seek sparse solutions, in which coefficients of most covariates are set to zero, and only covariates with large coefficients are retained. One way to do this is by thresholding: kill small coefficients, and keep the rest.
APTS: Statistical Modelling
April 2014 - slide 42

Desiderata

Would like variable selection procedures that satisfy:
sparsity—small estimates are reduced to zero by a threshold procedure; andnear unbiasedness-the estimators almost provide the true parameters, when these are large and $n \rightarrow \infty$;
\square continuity-the estimator is continuous in the data, to avoid instability in prediction.
None of the previous approaches is sparse, and stepwise selection (for example) is known to be highly unstable. To overcome this, we consider a regularised (or penalised) log likelihood of the form

$$
\frac{1}{2} \sum_{j=1}^{n} \ell_{j}\left(x_{j}^{\mathrm{T}} \beta ; y_{j}\right)-n \sum_{r=1}^{p} p_{\lambda}\left(\left|\beta_{r}\right|\right)
$$

where $p_{\lambda}(|\beta|)$ is a penalty discussed below.

Example: Lasso

The lasso (least absolute selection and shrinkage operator) chooses β to minimise

$$
(y-X \beta)^{\mathrm{T}}(y-X \beta) \text { such that } \sum_{r=1}^{p}\left|\beta_{r}\right| \leq \lambda,
$$

for some $\lambda>0$; call resulting estimator $\tilde{\beta}_{\lambda}$.$\lambda \rightarrow 0$ implies $\tilde{\beta}_{\lambda} \rightarrow 0$, and $\lambda \rightarrow \infty$ implies $\tilde{\beta}_{\lambda} \rightarrow \widehat{\beta}=\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} y$.
\square Simple case: orthogonal design matrix $X^{\mathrm{T}} X=I_{p}$, gives

$$
\tilde{\beta}_{\lambda, r}=\left\{\begin{array}{ll}
0, & \left|\widehat{\beta}_{r}\right|<\gamma, \tag{5}\\
\operatorname{sign}\left(\widehat{\beta}_{r}\right)\left(\left|\widehat{\beta}_{r}\right|-\gamma\right), & \text { otherwise },
\end{array} \quad r=1, \ldots, p .\right.
$$Call this soft thresholding.Computed using least angle regression algorithm (Efron et al., 2004, Annals of Statistics).

Note: Derivation of (5)

If the $X^{\mathrm{T}} X=I_{p}$, then with the aid of Lagrange multipliers the minimisation problem becomes

$$
\min _{\beta}(y-X \widehat{\beta}+X \widehat{\beta}-X \beta)^{\mathrm{T}}(y-X \widehat{\beta}+X \widehat{\beta}-X \beta)+2 \gamma\left(\sum_{r=1}^{p}\left|\beta_{r}\right|-\lambda\right)
$$

and this boils down to individual minimisations of the form

$$
\min _{\beta_{r}} g\left(\beta_{r}\right), \quad g(\beta)=\left(\beta-\widehat{\beta}_{r}\right)^{2}+2 \gamma|\beta| .
$$

This function is minimised at $\beta=0$ if and only iff the left and right derivatives there are negative and positive respectively, and this occurs if $\left|\widehat{\beta}_{r}\right|<c$. If not, then $\tilde{\beta}=\widehat{\beta}_{r}-\gamma$ if $\widehat{\beta}>0$, and $\tilde{\beta}=\widehat{\beta}_{r}+\gamma$ if $\widehat{\beta}<0$. This gives the desired result.

Soft thresholding

APTS: Statistical Modelling
April 2014 - slide 45

Graphical explanation

In each case aim to minimise the quadratic function subject to remaining inside the shaded region.

Lasso: Nuclear power data

Left: traces of coefficient estimates $\widehat{\beta}_{\lambda}$ as constraint λ is relaxed, showing points at which the different covariates enter the model. Right: behaviour of Mallows' C_{p} as λ increases.

APTS: Statistical Modelling
April 2014 - slide 47

Penalties

Some (of many) possible penalty functions $p_{\lambda}(|\beta|)$, all with $\lambda>0$:ridge regression takes $\lambda|\beta|^{2}$;
\square lasso takes $\lambda|\beta|$;
\square elastic net takes $\lambda\left\{(1-\alpha)|\beta|+\alpha|\beta|^{2}\right\}$, with $0 \leq \alpha<1$;
\square bridge regression takes $\lambda|\beta|^{q}$, for $q>0$;
\square hard threshold takes $\lambda^{2}-(|\beta|-\lambda)^{2} I(|\beta|<\lambda)$;
\square smoothly clipped absolute deviation (SCAD) takes

$$
\begin{cases}\lambda|\beta|, & |\beta|<\lambda, \\ -\left(\beta^{2}-2 a \lambda|\beta|+\lambda^{2}\right) /\{2(a-1)\}, & \lambda<|\beta|<a \lambda, \\ (a+1) \lambda^{2} / 2, & |\beta|>a \lambda,\end{cases}
$$

for some $a>2$.
In least squares case with a single observation seek to minimise $\frac{1}{2}(z-\beta)^{2}+p_{\lambda}(|\beta|)$, whose derivative

$$
\operatorname{sign}(\beta)\left\{|\beta|+\partial p_{\lambda}(|\beta|) / \partial \beta\right\}-z
$$

determines the properties of the estimator.

Some threshold functions

Ridge—shrinkage but no selection; hard threshold—subset selection, unstable; soft threshold-lasso, biased; SCAD—continuous, selection, unbiased for large β, but non-monotone.

Properties of penalties

It turns out that to achieve
sparsity, the minimum of the function $|\beta|+\partial p_{\lambda}(|\beta|) / \partial \beta$ must be positive;near unbiasedness, the penalty must satisfy $\partial p_{\lambda}(|\beta|) / \partial \beta \rightarrow 0$ when $|\beta|$ is large, so then the estimating function approaches $\beta-z$; and
continuity, the minimum of $|\beta|+\partial p_{\lambda}(|\beta|) / \partial \beta$ must be attained at $\beta=0$.
The SCAD is constructed to have these properties, but there is no unique minimum to the resulting objective function, so numerically it is awkward.

APTS: Statistical Modelling
April 2014 - slide 50

Oracle

\square Oracle:
A person or thing regarded as an infallible authority or guide.
A statistical oracle says how to choose the model or bandwidth that will give us optimal estimation of the true parameter or function, but not the truth itself.
$\square \quad$ In the context of variable selection, an oracle tells us which variables we should select, but not their coefficients.
\square It turns out that under mild conditions on the model, and provided $\lambda \equiv \lambda_{n} \rightarrow 0$ and $\sqrt{n} \lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, variable selection using the hard and SCAD penalties has an oracle property: the estimators of β work as well as if we had known in advance which covariates should be excluded.
$\square \quad$ Same ideas extend to generalised linear models, survival analysis, and many other regression settings (Fan and Li, 2001, JASA).
\square Harder: what happens when $p \rightarrow \infty$ also?

Thomas Bayes (1702-1761)

Bayes (1763/4) Essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London.

APTS: Statistical Modelling
April 2014 - slide 53

Bayesian inference

Parametric model for data y assumed to be realisation of $Y \sim f(y ; \theta)$, where $\theta \in \Omega_{\theta}$. Frequentist viewpoint (cartoon version):
\square there is a true value of θ that generated the data;this 'true' value of θ is to be treated as an unknown constant;probability statements concern randomness in hypothetical replications of the data (possibly conditioned on an ancillary statistic).
Bayesian viewpoint (cartoon version):
\square all ignorance may be expressed in terms of probability statements;a joint probability distribution for data and all unknowns can be constructed;Bayes' theorem should be used to convert prior beliefs $\pi(\theta)$ about unknown θ into posterior beliefs $\pi(\theta \mid y)$, conditioned on data;probability statements concern randomness of unknowns, conditioned on all known quantities.

Mechanics

Separate from data, we have prior information about parameter θ summarised in density $\pi(\theta)$Data model $f(y \mid \theta) \equiv f(y ; \theta)$
$\square \quad$ Posterior density given by Bayes' theorem:

$$
\pi(\theta \mid y)=\frac{\pi(\theta) f(y \mid \theta)}{\int \pi(\theta) f(y \mid \theta) d \theta}
$$$\pi(\theta \mid y)$ contains all information about θ, conditional on observed data yIf $\theta=(\psi, \lambda)$, then inference for ψ is based on marginal posterior density

$$
\pi(\psi \mid y)=\int \pi(\theta \mid y) d \lambda
$$

APTS: Statistical Modelling

Encompassing model

Suppose we have M alternative models for the data, with respective parameters $\theta_{1} \in \Omega_{\theta_{1}}, \ldots, \theta_{m} \in \Omega_{\theta_{m}}$. Typically dimensions of $\Omega_{\theta_{m}}$ are different.$\square \quad$ We enlarge the parameter space to give an encompassing model with parameter

$$
\theta=\left(m, \theta_{m}\right) \in \Omega=\bigcup_{m=1}^{M}\{m\} \times \Omega_{\theta_{m}}
$$Thus need priors $\pi_{m}\left(\theta_{m} \mid m\right)$ for the parameters of each model, plus a prior $\pi(m)$ giving pre-data probabilities for each of the models; overall

$$
\pi\left(m, \theta_{m}\right)=\pi\left(\theta_{m} \mid m\right) \pi(m)=\pi_{m}\left(\theta_{m}\right) \pi_{m}
$$

say.Inference about model choice is based on marginal posterior density

$$
\pi(m \mid y)=\frac{\int f\left(y \mid \theta_{m}\right) \pi_{m}\left(\theta_{m}\right) \pi_{m} d \theta_{m}}{\sum_{m^{\prime}=1}^{M} \int f\left(y \mid \theta_{m^{\prime}}\right) \pi_{m^{\prime}}\left(\theta_{m^{\prime}}\right) \pi_{m^{\prime}} d \theta_{m^{\prime}}}=\frac{\pi_{m} f(y \mid m)}{\sum_{m^{\prime}=1}^{M} \pi_{m^{\prime}} f\left(y \mid m^{\prime}\right)}
$$

Inference

Can write

$$
\pi\left(m, \theta_{m} \mid y\right)=\pi\left(\theta_{m} \mid y, m\right) \pi(m \mid y)
$$

so Bayesian updating corresponds to

$$
\pi\left(\theta_{m} \mid m\right) \pi(m) \mapsto \pi\left(\theta_{m} \mid y, m\right) \pi(m \mid y)
$$

and for each model $m=1, \ldots, M$ we need

- posterior probability $\pi(m \mid y)$, which involves the marginal likelihood $f(y \mid m)=\int f\left(y \mid \theta_{m}, m\right) \pi\left(\theta_{m} \mid m\right) d \theta_{m}$; and
- the posterior density $f\left(\theta_{m} \mid y, m\right)$.
\square If there are just two models, can write

$$
\frac{\pi(1 \mid y)}{\pi(2 \mid y)}=\frac{\pi_{1}}{\pi_{2}} \frac{f(y \mid 1)}{f(y \mid 2)}
$$

so the posterior odds on model 1 equal the prior odds on model 1 multiplied by the Bayes factor $B_{12}=f(y \mid 1) / f(y \mid 2)$.

