
APTS Statistical Computing:
Assessment 2015/16

The work provided here is intended to take up to half a week to complete. Students
should talk to their supervisors to find out whether or not their department requires this
work as part of any formal accreditation process. It is anticipated that departments will
decide on the appropriate level of assessment locally, and may choose to drop some (or
indeed all) of the parts, accordingly. So make sure that your supervisor or local organizer
of APTS assessment has looked at the assignment before you start, and has told you which
parts of it to do. In order to avoid undermining institutions’ local assessment procedures
the module lecturer will not respond to enquiries from students about this assignment.

Supplementary functions sparse.vectorise and generate.Q are here:
http://people.bath.ac.uk/fl353/apts/functions.R

A number of statistical problems require estimation of dependence structures, such
as covariance matrices, precision matrices, or conditional dependence model parameters.
Sometimes it is helpful to restrict the allowed conditional dependence structure by impos-
ing a Markov condition. In a Gaussian model that is Markov with respect to a specified
conectivity graph, the most flexible alternative is to look for a positive definite precision
matrix Q such that its non-zero pattern matches the graph structure.

One way of parameterising such an n× n matrix Q is via its Cholesky decomposition
Q = R>R. For a given order of the nodes in the model, the Cholesky factor can also be
sparse (but usually with additional non-zero infill nodes compared with Q), and we will
parameterise such matrices in the following way:

R =



eθ1 0 θn+1 θn+3 · · · 0
0 eθ2 θn+2 0 · · · θn+4

0 0 eθ3 0 · · · θn+5

0 0 0 eθ4 · · · θn+6
...

...
...

...
0 0 0 0 · · · eθn


where θ is a parameter vector, and Q = RTR. The total number of parameters is N ,
which in the example above is equal to n+ 6.

Let X = {x[1], . . . ,x[M]} be a set of M independent observational vectors from x ∼
N(0,Q−1) (we will store it as an n×M matrix X). We can seek θ̂ to minimise the negated
log-likelihood function

`(θ;X) = nM

2
log(2π)− M

2
log det(R>R) +

1

2

M∑
m=1

x[m]>R>Rx[m]

=
nM

2
log(2π)−M

n∑
i=1

θi +
1

2

M∑
m=1

x[m]>R>Rx[m]. (1)

1

http://people.bath.ac.uk/fl353/apts/functions.R

If we let Ei be a matrix with zeros everywhere except for a 1 in the element corresponding
to the ith parameter, the derivatives of `(θ;X) with respect to each θi can be obtained
through

∂R

∂θi
=

{
eθiEi, 1 ≤ i ≤ n,

Ei, n < i ≤ N,

∂`(θ;X)
∂θi

= −MI[i ≤ n] +
M∑
m=1

x[m]>R>
∂R

∂θi
x[m].

Answer the following questions.

0. First, generate a test case with generate.Q from functions.R:

source("functions.R")
set.seed(1)
Q <- generate.Q(100)
image(Q)
R <- chol(Q)
pattern <- (R != 0)
image(R)
M <- 10
X <- solve(R, Matrix(rnorm(nrow(Q) * M), nrow(Q), M))
qqnorm(diag(1 / diag(solve(Q))^0.5) %*% X)

The last line can be used to check if something in the X sampling is obviously
incorrect.

1. Explain why the representation of Q is a sensible way of parameterizing a (sparse)
positive definite matrix.

2. Write an R routine sparse.to.theta to take a sparse Cholesky factor R and a
pattern and turn it into a parameter vector θ (theta). Hint : use sparse.vectorise

3. By reading the help text for Matrix::sparseMatrix and the information in functions.R,
figure out how to do the reverse of sparse.vectorise, i.e. how to reconstruct a ma-
trix R from the output of sparse.vectorise(R, pattern).
Hint : the output matches some of the needed input to sparseMatrix.

4. Write an R routine sparse.from.theta to take a parameter vector θ (theta) and
a pattern (pattern) and convert it into the equivalent sparse Cholesky factor R.
Hint : sparse.vectorise(pattern, pattern) and sparseMatrix may be useful.
Check that, with theta <- sparse.to.theta(R, pattern),
sparse.to.theta(sparse.from.theta(theta, pattern), pattern)
is equal to theta, and that
sparse.from.theta(sparse.to.theta(R, pattern), pattern)
is the same matrix as R, and also that sparse.from.theta(theta, pattern) is
the Cholesky factor of Q, all up to small numerical deviations.

2

5. Write an R function negloglike which takes arguments theta (θ, vector of length
N), X , and a pattern (X, n×M matrix, and pattern, a sparse n× n matrix), and
evaluates `(θ;X). See the comment at the end of functions.R for a suggestion for
the first few lines of the function. The output of negloglike(theta, X, pattern)
for the earlier test case should be approximately 208.65.

In the case of a dense R and a simple naive left-to-right implementation, the third
term in (1) would have operator count ∼ 3Mn2. Your implementation should have
operator count at most ∼ M(n2 + 2n), and explicit loops (in particular, no loop
over m!).

6. Write an R function (same arguments as previous part) to evaluate the vector of
∂`/∂θi values. For a simple implementation it may be helpful to first write a function
sparse.E(i,pattern) very similar to sparse.from.theta that constructs an Ei

matrix. Do however take care to not evaluate any matrix products of the type
R>R, R>Ei, or E>j Ei, but instead using sparse matrix-vector and/or element wise
products wherever suitable.

Again, you should be able to not loop over m = 1, . . . ,M , but you are allowed to
loop over the indices into θ, i = 1, . . . , N . On the lecturer’s system, the output of
system.time({ print(norm(as.matrix(negloglike.grad(theta, X, pattern)))) })
is

[1] 902.7741
user system elapsed

2.056 0.000 2.052

7. Write basic R code to test your routine from part 6 by finite differencing. If there
is a problem, go back to 6 and fix it!

8. Now we would like to use optim with our new functions to find the Maximum
Likelihood estimate of θ. The output of an R session trying to do that is copied
on the next page. Explain why the convergence in the test case appears to be very
slow. Hint : consider the values of n, N , and M !

3

set.seed(1)
Q <- generate.Q(100)
image(Q)
R <- chol(Q)
pattern <- (R != 0)
image(R)
M <- 10
X <-solve(R, Matrix(rnorm(nrow(Q) * M), nrow(Q), M))
qqnorm(diag(1 / diag(solve(Q))^0.5) %*% X)
> ## True theta:
theta <- sparse.to.theta(R, pattern)
> ## Try to find the ML estimate, for simplicity starting from the true
> ## parameter vector:
> theta.opt <- optim(theta, fn=negloglike, gr=negloglike.grad,
+ X, pattern,
+ method="BFGS",
+ control=list(trace=1, maxit=200))
initial value 208.649069
iter 10 value 61.595031
iter 20 value -54.461304
iter 30 value -131.668431
iter 40 value -170.194944
iter 50 value -207.353905
iter 60 value -232.249357
iter 70 value -250.212042
iter 80 value -268.056399
iter 90 value -285.275605
iter 100 value -305.095776
iter 110 value -327.209242
iter 120 value -346.325421
iter 130 value -371.769576
iter 140 value -402.803958
iter 150 value -431.437734
iter 160 value -452.370010
iter 170 value -473.123122
iter 180 value -491.680796
iter 190 value -512.041399
iter 200 value -527.022856
final value -527.022856
stopped after 200 iterations

4