Sensitivity of the marginal likelihood

Suppose the prior for each θ_{m} is $\mathcal{N}\left(0, \sigma^{2} I_{d_{m}}\right)$, where $d_{m}=\operatorname{dim}\left(\theta_{m}\right)$. Then, dropping the m subscript for clarity,

$$
\begin{aligned}
f(y \mid m) & =\sigma^{-d / 2}(2 \pi)^{-d / 2} \int f(y \mid m, \theta) \prod_{r} \exp \left\{-\theta_{r}^{2} /\left(2 \sigma^{2}\right)\right\} \mathrm{d} \theta_{r} \\
& \approx \sigma^{-d / 2}(2 \pi)^{-d / 2} \int f(y \mid m, \theta) \prod_{r} \mathrm{~d} \theta_{r},
\end{aligned}
$$

for a highly diffuse prior distribution (large σ^{2}). The Bayes factor for comparing the models is approximately

$$
\frac{f(y \mid 1)}{f(y \mid 2)} \approx \sigma^{\left(d_{2}-d_{1}\right) / 2} g(y)
$$

where $g(y)$ depends on the two likelihoods but is independent of σ^{2}. Hence, whatever the data tell us about the relative merits of the two models, the Bayes factor in favour of the simpler model can be made arbitrarily large by increasing σ.
This illustrates Lindley's paradox, and implies that we must be careful when specifying prior dispersion parameters to compare models.

Model averaging

If a quantity Z has the same interpretation for all models, it may be necessary to allow for model uncertainty:

- in prediction, each model may be just a vehicle that provides a future value, not of interest per se;
- physical parameters (means, variances, etc.) may be suitable for averaging, but care is needed.The predictive distribution for Z may be written

$$
f(z \mid y)=\sum_{m=1}^{M} f(z \mid y, m) \operatorname{Pr}(m \mid y)
$$

where

$$
\operatorname{Pr}(m \mid y)=\frac{f(y \mid m) \operatorname{Pr}(m)}{\sum_{m^{\prime}=1}^{M} f\left(y \mid m^{\prime}\right) \operatorname{Pr}\left(m^{\prime}\right)}
$$

APTS: Statistical Modelling
April 2014 - slide 59

Example: Cement data

Percentage weights in clinkers of 4 four constitutents of cement $\left(x_{1}, \ldots, x_{4}\right)$ and heat evolved y in calories, in $n=13$ samples.

Example: Cement data

cement					
	x1	x2	x3	x4	y
1	7	26	6	60	78.5
2	1	29	15	52	74.3
3	11	56	8	20	104.3
4	11	31	8	47	87.6
5	7	52	6	33	95.9
6	11	55	9	22	109.2
7	3	71	17	6	102.7
8	1	31	22	44	72.5
9	2	54	18	22	93.1
10	21	47	4	26	115.9
11	1	40	23	34	83.8
12	11	66	9	12	113.3
13	10	68	8	12	109.4

APTS: Statistical Modelling
April 2014 - slide 61

Example: Cement data

Bayesian model choice and prediction using model averaging for the cement data ($n=13, p=4$). For each of the 16 possible subsets of covariates, the table shows the log Bayes factor in favour of that subset compared to the model with no covariates and gives the posterior probability of each model. The values of the posterior mean and scale parameters a and b are also shown for the six most plausible models; $\left(y_{+}-a\right) / b$ has a posterior t density. For comparison, the residual sums of squares are also given.

Model	RSS	$2 \log B_{10}$	$\operatorname{Pr}(M \mid y)$	a	b
----	2715.8	0.0	0.0000		
$1---$	1265.7	7.1	0.0000		
$-2--$	906.3	12.2	0.0000		
$--3-$	1939.4	0.6	0.0000		
---4	883.9	12.6	0.0000		
$12--$	57.9	45.7	0.2027	93.77	2.31
$1-3-$	1227.1	4.0	0.0000		
$1--4$	74.8	42.8	0.0480	99.05	2.58
$-23-$	415.4	19.3	0.0000		
$-2-4$	868.9	11.0	0.0000		
--34	175.7	31.3	0.0002		
$123-$	48.11	43.6	0.0716	95.96	2.80
$12-4$	47.97	47.2	0.4344	95.88	2.45
$1-34$	50.84	44.2	0.0986	94.66	2.89
-234	73.81	33.2	0.0004		
1234	47.86	45.0	0.1441	95.20	2.97

Example: Cement data

Posterior predictive densities for cement data. Predictive densities for a future observation y_{+}with covariate values x_{+}based on individual models are given as dotted curves. The heavy curve is the average density from all 16 models.

APTS: Statistical Modelling
April 2014 - slide 63

DIC

How to compare complex models (e.g. hierarchical models, mixed models, Bayesian settings), in which the 'number of parameters' may:

- outnumber the number of observations?
- be unclear because of the regularisation provided by a prior density?Suppose model has 'Bayesian deviance'

$$
D(\theta)=-2 \log f(y \mid \theta)+2 \log f(y)
$$

for some normalising function $f(y)$, and suppose that samples from the posterior density of θ are available and give $\bar{\theta}=\mathrm{E}(\theta \mid y)$.
\square One possibility is the deviance information criterion (DIC)

$$
D(\bar{\theta})+2 p_{D},
$$

where the number of associated parameters is

$$
p_{D}=\overline{D(\theta)}-D(\bar{\theta})
$$

This involves only (MCMC) samples from the posterior, no analytical computations, and reproduces AIC for some classes of models.

2. Beyond the Generalised Linear Model

Overview

1. Generalised linear models
2. Overdispersion
3. Correlation
4. Random effects models
5. Conditional independence and graphical representations

Generalised Linear Models

GLM recap

y_{1}, \ldots, y_{n} are observations of response variables Y_{1}, \ldots, Y_{n} assumed to be independently generated by a distribution of the same exponential family form, with means $\mu_{i} \equiv \mathrm{E}\left(Y_{i}\right)$ linked to explanatory variables $X_{1}, X_{2}, \ldots, X_{p}$ through

$$
g\left(\mu_{i}\right)=\eta_{i} \equiv \beta_{0}+\sum_{r=1}^{p} \beta_{r} x_{i r} \equiv x_{i}^{\mathrm{T}} \beta
$$

GLMs have proved remarkably effective at modelling real world variation in a wide range of application areas.

APTS: Statistical Modelling
April 2014 - slide 68

GLM failure

However, situations frequently arise where GLMs do not adequately describe observed data.
This can be due to a number of reasons including:
$\square \quad$ The mean model cannot be appropriately specified as there is dependence on an unobserved (or unobservable) explanatory variable.
$\square \quad$ There is excess variability between experimental units beyond that implied by the mean/variance relationship of the chosen response distribution.The assumption of independence is not appropriate.Complex multivariate structure in the data requires a more flexible model class

Overdispersion

Example 1: toxoplasmosis

The table below gives data on the relationship between rainfall (x) and the proportions of people with toxoplasmosis (y / m) for 34 cities in El Salvador.

City	y	x	City	y	x	City	y	x
1	$5 / 18$	1620	12	$3 / 5$	1800	23	$3 / 10$	1973
2	$15 / 30$	1650	13	$8 / 10$	1800	24	$1 / 6$	1976
3	$0 / 1$	1650	14	$0 / 1$	1830	25	$1 / 5$	2000
4	$2 / 4$	1735	15	$53 / 75$	1834	26	$0 / 1$	2000
5	$2 / 2$	1750	16	$7 / 16$	1871	27	$7 / 24$	2050
6	$2 / 8$	1750	17	$24 / 51$	1890	28	$46 / 82$	2063
7	$2 / 12$	1756	18	$3 / 10$	1900	29	$7 / 19$	2077
8	$6 / 11$	1770	19	$23 / 43$	1918	30	$9 / 13$	2100
9	$33 / 54$	1770	20	$3 / 6$	1920	31	$4 / 22$	2200
10	$8 / 13$	1780	21	$0 / 1$	1920	32	$4 / 9$	2240
11	$41 / 77$	1796	22	$3 / 10$	1936	33	$8 / 11$	2250
						34	$23 / 37$	2292

APTS: Statistical Modelling
April 2014 - slide 71

Example

Toxoplasmosis data and fitted models

Example

Fitting various binomial logistic regression models relating toxoplasmosis incidence to rainfall:

Model	df	deviance
Constant	33	74.21
Linear	32	74.09
Quadratic	31	74.09
Cubic	30	62.62

So evidence in favour of the cubic over other models, but a poor fit ($X^{2}=58.21$ on 30 df).
This is an example of overdispersion where residual variability is greater than would be predicted by the specified mean/variance relationship

$$
\operatorname{var}(Y)=\frac{\mu(1-\mu)}{m} .
$$

APTS: Statistical Modelling

Example

Toxoplasmosis residual plot

Quasi-likelihood

A quasi-likelihood approach to accounting for overdispersion models the mean and variance, but stops short of a full probability model for Y.

For a model specified by the mean relationship $g\left(\mu_{i}\right)=\eta_{i}=x_{i}^{\mathrm{T}} \beta$, and variance
$\operatorname{var}\left(Y_{i}\right)=\sigma^{2} V\left(\mu_{i}\right) / m_{i}$, the quasi-likelihood equations are

$$
\sum_{i=1}^{n} x_{i} \frac{y_{i}-\mu_{i}}{\sigma^{2} V\left(\mu_{i}\right) g^{\prime}\left(\mu_{i}\right) / m_{i}}=0
$$

If $V\left(\mu_{i}\right) / m_{i}$ represents $\operatorname{var}\left(Y_{i}\right)$ for a standard distribution from the exponential family, then these equations can be solved for β using standard GLM software.

Provided the mean and variance functions are correctly specified, asymptotic normality for $\widehat{\beta}$ still holds.
The dispersion parameter σ^{2} can be estimated using

$$
\widehat{\sigma}^{2} \equiv \frac{1}{n-p-1} \sum_{i=1}^{n} \frac{m_{i}\left(y_{i}-\widehat{\mu}_{i}\right)^{2}}{V\left(\widehat{\mu}_{i}\right)}
$$

APTS: Statistical Modelling
April 2014 - slide 75

Quasi-likelihood for toxoplasmosis data

Assuming the same mean model as before, but $\operatorname{var}\left(Y_{i}\right)=\sigma^{2} \mu_{i}\left(1-\mu_{i}\right) / m_{i}$, we obtain $\widehat{\sigma}^{2}=1.94$ with $\widehat{\beta}$ (and corresponded fitted mean curves) as before.

Comparing cubic with constant model, one now obtains

$$
F=\frac{(74.21-62.62) / 3}{1.94}=1.99
$$

which provides much less compelling evidence in favour of an effect of rainfall on toxoplasmosis incidence.

APTS: Statistical Modelling
April 2014 - slide 76

Reasons

To construct a full probability model in the presence of overdispersion, it is necessary to consider why overdispersion might be present.

Possible reasons include:
\square There may be an important explanatory variable, other than rainfall, which we haven't observed.
\square Or there may be many other features of the cities, possibly unobservable, all having a small individual effect on incidence, but a larger effect in combination. Such effects may be individually undetectable - sometimes described as natural excess variability between units.

APTS: Statistical Modelling
April 2014 - slide 77

Reasons: unobserved heterogeneity

When part of the linear predictor is 'missing' from the model,

$$
\eta_{i}^{\text {true }}=\eta_{i}^{\text {model }}+\eta_{i}^{\text {diff }}
$$

We can compensate for this, in modelling, by assuming that the missing $\eta_{i}^{\text {diff }} \sim F$ in the population. Hence, given $\eta_{i}^{\text {model }}$

$$
\mu_{i} \equiv g^{-1}\left(\eta_{i}^{\text {model }}+\eta_{i}^{\mathrm{diff}}\right) \sim G
$$

where G is the distribution induced by F. Then

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\mathrm{E}_{G}\left[\mathrm{E}\left(Y_{i} \mid \mu_{i}\right)\right]=\mathrm{E}_{G}\left(\mu_{i}\right) \\
\operatorname{var}\left(Y_{i}\right) & =\mathrm{E}_{G}\left(V\left(\mu_{i}\right) / m_{i}\right)+\operatorname{var}_{G}\left(\mu_{i}\right)
\end{aligned}
$$

APTS: Statistical Modelling

April 2014 - slide 78

Direct models

One approach is to model the Y_{i} directly, by specifying an appropriate form for G.
For example, for the toxoplasmosis data, we might specify a beta-binomial model, where

$$
\mu_{i} \sim \operatorname{Beta}\left(k \mu_{i}^{*}, k\left[1-\mu_{i}^{*}\right]\right)
$$

leading to

$$
\mathrm{E}\left(Y_{i}\right)=\mu_{i}^{*}, \quad \operatorname{var}\left(Y_{i}\right)=\frac{\mu_{i}^{*}\left(1-\mu_{i}^{*}\right)}{m_{i}}\left(1+\frac{m_{i}-1}{k+1}\right)
$$

with $\left(m_{i}-1\right) /(k+1)$ representing an overdispersion factor.

APTS: Statistical Modelling

April 2014 - slide 79

Direct models: fitting

Models which explicitly account for overdispersion can, in principle, be fitted using your preferred approach, e.g. the beta-binomial model has likelihood

$$
f\left(y \mid \mu^{*}, k\right) \propto \prod_{i=1}^{n} \frac{\Gamma\left(k \mu_{i}^{*}+m_{i} y_{i}\right) \Gamma\left\{k\left(1-\mu_{i}^{*}\right)+m_{i}\left(1-y_{i}\right)\right\} \Gamma(k)}{\Gamma\left(k \mu_{i}^{*}\right) \Gamma\left\{k\left(1-\mu_{i}^{*}\right)\right\} \Gamma\left(k+m_{i}\right)}
$$

Similarly the corresponding model for count data specifies a gamma distribution for the Poisson mean, leading to a negative binomial marginal distribution for Y_{i}.

However, these models have limited flexibility and can be difficult to fit, so an alternative approach is usually preferred.

APTS: Statistical Modelling
April 2014 - slide 80

A random effects model for overdispersion

A more flexible, and extensible approach models the excess variability by including an extra term in the linear predictor

$$
\begin{equation*}
\eta_{i}=x_{i}^{\mathrm{T}} \beta+u_{i} \tag{6}
\end{equation*}
$$

where the u_{i} can be thought of as representing the 'extra' variability between units, and are called random effects.

The model is completed by specifying a distribution F for u_{i} in the population - almost always, we use

$$
u_{i} \sim N\left(0, \sigma^{2}\right)
$$

for some unknown σ^{2}.
We set $\mathrm{E}\left(u_{i}\right)=0$, as an unknown mean for u_{i} would be unidentifiable in the presence of the intercept parameter β_{0}.

APTS: Statistical Modelling
April 2014 - slide 81

Random effects: likelihood

The parameters of this random effects model are usually considered to be (β, σ^{2}) and therefore the likelihood is given by

$$
\begin{align*}
f\left(y \mid \beta, \sigma^{2}\right) & =\int f\left(y \mid \beta, u, \sigma^{2}\right) f\left(u \mid \beta, \sigma^{2}\right) \mathrm{d} u \\
& =\int f(y \mid \beta, u) f\left(u \mid \sigma^{2}\right) \mathrm{d} u \\
& =\int \prod_{i=1}^{n} f\left(y_{i} \mid \beta, u_{i}\right) f\left(u_{i} \mid \sigma^{2}\right) \mathrm{d} u_{i} \tag{7}
\end{align*}
$$

where $f\left(y_{i} \mid \beta, u_{i}\right)$ arises from our chosen exponential family, with linear predictor (6) and $f\left(u_{i} \mid \sigma^{2}\right)$ is a univariate normal p.d.f.

Often no further simplification of (7) is possible, so computation needs careful consideration - we will come back to this later.

Toxoplasmosis example revisited

We can think of the toxoplasmosis proportions Y_{i} in each city (i) as arising from the sum of binary variables, $Y_{i j}$, representing the toxoplasmosis status of individuals (j), so $m_{i} Y_{i}=\sum_{j=1}^{m_{i}} Y_{i j}$.
Then

$$
\begin{aligned}
\operatorname{var}\left(Y_{i}\right) & =\frac{1}{m_{i}^{2}} \sum_{j=1}^{m_{i}} \operatorname{var}\left(Y_{i j}\right)+\frac{1}{m_{i}^{2}} \sum_{j \neq k} \operatorname{cov}\left(Y_{i j}, Y_{i k}\right) \\
& =\frac{\mu_{i}\left(1-\mu_{i}\right)}{m_{i}}+\frac{1}{m_{i}^{2}} \sum_{j \neq k} \operatorname{cov}\left(Y_{i j}, Y_{i k}\right)
\end{aligned}
$$

So any positive correlation between individuals induces overdispersion in the counts.

APTS: Statistical Modelling

April 2014 - slide 84

Dependence: reasons

There may be a number of plausible reasons why the responses corresponding to units within a given cluster are dependent (in the toxoplasmosis example, cluster = city)

One compelling reason is the unobserved heterogeneity discussed previously.
In the 'correct' model (corresponding to $\eta_{i}^{\text {true }}$), the toxoplasmosis status of individuals, $Y_{i j}$, are
independent, so

$$
Y_{i j} \Perp Y_{i k}\left|\eta_{i}^{\text {true }} \quad \Leftrightarrow \quad Y_{i j} \Perp Y_{i k}\right| \eta_{i}^{\text {model }}, \eta_{i}^{\text {diff }}
$$

However, in the absence of knowledge of $\eta_{i}^{\text {diff }}$

$$
Y_{i j} \not \Perp Y_{i k} \mid \eta_{i}^{\text {model }}
$$

Hence conditional (given $\eta_{i}^{\text {diff }}$) independence between units in a common cluster i becomes marginal dependence, when marginalised over the population distribution F of unobserved $\eta_{i}^{\text {diff }}$.

APTS: Statistical Modelling
April 2014 - slide 85

Random effects and dependence

The correspondence between positive intra-cluster correlation and unobserved heterogeneity suggests that intra-cluster dependence might be modelled using random effects, For example, for the
individual-level toxoplasmosis data

$$
Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i j}\right), \quad \log \frac{\mu_{i j}}{1-\mu_{i j}}=x_{i j}^{\mathrm{T}} \beta+u_{i}, \quad u_{i} \sim N\left(0, \sigma^{2}\right)
$$

which implies

$$
Y_{i j} \not \Perp Y_{i k} \mid \beta, \sigma^{2}
$$

Intra-cluster dependence arises in many applications, and random effects provide an effective way of modelling it.

Marginal models

Random effects modelling is not the only way of accounting for intra-cluster dependence.
A marginal model models $\mu_{i j} \equiv \mathrm{E}\left(Y_{i j}\right)$ as a function of explanatory variables, through $g\left(\mu_{i j}\right)=x_{i j}^{\mathrm{T}} \beta$, and also specifies a variance relationship $\operatorname{var}\left(Y_{i j}\right)=\sigma^{2} V\left(\mu_{i j}\right) / m_{i j}$ and a model for $\operatorname{corr}\left(Y_{i j}, Y_{i k}\right)$, as a function of μ and possibly additional parameters.
It is important to note that the parameters β in a marginal model have a different interpretation from those in a random effects model, because for the latter

$$
\mathrm{E}\left(Y_{i j}\right)=\mathrm{E}\left(g^{-1}\left[x_{i j}^{\mathrm{T}} \beta+u_{i}\right]\right) \neq g^{-1}\left(x_{i j}^{\mathrm{T}} \beta\right) \quad \text { (unless } g \text { is linear). }
$$

\square A random effects model describes the mean response at the subject level ('subject specific')
\square A marginal model describes the mean response across the population ('population averaged')
APTS: Statistical Modelling
April 2014 - slide 87

GEEs

As with the quasi-likelihood approach above, marginal models do not generally provide a full probability model for Y. Nevertheless, β can be estimated using generalised estimating equations (GEEs).
The GEE for estimating β in a marginal model is of the form

$$
\sum_{i}\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\mathrm{T}} \operatorname{var}\left(Y_{i}\right)^{-1}\left(Y_{i}-\mu_{i}\right)=0
$$

where $Y_{i}=\left(Y_{i j}\right)$ and $\mu_{i}=\left(\mu_{i j}\right)$
Consistent covariance estimates are available for GEE estimators.
Furthermore, the approach is generally robust to mis-specification of the correlation structure.
For the rest of this module, we focus on fully specified probability models.
APTS: Statistical Modelling
April 2014 - slide 88

Clustered data

Examples where data are collected in clusters include:
\square Studies in biometry where repeated measures are made on experimental units. Such studies can effectively mitigate the effect of between-unit variability on important inferences.
$\square \quad$ Agricultural field trials, or similar studies, for example in engineering, where experimental units are arranged within blocks
\square Sample surveys where collecting data within clusters or small areas can save costs
Of course, other forms of dependence exist, for example spatial or serial dependence induced by arrangement in space or time of units of observation. This will be a focus of APTS: Spatial and Longitudinal Data Analysis.

Example 2: Rat growth

The table below is extracted from a data set giving the weekly weights of 30 young rats.

	Week				
Rat	1	2	3	4	5
1	151	199	246	283	320
2	145	199	249	293	354
3	147	214	263	312	328
4	155	200	237	272	297
5	135	188	230	280	323
6	159	210	252	298	331
7	141	189	231	275	305
8	159	201	248	297	338
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
30	153	200	244	286	324

APTS: Statistical Modelling
Example

A simple model

Letting Y represent weight, and X represent week, we can fit the simple linear regression

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i j}+\epsilon_{i j}
$$

with resulting estimates $\widehat{\beta}_{0}=156.1$ (2.25) and $\widehat{\beta}_{1}=43.3(0.92)$
Residuals show clear evidence of an unexplained difference between rats

APTS: Statistical Modelling
April 2014 - slide 92

Model elaboration

Naively adding a (fixed) effect for animal gives

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i j}+u_{i}+\epsilon_{i j} .
$$

Residuals show evidence of a further unexplained difference between rats in terms of dependence on x.

More complex cluster dependence required.

Linear mixed models

A linear mixed model (LMM) for observations $y=\left(y_{1}, \ldots, y_{n}\right)$ has the general form

$$
\begin{equation*}
Y \sim N(\mu, \Sigma), \quad \mu=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right) \tag{8}
\end{equation*}
$$

where X and Z are matrices containing values of explanatory variables. Usually, $\Sigma=\sigma^{2} I_{n}$.
A typical example for clustered data might be

$$
\begin{equation*}
Y_{i j} \stackrel{\text { ind }}{\sim} N\left(\mu_{i j}, \sigma^{2}\right), \quad \mu_{i j}=x_{i j}^{\mathrm{T}} \beta+z_{i j}^{\mathrm{T}} b_{i}, \quad b_{i} \stackrel{\text { ind }}{\sim} N\left(0, \Sigma_{b}^{*}\right) \tag{9}
\end{equation*}
$$

where $x_{i j}$ contain the explanatory data for cluster i, observation j and (normally) $z_{i j}$ contains that sub-vector of $x_{i j}$ which is allowed to exhibit extra between cluster variation in its relationship with Y.
In the simplest (random intercept) case, $z_{i j}=(1)$, as in equation (6).
APTS: Statistical Modelling
April 2014 - slide 95

LMM example

A plausible LMM for k clusters with n_{1}, \ldots, n_{k} observations per cluster, and a single explanatory variable x (e.g. the rat growth data) is

$$
y_{i j}=\beta_{0}+b_{0 i}+\left(\beta_{1}+b_{1 i}\right) x_{i j}+\epsilon_{i j}, \quad\left(b_{0 i}, b_{1 i}\right)^{\mathrm{T}} \stackrel{\text { ind }}{\sim} N\left(0, \Sigma_{b}^{*}\right)
$$

This fits into the general LMM framework (8) with $\Sigma=\sigma^{2} I_{n}$ and

$$
\begin{aligned}
& X=\left(\begin{array}{cc}
1 & x_{11} \\
\vdots & \vdots \\
1 & x_{k n_{k}}
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
Z_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & Z_{k}
\end{array}\right), \quad Z_{i}=\left(\begin{array}{cc}
1 & x_{i 1} \\
\vdots & \vdots \\
1 & x_{i n_{i}}
\end{array}\right) \\
& \beta=\binom{\beta_{0}}{\beta_{1}}, \quad b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right), \quad b_{i}=\binom{b_{0 i}}{b_{1 i}}, \quad \Sigma_{b}=\left(\begin{array}{ccc}
\Sigma_{b}^{*} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \Sigma_{b}^{*}
\end{array}\right)
\end{aligned}
$$

where Σ_{b}^{*} is an unspecified 2×2 positive definite matrix.

Variance components

The term mixed model refers to the fact that the linear predictor $X \beta+Z b$ contains both fixed effects β and random effects b.
Under an LMM, we can write the marginal distribution of Y directly as

$$
\begin{equation*}
Y \sim N\left(X \beta, \Sigma+Z \Sigma_{b} Z^{\mathrm{T}}\right) \tag{10}
\end{equation*}
$$

where X and Z are matrices containing values of explanatory variables.
Hence $\operatorname{var}(Y)$ is comprised of two variance components.
Other ways of describing LMMs for clustered data, such as (9) (and their generalised linear model counterparts) are as hierarchical models or multilevel models. This reflects the two-stage structure of the model, a conditional model for $Y_{i j} \mid b_{i}$, followed by a marginal model for the random effects b_{i}.

Sometimes the hierarchy can have further levels, corresponding to clusters nested within clusters, for example, patients within wards within hospitals, or pupils within classes within schools.

APTS: Statistical Modelling
April 2014 - slide 97

Discussion: Why random effects?

It would be perfectly possible to take a model such as (9) and ignore the final component, leading to fixed cluster effects (as we did for the rat growth data).

The main issue with such an approach is that inferences, particularly predictive inferences can then only be made about those clusters present in the observed data.
Random effects models, on the other hand, allow inferences to be extended to a wider population (at the expense of a further modelling assumption).

It also can be the case, as in (6) with only one observation per 'cluster', that fixed effects are not identifiable, whereas random effects can still be estimated. Similarly, some treatment variables must be applied at the cluster level, so fixed treatment and cluster effects are aliased.

Finally, random effects allow 'borrowing strength' across clusters by shrinking fixed effects towards a common mean.

APTS: Statistical Modelling
April 2014 - slide 98

Discussion: A Bayesian perspective

A Bayesian LMM supplements (8) with prior distributions for β, Σ and Σ_{b}.
In one sense the distinction between fixed and random effects is much less significant, as in the full Bayesian probability specification, both β and b, as unknowns have probability distributions, $f(\beta)$ and $f(b)=\int f\left(b \mid \Sigma_{b}\right) f\left(\Sigma_{b}\right) \mathrm{d} \Sigma_{b}$

Indeed, prior distributions for 'fixed' effects are sometimes constructed in a hierarchical fashion, for convenience (for example, heavy-tailed priors are often constructed this way).

The main difference is the possibility that random effects for which we have no relevant data (for example cluster effects for unobserved clusters) might need to be predicted.

LMM fitting

The likelihood for $\left(\beta, \Sigma, \Sigma_{b}\right)$ is available directly from (10) as

$$
\begin{equation*}
f\left(y \mid \beta, \Sigma, \Sigma_{b}\right) \propto|V|^{-1 / 2} \exp \left(-\frac{1}{2}(y-X \beta)^{\mathrm{T}} V^{-1}(y-X \beta)\right) \tag{11}
\end{equation*}
$$

where $V=\Sigma+Z \Sigma_{b} Z^{\mathrm{T}}$. This likelihood can be maximised directly (usually numerically).
However, mles for variance parameters of LMMs can have large downward bias (particularly in cluster models with a small number of observed clusters).
Hence estimation by REML - REstricted (or REsidual) Maximum Likelihood is usually preferred.
REML proceeds by estimating the variance parameters $\left(\Sigma, \Sigma_{b}\right)$ using a marginal likelihood based on the residuals from a (generalised) least squares fit of the model $\mathrm{E}(Y)=X \beta$.

APTS: Statistical Modelling
April 2014 - slide 100

REML

In effect, REML maximizes the likelihood of any linearly independent sub-vector of $\left(I_{n}-H\right) y$ where $H=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is the usual hat matrix. As

$$
\left(I_{n}-H\right) y \sim N\left(0,\left(I_{n}-H\right) V\left(I_{n}-H\right)\right)
$$

this likelihood will be free of β. It can be written in terms of the full likelihood (11) as

$$
\begin{equation*}
f\left(r \mid \Sigma, \Sigma_{b}\right) \propto f\left(y \mid \widehat{\beta}, \Sigma, \Sigma_{b}\right)\left|X^{\mathrm{T}} V X\right|^{1 / 2} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{\beta}=\left(X^{\mathrm{T}} V^{-1} X\right)^{-1} X^{\mathrm{T}} V^{-1} y \tag{13}
\end{equation*}
$$

is the usual generalised least squares estimator given known V.
Having first obtained ($\widehat{\Sigma}, \widehat{\Sigma}_{b}$) by maximising (12), $\widehat{\beta}$ is obtained by plugging the resulting \widehat{V} into (13).
Note that REML maximised likelihoods cannot be used to compare different fixed effects specifications, due to the dependence of 'data' r in $f\left(r \mid \Sigma, \Sigma_{b}\right)$ on X.

Estimating random effects

A natural predictor \tilde{b} of the random effect vector b is obtained by minimising the mean squared prediction error $\mathrm{E}\left[(\tilde{b}-b)^{\mathrm{T}}(\tilde{b}-b)\right]$ where the expectation is over both b and y.
This is achieved by

$$
\begin{equation*}
\tilde{b}=\mathrm{E}(b \mid y)=\left(Z^{\mathrm{T}} \Sigma^{-1} Z+\Sigma_{b}^{-1}\right)^{-1} Z^{\mathrm{T}} \Sigma^{-1}(y-X \beta) \tag{14}
\end{equation*}
$$

giving the Best Linear Unbiased Predictor (BLUP) for b, with corresponding variance

$$
\operatorname{var}(b \mid y)=\left(Z^{\mathrm{T}} \Sigma^{-1} Z+\Sigma_{b}^{-1}\right)^{-1}
$$

The estimates are obtained by plugging in ($\widehat{\beta}, \widehat{\Sigma}, \widehat{\Sigma}_{b}$), and are shrunk towards 0 , in comparison with equivalent fixed effects estimators.

Any component, b_{k} of b with no relevant data (for example a cluster effect for an as yet unobserved cluster) corresponds to a null column of Z, and then $\tilde{b}_{k}=0$ and $\operatorname{var}\left(b_{k} \mid y\right)=\left[\Sigma_{b}\right]_{k k}$, which may be estimated if, as is usual, b_{k} shares a variance with other random effects.

APTS: Statistical Modelling
April 2014 - slide 102

Bayesian estimation: the Gibbs sampler

Bayesian estimation in LMMs (and their generalised linear model counterparts) generally proceeds using Markov Chain Monte Carlo (MCMC) methods, in particular approaches based on the Gibbs sampler. Such methods have proved very effective.

MCMC computation provides posterior summaries, by generating a dependent sample from the posterior distribution of interest. Then, any posterior expectation can be estimated by the corresponding Monte Carlo sample mean, densities can be estimated from samples etc.
MCMC will be covered in detail in APTS: Computer Intensive Statistics. Here we simply describe the (most basic) Gibbs sampler.
To generate from $f\left(y_{1}, \ldots, y_{n}\right)$, (where the component $y_{i} s$ are allowed to be multivarate) the Gibbs sampler starts from an arbitrary value of y and updates components (sequentially or otherwise) by generating from the conditional distributions $f\left(y_{i} \mid y_{\backslash i}\right)$ where $y_{\backslash i}$ are all the variables other than y_{i}, set at their currently generated values.

Hence, to apply the Gibbs sampler, we require conditional distributions which are available for sampling.

Bayesian estimation for LMMs

For the LMM

$$
Y \sim N(\mu, \Sigma), \quad \mu=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

with corresponding prior densities $f(\beta), f(\Sigma), f\left(\Sigma_{b}\right)$, we obtain the conditional posterior distributions

$$
\begin{aligned}
f(\beta \mid y, \text { rest }) & \propto \phi(y-Z b ; X \beta, V) f(\beta) \\
f(b \mid y, \text { rest }) & \propto \phi(y-X \beta ; Z b, V) \phi\left(b ; 0, \Sigma_{b}\right) \\
f(\Sigma \mid y, \text { rest }) & \propto \phi(y-X \beta-Z b ; 0, V) f(\Sigma) \\
f\left(\Sigma_{b} \mid y, \text { rest }\right) & \propto \phi\left(b ; 0, \Sigma_{b}\right) f\left(\Sigma_{b}\right)
\end{aligned}
$$

where $\phi(y ; \mu, \Sigma)$ is a $N(\mu, \Sigma)$ p.d.f. evaluated at y.
We can exploit conditional conjugacy in the choices of $f(\beta), f(\Sigma), f\left(\Sigma_{b}\right)$ making the conditionals above of known form and hence straightforward to sample from. The conditional independence $(\beta, \Sigma) \Perp \Sigma_{b} \mid b$ is also helpful.
See Practical 3 for further details.

APTS: Statistical Modelling

April 2014 - slide 104

Example: Rat growth revisited

Here, we consider the model

$$
y_{i j}=\beta_{0}+b_{0 i}+\left(\beta_{1}+b_{1 i}\right) x_{i j}+\epsilon_{i j}, \quad\left(b_{0 i}, b_{1 i}\right)^{\mathrm{T}} \stackrel{\text { ind }}{\sim} N\left(0, \Sigma_{b}\right)
$$

where $\epsilon_{i j} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ and Σ_{b} is an unspecified covariance matrix. This model allows for random (cluster specific) slope and intercept.

Estimates obtained by REML (ML in brackets) are

Parameter	Estimate	Standard error
β_{0}	156.05	$2.16(2.13)$
β_{1}	43.27	$0.73(0.72)$
$\Sigma_{00}^{1 / 2}=$ s.d. $\left(b_{0}\right)$	$10.93(10.71)$	
$\Sigma_{11}^{1 / 2}=$ s.d. $\left(b_{1}\right)$	$3.53(3.46)$	
$\operatorname{Corr}\left(b_{0}, b_{1}\right)$	$0.18(0.19)$	
σ	$5.82(5.82)$	

As expected ML variances are smaller, but not by much.

Example: Fixed v. random effect estimates

The shrinkage of random effect estimates towards a common mean is clearly illustrated.

Random effects estimates 'borrow strength' across clusters, due to the Σ_{b}^{-1} term in (14). Extent of this is determined by cluster similarity. This is usually considered to be a desirable behaviour.

Random effect shrinkage

The following simple example illustrates (from a Bayesian perspective) why and how random effects are shrunk to a common value.
Suppose that y_{1}, \ldots, y_{n} satisfy

$$
y_{j}\left|\theta_{j} \stackrel{\text { ind }}{\sim} N\left(\theta_{j}, v_{j}\right), \quad \theta_{1}, \ldots, \theta_{n}\right| \mu \stackrel{\text { iid }}{\sim} N\left(\mu, \sigma^{2}\right), \quad \mu \sim N\left(\mu_{0}, \tau^{2}\right)
$$

where $v_{1}, \ldots, v_{n}, \sigma^{2}, \mu_{0}$ and τ^{2} are assumed known here. Then, the usual posterior calculations give us

$$
\mathrm{E}(\mu \mid y)=\frac{\mu_{0} / \tau^{2}+\sum y_{j} /\left(\sigma^{2}+v_{j}\right)}{1 / \tau^{2}+\sum 1 /\left(\sigma^{2}+v_{j}\right)}, \quad \operatorname{var}(\mu \mid y)=\frac{1}{1 / \tau^{2}+\sum 1 /\left(\sigma^{2}+v_{j}\right)},
$$

and

$$
\mathrm{E}\left(\theta_{j} \mid y\right)=(1-w) \mathrm{E}(\mu \mid y)+w y_{j},
$$

where

$$
w=\frac{\sigma^{2}}{\sigma^{2}+v_{j}}
$$

Example: Diagnostics

Normal Q-Q plots of intercept (panel 1) and slope (panel 2) random effects and residuals v. week (panel 3)

Evidence of a common quadratic effect, confirmed by AIC (1036 v. 1099) and BIC (1054 v. 1114) based on full ML fits. AIC would also include a cluster quadratic effect (BIC equivocal).

Generalised linear mixed models

Generalised linear mixed models (GLMMs) generalise LMMs to non-normal data, in the obvious way:

$$
Y_{i} \stackrel{\text { ind }}{\sim} F\left(\cdot \mid \mu_{i}, \sigma^{2}\right), \quad g(\mu) \equiv\left(\begin{array}{c}
g\left(\mu_{1}\right) \tag{15}\\
\vdots \\
g\left(\mu_{n}\right)
\end{array}\right)=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

where $F\left(\cdot \mid \mu_{i}, \sigma^{2}\right)$ is an exponential family distribution with $\mathrm{E}(Y)=\mu$ and $\operatorname{var}(Y)=\sigma^{2} V(\mu) / m$ for known m. Commonly (e.g. Binomial, Poisson) $\sigma^{2}=1$, and we shall assume this from here on.
It is not necessary that the distribution for the random effects b is normal, but this usually fits. It is possible (but beyond the scope of this module) to relax this.

APTS: Statistical Modelling
April 2014 - slide 109

GLMM example

A plausible GLMM for binary data in k clusters with n_{1}, \ldots, n_{k} observations per cluster, and a single explanatory variable x (e.g. the toxoplasmosis data at individual level) is

$$
\begin{equation*}
Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i}\right), \quad \log \frac{\mu_{i}}{1-\mu_{i}}=\beta_{0}+b_{0 i}+\beta_{1} x_{i j}, \quad b_{0 i} \stackrel{\text { ind }}{\sim} N\left(0, \sigma_{b}^{2}\right) \tag{16}
\end{equation*}
$$

[note: no random slope here]. This fits into the general GLMM framework (15) with

$$
\begin{gathered}
X=\left(\begin{array}{cc}
1 & x_{11} \\
\vdots & \vdots \\
1 & x_{k n_{k}}
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
Z_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & Z_{k}
\end{array}\right), \quad Z_{i}=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right), \\
\beta=\left(\beta_{0}, \beta_{1}\right)^{\mathrm{T}}, \quad b=\left(b_{01}, \ldots, b_{0 k}\right)^{\mathrm{T}}, \quad \Sigma_{b}=\sigma_{b}^{2} I_{k}
\end{gathered}
$$

[or equivalent binomial representation for city data, with clusters of size 1.]

GLMM likelihood

The marginal distribution for the observed Y in a GLMM does not usually have a convenient closed-form representation.

$$
\begin{align*}
f\left(y \mid \beta, \Sigma_{b}\right) & =\int f\left(y \mid \beta, b, \Sigma_{b}\right) f\left(b \mid \beta, \Sigma_{b}\right) \mathrm{d} b \\
& =\int f(y \mid \beta, b) f\left(b \mid \Sigma_{b}\right) \mathrm{d} b \\
& =\int \prod_{i=1}^{n} f\left(y_{i} \mid g^{-1}\left([X \beta+Z b]_{i}\right)\right) f\left(b \mid \Sigma_{b}\right) \mathrm{d} b . \tag{17}
\end{align*}
$$

For nested random effects structures, some simplification is possible. For example, for (16)

$$
f\left(y \mid \beta, \sigma_{b}^{2}\right) \propto \prod_{i=1}^{n} \int \frac{\exp \left(\sum_{j} y_{i j}\left(\beta_{0}+b_{0 i}+\beta_{1} x_{i j}\right)\right)}{\left\{1+\exp \left(\sum_{j} y_{i j}\left(\beta_{0}+b_{0 i}+\beta_{1} x_{i j}\right)\right)\right\}^{n k}} \phi\left(b_{0 i} ; 0, \sigma_{b}^{2}\right) \mathrm{d} b_{0 i}
$$

a product of one-dimensional integrals.
APTS: Statistical Modelling
April 2014 - slide 111

GLMM fitting: quadrature

Fitting a GLMM by likelihood methods requires some method for approximating the integrals involved.

The most reliable when the integrals are of low dimension is to use Gaussian quadrature (see APTS: Statistical computing). For example, for a one-dimensional cluster-level random intercept b_{i} we might use

$$
\begin{aligned}
& \int \prod_{j} f\left(y_{i j} \mid g^{-1}\left(x_{i}^{\mathrm{T}} \beta+b_{i}\right)\right) \phi\left(b_{i} \mid 0, \sigma_{b}^{2}\right) \mathrm{d} b_{i} \\
& \quad \approx \sum_{q=1}^{Q} w_{q} \prod_{j} f\left(y_{i j} \mid g^{-1}\left(x_{i}^{\mathrm{T}} \beta+b_{i q}\right)\right)
\end{aligned}
$$

for suitably chosen weights $\left(w_{q}, q=1, \ldots, Q\right)$ and quadrature points ($b_{i q}, q=1, \ldots, Q$)
Effective quadrature approaches use information about the mode and dispersion of the integrand (can be done adaptively).
For multi-dimensional b_{i}, quadrature rules can be applied recursively, but performance (in fixed time) diminishes rapidly with dimension.

GLMM fitting: Penalised quasi-likelihood

An alternative approach to fitting a GLMM uses penalised quasi-likelihood (PQL).
The most straightforward way of thinking about PQL is to consider the adjusted dependent variable v constructed when computing mles for a GLM using Fisher scoring

$$
v_{i}=\left(y_{i}-\mu_{i}\right) g^{\prime}\left(\mu_{i}\right)+\eta_{i}
$$

Now, for a GLMM,

$$
\mathrm{E}(v \mid b)=\eta=X \beta+Z b
$$

and

$$
\operatorname{var}(v \mid b)=W^{-1}=\operatorname{diag}\left(\operatorname{var}\left(y_{i}\right) g^{\prime}\left(\mu_{i}\right)^{2}\right),
$$

where W is the weight matrix used in Fisher scoring.
APTS: Statistical Modelling
April 2014 - slide 113

GLMM fitting: PQL continued

Hence, approximating the conditional distribution of v by a normal distribution, we have

$$
\begin{equation*}
v \sim N\left(X \beta+Z b, W^{-1}\right), \quad b \sim N\left(0, \Sigma_{b}\right) \tag{18}
\end{equation*}
$$

where v and W also depend on β and b.
PQL proceeds by iteratively estimating β, b and Σ_{b} for the linear mixed model (18) for v, updating v and W at each stage, based on the current estimates of β and b.

An alternative justification for PQL is as using a Laplace-type approximation to the integral in the GLMM likelihood.
A full Laplace approximation (expanding the complete log-integrand, and evaluating the Hessian matrix at the mode) is an alternative, equivalent to one-point Gaussian quadrature.

APTS: Statistical Modelling

April 2014 - slide 114

GLMM fitting: discussion

Using PQL, estimates of random effects b come 'for free'. With Gaussian quadrature, some extra effort is required to compute $\mathrm{E}(b \mid y)$ - further quadrature is an obvious possibility.

There are drawbacks with PQL, and the best advice is to use it with caution.
$\square \quad$ It can fail badly when the normal approximation that justifies it is invalid (for example for binary observations)
\square As it does not use a full likelihood, model comparison should not be performed using PQL maximised 'likelihoods'
Likelihood inference for GLMMs remains an area of active research and vigorous debate. Recent approaches include HGLMs (hierarchical GLMs) where inference is based on the h-likelihood $f(y \mid \beta, b) f(b \mid \Sigma)$.

Bayesian estimation for GLMMs

Bayesian estimation in GLMMs, as in LMMs, is generally based on the Gibbs sampler. For the GLMM

$$
Y_{i} \stackrel{\text { ind }}{\sim} F(\cdot \mid \mu), \quad g(\mu)=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

with corresponding prior densities $f(\beta)$ and $f\left(\Sigma_{b}\right)$, we obtain the conditional posterior distributions

$$
\begin{aligned}
f(\beta \mid y, \text { rest }) & \propto f(\beta) \prod_{i} f\left(y_{i} \mid g^{-1}(X \beta+Z b)\right) \\
f(b \mid y, \text { rest }) & \propto \phi\left(b ; 0, \Sigma_{b}\right) \prod_{i} f\left(y_{i} \mid g^{-1}(X \beta+Z b)\right) \\
f\left(\Sigma_{b} \mid y, \text { rest }\right) & \propto \phi\left(b ; 0, \Sigma_{b}\right) f\left(\Sigma_{b}\right)
\end{aligned}
$$

For a conditionally conjugate choice of $f\left(\Sigma_{b}\right), f\left(\Sigma_{b} \mid y\right.$, rest) is straightforward to sample from. The conditionals for β and b are not generally available for direct sampling, but there are a number of ways of modifying the basic approach to account for this.

APTS: Statistical Modelling
April 2014 - slide 116

Toxoplasmosis revisited

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the individual-level model

$$
Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i}\right), \quad \log \frac{\mu_{i}}{1-\mu_{i}}=\beta_{0}+b_{0 i}+\beta_{1} x_{i j}, \quad b_{0 i} \stackrel{\text { ind }}{\sim} N\left(0, \sigma_{b}^{2}\right)
$$

Parameter	Estimate (s.e.)		
	ML	Laplace	PQL
β_{0}	$-0.1384(1.452)$	$-0.1343(1.440)$	$-0.115(1.445)$
$\beta_{1}\left(\times 10^{6}\right)$	$7.215(752)$	$5.930(745.7)$	$0.57(749.2)$
σ_{b}	0.5209	0.5132	0.4946
AIC	65.75	65.96	-

APTS: Statistical Modelling
April 2014 - slide 117

Toxoplasmosis continued

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the extended model

$$
\log \frac{\mu_{i}}{1-\mu_{i}}=\beta_{0}+b_{0 i}+\beta_{1} x_{i j}+\beta_{1} x_{i j}^{2}+\beta_{1} x_{i j}^{3}
$$

Parameter	ML	Estimate (s.e.) Laplace	PQL
β_{0}	$-335.5(137.3)$	$-335.1(136.3)$	$-330.8(143.4)$
β_{1}	$0.5238(0.2128)$	$0.5231(0.2112)$	$0.5166(0.222)$
$\beta_{2}\left(\times 10^{4}\right)$	$-2.710(1.094)$	$-2.706(1.086)$	$-3(1.1)$
$\beta_{3}\left(\times 10^{8}\right)$	$4.643(1.866)$	$4.636(1.852)$	$0(0)$
σ_{b}	0.4232	0.4171	0.4315
AIC	63.84	63.97	-

So for this example, a good agreement between the different computational methods.

Conditional independence and graphical representations

The role of conditional independence

In modelling clustered data, the requirement is often (as in the toxoplasmosis example above) to construct a model to incorporate both non-normality and dependence. There are rather few 'off-the shelf' models for dependent observations (and those that do exist, such as the multivariate normal, often require strong assumptions which may be hard to justify in practice).

The 'trick' with GLMMs was to model dependence via a series of conditionally independent sub-models for the observations y given the random effects b, with dependence induced by marginalising over the distribution of b.

De Finetti's theorem provides some theoretical justification for modelling dependent random variables as conditionally independent given some unknown parameter (which we here denote by ϕ).

APTS: Statistical Modelling
April 2014 - slide 120

De Finetti's theorem

De Finetti's theorem states (approximately) that any y_{1}, \ldots, y_{n} which can be thought of as a finite subset of an exchangeable infinite sequence of random variables $y_{1}, y_{2} \ldots$, has a joint density which can be written as

$$
f(y)=\int f(\phi) \prod_{i=1}^{n} f\left(y_{i} \mid \phi\right) \mathrm{d} \phi
$$

for some $f(\phi), f\left(y_{i} \mid \phi\right)$. Hence the y_{i} can be modelled as conditionally independent given ϕ.
An exchangeable infinite sequence is one for which any finite subsequence has a distribution which is invariant under permutation of the lablels of its components.

We can invoke this as an argument for treating as conditionally independent any set of variables about which our prior belief is symmetric.

APTS: Statistical Modelling
April 2014 - slide 121

Complex stochastic models

In many applications we want to model a multivariate response and/or to incorporate a complex (crossed or hierarchically nested) cluster structure amongst the observations.

The same general approach, splitting the model up into small components, with a potentially rich conditional independence structure linking them facilitates both model construction and understanding, and (potentially) computation.

Conditional independence graphs

An extremely useful tool, for model description, model interpretation, and to assist identifying efficient methods for computation is the directed acyclic graph (DAG) representing the model.

Denote by $Y=\left(Y_{1}, \ldots, Y_{\ell}\right)$ the collection of elements of the model which are considered random (given a probability distribution). Then the model is a (parametric) description of the joint distribution $f(y)$, which we can decompose as

$$
f(y)=f\left(y_{1}\right) f\left(y_{2} \mid y_{1}\right) \cdots f\left(y_{\ell} \mid y_{1}, \ldots, y_{\ell-1}\right)=\prod_{i} f\left(y_{i} \mid y_{<i}\right)
$$

where $y_{<i}=\left\{y_{1}, \ldots, y_{i-1}\right\}$. Now, for certain orderings of the variables in Y, the model may admit conditional independences, exhibited through $f\left(y_{i} \mid y_{1}, \ldots, y_{i-1}\right)$ being functionally free of y_{j} for one or more $j<i$. This is expressed as

$$
Y_{i} \Perp Y_{j} \mid Y_{<i \backslash j}
$$

where $Y_{<i \backslash j}=\left\{Y_{1}, \ldots, Y_{j-1}, Y_{j+1}, \ldots, Y_{i-1}\right\}$.

APTS: Statistical Modelling

April 2014 - slide 123

DAGs

The directed acyclic graph (DAG) representing the probability model, decomposed as

$$
f(y)=\prod_{i} f\left(y_{i} \mid y_{<i}\right)
$$

consists of a vertex (or node) for each Y_{i}, together with an directed edge (arrow) to each Y_{j} from each $Y_{i}, i<j$ such that $f\left(y_{j} \mid y_{<j}\right)$ depends on y_{i}. For example, the model

$$
f\left(y_{1}, y_{2}, y_{3}\right)=f\left(y_{1}\right) f\left(y_{2} \mid y_{1}\right) f\left(y_{3} \mid y_{2}\right)
$$

is represented by the DAG

The conditional independence of Y_{1} and Y_{3} given Y_{2} is represented by the absence of a directed edge from Y_{1} to Y_{3}.

DAG for a GLMM

The DAG for the general GLMM

$$
Y_{i} \stackrel{\text { ind }}{\sim} F\left(\cdot \mid \mu_{i}, \sigma^{2}\right), \quad g(\mu)=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

consists, in its most basic form of two nodes:

It can be informative to include parameters and explanatory data in the DAG. Such fixed (non-stochastic) quantities are often denoted by a different style of vertex.

It may also be helpful to consider the components of Y as separate vertices.
APTS: Statistical Modelling

DAG for a Bayesian GLMM

A Bayesian model is a full joint probability model, across both the variables treated as stochastic in a classical approach, and any unspecified model parameters. The marginal probability distribution for the parameters represents the prior (to observing data) uncertainty about these quantities.
The appropriate DAG for a Bayesian GLMM reflects this, augmenting the DAG on the previous slide to:

where $\phi_{\sigma}, \phi_{\Sigma}$ and ϕ_{β} are hyperparameters - fixed inputs into the prior distributions for σ^{2}, σ_{b} and β respectively.

DAG properties

Suppose we have a DAG representing our model for a collection of random variables $Y=\left(Y_{1}, \ldots, Y_{\ell}\right)$ where the ordering of the Y_{i} s is chosen such that all edges in the DAG are from lower to higher numbered vertices. [This must be possible for an acyclic graph, but there will generally be more than one possible ordering]. Then the joint distribution for Y factorises as

$$
f(y)=\prod_{i} f\left(y_{i} \mid p a\left[y_{i}\right]\right)
$$

where $p a\left[y_{i}\right]$ represents the subset of $\left\{y_{j}, j<i\right\}$ with edges to y_{i}. Such variables are called the parents of y_{i}.

APTS: Statistical Modelling

April 2014 - slide 127

The local Markov property

A natural consequence of the DAG factorisation of the joint distribution of Y is the local Markov property for DAGS. This states that any variable Y_{i} is conditionally independent of its non-descendents, given its parents.
A descendent of Y_{i} is any variable in $\left\{Y_{j}, j>i\right\}$ which can be reached in the graph by following a sequence of edges from Y_{i} (respecting the direction of the edges).

For example, for the simple DAG above

the conditional independence of Y_{3} and Y_{1} given Y_{2} is an immediate consequence of the local Markov property.

The local Markov property - limitations

Not all useful conditional independence properties of DAG models follow immediately from the local Markov property. For example, for the Bayesian GLMM

the posterior distribution is conditional on observed Y, for which the local Markov property is unhelpful, as Y is not a parent of any other variable.

To learn more about conditional independences arising form a DAG, it is necessary to construct the corresponding undirected conditional independence graph.

Undirected graphs

An undirected conditional independence graph for Y consists of a vertex for each Y_{i}, together with a set of undirected edges (lines) between vertices such that absence of an edge between two vertices Y_{i} and Y_{j} implies the conditional independence

$$
Y_{i} \Perp Y_{j} \mid Y_{\backslash\{i, j\}}
$$

where $Y_{\{i, j\}}$ is the set of varables excluding Y_{i} and Y_{j}.
From a DAG, we can obtain the corresponding undirected conditional independence graph via a two stage process
\square First we moralise the graph by adding an (undirected) edge between ('marrying') any two vertices which have a child in common, and which are not already joined by an edge.
$\square \quad$ Then we replace all directed edges by undirected edges.
APTS: Statistical Modelling

Undirected graphs: examples

APTS: Statistical Modelling
April 2014 - slide 131

Global Markov property

For an undirected conditional independence graph, the global Markov property states that any two variables, Y_{i} and Y_{j} say, are conditionally independent given any subset $Y_{\text {sep }}$ of the other variables which separate Y_{i} and Y_{j} in the graph.
We say that $Y_{\text {sep }}$ separates Y_{i} and Y_{j} in an undirected graph if any path from Y_{i} to Y_{j} via edges in the graph must pass through a variable in $Y_{\text {sep }}$.

Undirected graph for Bayesian GLMM

The DAG for the Bayesian GLMM

has corresponding undirected graph (for the stochastic vertices)

The conditional independence of $\left(\beta, \sigma^{2}\right)$ and Σ_{b} given b (and Y) is immediately obvious.
APTS: Statistical Modelling
April 2014 - slide 133

Markov equivalence

Any moral DAG (one which has no 'unmarried' parents) is Markov equivalent to its corresponding undirected graph (i.e. it encodes exactly the same conditional independence structure).
Conversely, the vertices of any decomposable undirected graph (one with no chordless cycles of four or more vertices) can be numbered so that replacing the undirected edges by directed edges from lower to higher numbered vertices produces a Markov equivalent DAG.
Such a numbering is called a perfect numbering for the graph, and is not unique.
It immediately follows that the Markov equivalence classes for DAGs can have (many) more than one member, each of which implies the same model for the data (in terms of conditional independence structure)

The class of DAGs is clearly much larger than the class of undirected graphs, and encompasses a richer range of conditional independence structures.

3. Design of Experiments

Overview

1. Introduction and principles of experimentation
2. Factorial designs
3. Regular fractional factorial designs
4. D-optimality and non-regular designs
5. Approximate designs

Introduction and principles of experimentation

Modes of data collection

\square Observational studies
\square Sample surveys
\square Designed experiments
Definition: An experiment is a procedure whereby controllable factors, or features, of a system or process are deliberately varied in order to understand the impact of these changes on one or more measurable responses.
$\square \quad$ Agriculture
\square Industry
$\square \quad$ Laboratory and in silico

APTS: Statistical Modelling
April 2014 - slide 138

Role of experimentation

Why do we experiment?
\square Key to the scientific method (hypothesis - experiment - observe - infer - conclude)Potential to establish causality...... and to understand and improve complex systems depending on many factors
\square Comparison of treatments, factor screening, prediction, optimisation, ...
Design of experiments: a statistical approach to the arrangement of the operational details of the experiment (e.g. sample size, specific experimental conditions investigated, ...) so that the quality of the answers to be derived from the data is as high as possible

Definitions

Treatment - entities of scientific interest to be studied in the experiment e.g. varieties of crop, doses of a drug, combinations of temperature and pressure
\square Unit - smallest subdivision of the experimental material such that two units may receive different treatments
e.g. plots of land, subjects in a clinical trial, samples of reagent
$\square \quad$ Run - application of a treatment to a unit
APTS: Statistical Modelling
April 2014 - slide 140

A unit-treatment statistical model

$$
y_{i j}=\tau_{i}+\varepsilon_{i j}
$$

$i=1, \ldots, t ; j=1, \ldots, n_{t}$
$\square y_{i j}$ - measured response arising from the j th unit to which treatment i has been applied
$\square \tau_{i}$ - treatment effect: expected response from application of the i th treatment
$\square \varepsilon_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ - random deviation from the expected response
The aims of the experiment will often be achieved by estimating comparisons between the treatment effects, $\tau_{k}-\tau_{l}$

Experimental precision and accuracy are largely obtained through control and comparison

APTS: Statistical Modelling

April 2014 - slide 141

Example

Fabrication of integrated circuits (Wu \& Hamada, 2009, p.155)
\square An initial step in fabricating integrated circuits is the growth of a epitaxial layer on polished silicon wafers via chemical deposition
\square Unit

- A set of six wafers (mounted in a rotating cylinder)
\square Treatment
- A combination of settings of the factors:
\triangleright A: rotation method $\left(x_{1}\right)$
$\triangleright \mathrm{B}$: nozzle position $\left(x_{2}\right)$
\triangleright C: deposition temperature $\left(x_{3}\right)$
\triangleright D: deposition time $\left(x_{4}\right)$
APTS: Statistical Modelling
April 2014 - slide 142

Principles of experimentation

Replication

- The application of each treatment to multiple experimental units
\triangleright Provides an estimate of experimental error against which to judge treatment differences
\triangleright Reduces the variance of the estimators of treatment differences

Principles of experimentation

Randomisation

- Randomise allocation of units to treatments, order in which the treatments are applied, ...
\triangleright Protects against lurking (uncontrolled) variables and subjectively in allocation of treatments to unitsBlocking
- Account for systematic differences between batches of experimental units by arranging them in homogeneous blocks
\triangleright If the same treatment is applied to all units, within-block variation in the response would be much less than between-block
\triangleright Compare treatments within the same block and hence eliminate block effects

Example revisited

Fabrication of integrated circuits (Wu \& Hamada, 2009, p.155)
\square An initial step in fabricating integrated circuits is the growth of a epitaxial layer on polished silicon wafers via chemical depositionUnit

- A set of six wafers (mounted in a rotating cylinder)
\square Treatment
- A combination of settings of the factors:
\triangleright A: rotation method $\left(x_{1}\right)$
\triangleright B: nozzle position (x_{2})
\triangleright C: deposition temperature $\left(x_{3}\right)$
\triangleright D: deposition time $\left(x_{4}\right)$
Assume each factor has two-levels, coded -1 and +1

Treatments and a regression model

Each factor has two levels, $x_{k}=\left\{\begin{array}{l}-1 \\ +1\end{array}, k=1,2,3,4\right.$
$\square \quad$ A treatment is then defined as a combination of four values of $-1,+1$

- E.g. $x_{1}=-1, x_{2}=-1, x_{3}=+1, x_{4}=-1$
- Specifies the settings of the process

Assume each treatment effect is determined by a regression model in the four factors, e.g.

$$
\begin{aligned}
\tau & =\beta_{0}+\sum_{i=1}^{4} \beta_{i} x_{i}+\sum_{i=1}^{4} \sum_{j>i}^{4} \beta_{i j} x_{i} x_{j} \\
& +\sum_{i=1}^{4} \sum_{j>i}^{4} \sum_{k>j}^{4} \beta_{i j k} x_{i} x_{j} x_{k}+\beta_{1234} x_{1} x_{2} x_{3} x_{4}
\end{aligned}
$$

APTS: Statistical Modelling
April 2014 - slide 147

(Two-level) Factorial design

Run	x_{1}	x_{2}	x_{3}	x_{4}	\bar{y}
1	-1	-1	-1	-1	13.59
2	-1	-1	-1	+1	14.59
3	-1	-1	+1	-1	14.05
4	-1	-1	+1	+1	14.24
5	-1	+1	-1	-1	13.94
6	-1	+1	-1	+1	14.65
7	-1	+1	+1	-1	14.14
8	-1	+1	+1	+1	14.40
9	+1	-1	-1	-1	13.72
10	+1	-1	-1	+1	14.67
11	+1	-1	+1	-1	13.90
12	+1	-1	+1	+1	13.84
13	+1	+1	-1	-1	13.88
14	+1	+1	-1	+1	14.56
15	+1	+1	+1	-1	14.11
16	+1	+1	+1	+1	14.30

Treatments in standard order\bar{y} - average response from the six wafers

Regression model

Regression model and least squares

$$
Y_{n \times 1}=X_{n \times p} \beta_{p \times 1}+\varepsilon_{n \times 1}, \quad \varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I_{n}\right)
$$

$$
\widehat{\beta}=\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} Y
$$

$\square \quad n=16, p=16$
\square Model matrix X contains intercept, linear and cross-product terms (up to 4th order)
\square Information matrix $X^{\mathrm{T}} X=n I$

- $\widehat{\beta}=\frac{1}{n} X^{\mathrm{T}} Y$
- Regression coefficients are estimated by independent contrasts in the data

APTS: Statistical Modelling
April 2014 - slide 149

Main effects and interactions

$\square \quad$ Main effect of $x_{i}=\begin{gathered}\text { Average response when } \\ x_{i}=1\end{gathered}-\begin{gathered}\text { Average response when } \\ x_{i}=-1\end{gathered}$
Interaction
between x_{i}
and x_{j}

$=$| Average response when |
| :---: |
| $x_{i} x_{j}=1$ |$-$| Average response when |
| :---: |
| $x_{i} x_{j}=-1$ |

\square Main effect of $x_{i}=2 \beta_{i}$
$\square \quad$ Interaction between x_{i} and $x_{j}=2 \beta_{i j}$

Higher order interactions defined similarly
APTS: Statistical Modelling

Main effects

Interactions

Orthogonality

$X^{\mathrm{T}} X=n I \Rightarrow \widehat{\beta}$ are independently normally distributed with equal variance
\square Hence, can treat the identification of important effects (e.g. non-zero β) as an outlier identification problem

Replication

An unreplicated factorial design provides no model-independent estimate of σ^{2} (Gilmour \& Trinca, 2012, JRSSC)

- Any unsaturated model does provide an estimate, but it may be biased by ignored (significant) model terms
- This is one reason why graphical (or associated) analysis methods are popular
$\square \quad$ Replication increases the power of the design
- Common to replicate a centre point
\triangleright Provides a portmanteau test of curvature
\triangleright Allows unbiased estimation of σ^{2}
APTS: Statistical Modelling
April 2014 - slide 154

Principles of factorial experimentation

$\square \quad$ Effect sparsity

- The number of important effects in a factorial experiment is small relative to the total number of effects investigated (cf Box \& Meyer, 1986, Technometrics)
\square Effect hierarchy
- Lower-order effects are more likely to be important than higher-order effects
- Effects of the same order are equally likely to be important
$\square \quad$ Effect heredity
- Interactions where at least one parent main effect is important are more likely to be important themselves

APTS: Statistical Modelling
April 2014 - slide 155

Regular fractional factorial designs
slide 156

Example

Production of bacteriocin (Morris, 2011, p.231)
\square Bacteriocin is a natural food preservative grown from bacteria
\square Unit

- A single bio-reaction
$\square \quad$ Treatment
- A combination of settings of the factors:
$\triangleright \quad \mathrm{A}$: amount of glucose $\left(x_{1}\right)$
$\triangleright \quad \mathrm{B}$: initial inoculum size $\left(x_{2}\right)$
$\triangleright \quad$ C: level of aeration $\left(x_{3}\right)$
$\triangleright \mathrm{D}$: temperature $\left(x_{4}\right)$
$\triangleright \quad \mathrm{E}$: amount of sodium $\left(x_{5}\right)$
Assume each factor has two-levels, coded -1 and +1

Choosing subsets of treatments

Factorial designs can require a large number of runs for only a moderate number of factors $\left(2^{5}=32\right)$
\square Resource constraints (e.g. cost) may mean not all 2^{m} combinations can be run
\square Lots of degrees of freedom are devoted to estimating higher-order interactions

- e.g. in a 2^{5} experiment, 16 d.f. are used to estimate 3 factor and higher-order interactions
- Principles of effect hierarchy and sparsity suggest this is wasteful

Need to trade-off what you want to estimate against the number of runs you can afford

APTS: Statistical Modelling

April 2014 - slide 158

Example

Run	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
1	-1	-1	-1	+1	+1
2	-1	-1	+1	-1	-1
3	-1	+1	-1	+1	-1
4	-1	+1	+1	-1	+1
5	+1	-1	-1	-1	+1
6	+1	-1	+1	+1	-1
7	+1	+1	-1	-1	-1
8	+1	+1	+1	+1	+1

$\square \quad 8=32 / 4=2^{5} / 2^{2}=2^{5-2}$
$\square \quad$ Need a principled way of choosing one-quarter of the runs from the factorial design that leads to clarity in the analysis

APTS: Statistical Modelling
April 2014 - slide 159

Example

	x_{1}	x_{2}	x_{3}		x_{4}	x_{5}	
Run	A	B	C	AB	AC	BC	ABC
1	-1	-1	-1	+1	+1	+1	-1
2	-1	-1	+1	+1	-1	-1	+1
3	-1	+1	-1	-1	+1	-1	+1
4	-1	+1	+1	-1	-1	+1	-1
5	+1	-1	-1	-1	-1	+1	+1
6	+1	-1	+1	-1	+1	-1	-1
7	+1	+1	-1	+1	-1	-1	-1
8	+1	+1	+1	+1	+1	+1	+1

The defining relation and alias scheme

If two columns are equal, their product must be the constant column (the identity)This gives us the defining relation ...
$-\quad I=x_{1} x_{3} x_{4}=x_{2} x_{3} x_{5}=x_{1} x_{2} x_{4} x_{5}$
... from which we can obtain the aliasing scheme
$-x_{1}=x_{3} x_{4}=x_{1} x_{2} x_{3} x_{5}=x_{2} x_{4} x_{5}$
$-x_{2}=x_{1} x_{2} x_{3} x_{4}=x_{3} x_{5}=x_{1} x_{4} x_{5}$
$-x_{3}=x_{1} x_{4}=x_{2} x_{5}=x_{1} x_{2} x_{3} x_{4} x_{5}$
$-x_{4}=x_{1} x_{3}=x_{2} x_{3} x_{4} x_{5}=x_{1} x_{2} x_{5}$
$-x_{5}=x_{1} x_{3} x_{4} x_{5}=x_{2} x_{3}=x_{1} x_{2} x_{4}$
$-x_{1} x_{2}=x_{2} x_{3} x_{4}=x_{1} x_{3} x_{5}=x_{4} x_{5}$
$-x_{1} x_{5}=x_{3} x_{4} x_{5}=x_{1} x_{2} x_{3}=x_{2} x_{4}$

The alias matrix

If more than one effect in each alias string is non-zero, the least squares estimators will be biased

- Assume model $Y=X_{1} \beta_{1}+\varepsilon$
- True model $Y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon$

$$
\begin{aligned}
E\left(\widehat{\beta}_{1}\right) & =\left(X_{1}^{\mathrm{T}} X_{1}\right)^{-1} X_{1}^{\mathrm{T}} E(Y) \\
& =\left(X_{1}^{\mathrm{T}} X_{1}\right)^{-1} X_{1}^{\mathrm{T}}\left(X_{1} \beta+X_{2} \beta_{2}\right) \\
& =\beta+\left(X_{1}^{\mathrm{T}} X_{1}\right)^{-1} X_{1}^{\mathrm{T}} X_{2} \beta_{2} \\
& =\beta+A \beta_{2}
\end{aligned}
$$

$\square \quad A$ is the alias matrix

- If the columns of X_{1} and X_{2} are not orthogonal, $\widehat{\beta}_{1}$ is biased

The alias matrix

For the 2^{5-2} example:

- $X_{1}-8 \times 6$ matrix with columns for the intercept and 5 linear terms ("main effects")
- $X_{2}-8 \times 10$ matrix with columns for the 10 product terms ("two factor interactions")

$$
A=\left(\begin{array}{cccccccccc}
12 & 13 & 14 & 15 & 23 & 24 & 25 & 34 & 35 & 45 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Regular designs have entries in A only equal to $0, \pm 1$

The role of fractional factorial designs in a sequential strategy

\square Typically, in a first experiment, fractional factorial designs are used in screening

- Investigate which of many factors have a substantive effect on the response
- Main effects and interactions
- Centre points to check for curvature
$\square \quad$ At second and later stages, augment the design
- To resolve ambiguities due to the aliasing of factorial effects ("break the alias strings")
- To allow estimation of curvature and prediction from a more complex model

D-optimality and non-regular designs

Introduction

$\square \quad$ Regular fractional factorial designs have to have N equal to a power of the number of levels

- E.g. $2^{5-2}, 3^{3-1} \times 2$
- This inflexibility in run sizes can be a problem in practical experiments

Non-regular designs can have any number of runs (usually $N \geq p$)

- Often the clarity provided by the regular designs is lost
\triangleright No defining relation or straightforward aliasing scheme
\triangleright Partial aliasing and fractional entries in A
One approach is finding non-regular designs is via a design optimality criterion
APTS: Statistical Modelling
April 2014 - slide 166

D-optimality

Notation: Let ζ denote a design; that is, the treatments to be applied in the experiment and their replications$\square \quad$ Assuming the model $Y=X \beta+\varepsilon$, a D-optimal design ζ^{\star} maximises

$$
\phi(\zeta)=\operatorname{det}\left(X^{\mathrm{T}} X\right)
$$

\square That is, a D-optimal design maximises the determinant of the Fisher information matrix

- Equivalent to minimising the volume of the joint confidence ellipsoid for β
\square Also useful to define a Bayesian version, with R a prior precision matrix

$$
\phi_{B}(\zeta)=\operatorname{det}\left(X^{\mathrm{T}} X+R\right)
$$

Comments

\square D-optimal designs are model dependent

- If the model (i.e. the columns of X) changes, the optimal design may change
- Model robust design is an active area of researchD-optimality promotes orthogonality in the X matrix
- If there are sufficient runs, the D-optimal design will be orthogonal
- For particular models and choices of N, regular fractional factorial designs are D-optimal
\square There are many other optimality criteria, tailored to other experimental goals
- Prediction, model discrimination, space-filling, ...

APTS: Statistical Modelling

Example: Plackett-Burman design

$m=11$ factors in $N=12$ runs, first-order (main effects) modelA particular D-optimal design is the following orthogonal array| | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} | x_{7} | x_{8} | x_{9} | x_{10} | x_{11} |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 |
| 2 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 3 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 |
| 4 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 |
| 5 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 |
| 6 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 |
| 7 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 |
| 8 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 |
| 9 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 |
| 10 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 |
| 11 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 |
| 12 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 |

APTS: Statistical Modelling
April 2014 - slide 169

Example: Plackett-Burman design

This 12-run PB design is probably the most studied non-regular design
\square Orthogonal columns
$\square \quad$ Complex aliasing between main effects and two factor interactions

- The alias matrix A has entries $0, \pm \frac{1}{3}$, e.g.

$$
\begin{aligned}
E\left(\widehat{\beta}_{1}\right)=\beta_{1}+ & \frac{1}{3}\left(-\beta_{23}-\beta_{24}-\beta_{25}+\beta_{26}-\beta_{27}-\beta_{28}+\beta_{29}+\beta_{2(10)}-\beta_{2(11)}\right. \\
& +\beta_{34}-\beta_{35}-\beta_{36}+\beta_{37}-\beta_{38}+\beta_{39}-\beta_{3(10)}-\beta_{3(11)} \\
& +\beta_{45}+\beta_{46}-\beta_{47}-\beta_{48}-\beta_{49}-\beta_{4(10)}-\beta_{4(11)} \\
& -\beta_{56}-\beta_{57}-\beta_{58}-\beta_{59}+\beta_{5(10)}+\beta_{5(11)} \\
& -\beta_{67}+\beta_{68}-\beta_{69}-\beta_{6(10)}-\beta_{6(11)} \\
& +\beta_{78}-\beta_{79}+\beta_{7(10)}-\beta_{7(11)} \\
& -\beta_{89}-\beta_{8(10)}+\beta_{8(11)} \\
& -\beta_{9(10)}+\beta_{9(11)} \\
& \left.-\beta_{(10)(11)}\right) .
\end{aligned}
$$

APTS: Statistical Modelling

April 2014 - slide 170

Example: supersaturated design

Screening designs with fewer runs than factors

- Can't use ordinary least squares as X does not have full column rank
- Bayesian D-optimality with $R=(0 \mid \tau I)$, i.e. a first column of zeros and then a diagonal matrix

Supersaturated experiment used by GlaxoSmithKline in the development of a new oncology drug

- 16 factors: e.g. Temperature, solvent amount, reaction time
- $N=10$ runs
- Bayesian D-optimal design with $\tau=0.2$

APTS: Statistical Modelling
April 2014 - slide 171

Example: supersaturated design

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	-1	1	1	1	1	-1	-1	1	-1	-1	1	-1	-1	-1	-1	-1
2	1	1	-1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1
3	-1	-1	-1	-1	-1	1	-1	1	1	-1	-1	-1	-1	-1	1	1
4	1	1	1	-1	1	1	-1	1	1	1	1	1	1	1	1	-1
5	-1	-1	1	-1	1	-1	1	-1	-1	1	-1	-1	-1	1	1	-1
6	-1	-1	1	1	-1	-1	1	-1	1	-1	1	1	1	-1	1	-1
7	1	-1	-1	1	1	1	1	1	-1	1	-1	1	1	-1	-1	-1
8	-1	1	-1	1	-1	1	1	-1	1	1	1	-1	-1	1	-1	1
9	1	1	1	-1	-1	-1	-1	-1	1	1	-1	-1	1	-1	-1	1
10	1	-1	1	-1	-1	-1	1	1	-1	-1	1	1	-1	1	-1	1

Example: supersaturated design

\square Partial aliasing between main effects
\square Heatmap of column correlations

APTS: Statistical Modelling
April 2014 - slide 173

Example: supersaturated design

\square Analysis via regularised (penalised) methods (Dantzig selector, Candes \& Tao, 2007, Annals of Statistics)
\square Shrink small coefficients to zero

A generalised definition of a design

Exact design

$$
\zeta=\left\{\begin{array}{llll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{s} \\
r_{1} & r_{2} & \cdots & r_{s}
\end{array}\right\}, \quad \begin{array}{ll}
& \sum_{i=1}^{s} r_{i}=n \\
& 0<r_{i} \leq n \text { integer }
\end{array}
$$

Approximate design

$$
\zeta=\left\{\begin{array}{llll}
\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{s} \\
\omega_{1} & \omega_{2} & \cdots & \omega_{s}
\end{array}\right\}
$$

$$
\sum_{i=1}^{s} \omega_{i}=1
$$

$$
0<\omega_{i} \leq 1
$$

Vector \boldsymbol{x}_{i} is a support (or distinct) point
Converts a discrete problem (choice of r_{i}) into a continuous problem (choice of ω_{i})
APTS: Statistical Modelling

Information matrix

We can define the Fisher information for an approximate design ζ

$$
\begin{aligned}
M_{\beta}(\zeta) & =-\sum_{i=1}^{s} \omega_{i} \frac{\partial^{2} \log f\left(y_{i} ; \beta\right)}{\partial \beta \beta \beta^{\mathrm{T}}} \\
(& \left.=\sum_{i=1}^{s} \omega_{i} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}} \quad \text { for the linear model }\right)
\end{aligned}
$$

$\square \quad \boldsymbol{x}_{i}^{\mathrm{T}}$ is the i th row of X

Now, an approximate D-optimal maximises $\phi(\zeta)=\operatorname{det}\left(M_{\beta}(\zeta)\right)$
APTS: Statistical Modelling

Example: logistic regression

One-variable logistic regression, $Y(x) \sim \operatorname{Bin}\{m, \pi(x)\}$

$$
\begin{aligned}
& \log \left\{\frac{\pi(x)}{1-\pi(x)}\right\}=\eta(x)=\beta_{0}+\beta_{1} x \\
& M_{\beta}(\zeta)=\sum_{i=1}^{s} \omega_{i} \pi\left(x_{i}\right)\left\{1-\pi\left(x_{i}\right)\right\} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}} \\
& =\sum_{i=1}^{s} \omega_{i} \frac{e^{\eta}}{\left(1+e^{\eta}\right)^{2}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\mathrm{T}}
\end{aligned}
$$

Example: logistic regression

D-optimal design in terms of η

$$
\zeta^{\star}=\left\{\begin{array}{cc}
\eta=-1.5434 & \eta=1.5434 \\
0.5 & 0.5
\end{array}\right\}
$$

$\square \quad$ Clearly, the choice of x that will achieve these values of η depends on β

- $\beta_{0}=0, \beta_{1}=1, x= \pm 1.5434$
\square Locally D-optimal, i.e. optimal design depends on the values of the model parameters
- This is common for nonlinear models

APTS: Statistical Modelling
April 2014 - slide 179

General equivalence theorem

Approximate designs allow powerful theory, including the general equivalence theorem

The key result of this theorem is a necessary and sufficient condition for D-optimality; namely, that a D-optimal design ζ^{\star} must satisfy

$$
\psi\left(\boldsymbol{x}, \zeta^{\star}\right)=\pi(\boldsymbol{x})\{1-\pi(\boldsymbol{x})\} \boldsymbol{x}^{\mathrm{T}} M_{\beta}^{-1}\left(\zeta^{\star}\right) \boldsymbol{x} \leq p \quad \text { for all } \boldsymbol{x}
$$

$\square \quad p$ is the number of parameters in β
$\square \quad \psi\left(\boldsymbol{x}, \zeta^{\star}\right)$ is the derivative of objective function $\phi(\zeta)$ in the direction of \boldsymbol{x}, i.e. it tells us how quickly the function is increasing/decreasing

APTS: Statistical Modelling
April 2014 - slide 180

Example: logistic regression

Check on necessary and sufficient conditions

$$
\begin{aligned}
\psi(x, \zeta)= & \pi(\boldsymbol{x})\{1-\pi(\boldsymbol{x})\}\left\{\sum_{i=1}^{s} \omega_{i} \frac{e^{\eta}}{\left(1+e^{\eta}\right)^{2}} x_{i}^{2}\right. \\
& \left.-2 x \sum_{i=1}^{s} \omega_{i} \frac{e^{\eta}}{\left(1+e^{\eta}\right)^{2}} x_{i}+x^{2} \sum_{i=1}^{s} \omega_{i} \frac{e^{\eta}}{\left(1+e^{\eta}\right)^{2}}\right\}
\end{aligned}
$$

Example: logistic regression

