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Statistical Preliminaries

Structure of the Chapter

This chapter covers methods and results needed in subsequent
chapters.

Topics (mathematical): relevant limit theorems from probability,
multivariable Taylor expansions, delta method.

Topics (statistical): exponential families, likelihood, sufficiency,
Bayesian inference.

Andrew Wood Statistical Asymptotics Part I: Background Material



Statistical Preliminaries

Motivation

Basic question: why study statistical asymptotics?

I (a) To motivate approximations: to derive useful practical
approximations for statistical inference and probability
calculations in settings where exact solutions are not available.

I (b) Theoretical insight: to gain theoretical insight into
complex problems, e.g. to identify which aspects of a problem
are of most importance.

I (c) Theories of optimality: various theories of optimality can
be developed in an asymptotic setting.

We shall mainly be focused on (a) in this module, but (b) will also
be relevant from time to time. For some aspects of (c), see e.g.
the book by van der Vaart (1998).
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Random Vectors

Let Y = (Y 1, . . . ,Y p)> denote an p-dimensional random vector,
where each component is a real-valued random variable.

Note the use of superscripts to label components.

The mean, µ = E (Y ), of Y , when it exists, is given by

µ ≡ (µ1, . . . , µp)> = {E (Y 1), . . . ,E (Y p)}T ≡ E (Y ).

The covariance matrix, Σ = Cov(Y ), when it exists, is given by

Σ = E{(Y−µ)(Y−µ)>} = [E{(Y i−µi )(Y j−µj)}]pi ,j=1 = Cov(Y )

Note that Σ is a symmetric, non-negative definite p × p matrix.

The distribution function F (y) of Y is defined by

F (y) ≡ FY (y) = P(Y 1 ≤ y1, . . . ,Y p ≤ yp), y = (y1, . . . yp)> ∈ Rp.
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Multivariate Normal Distribution

Definition: a p-dimensional random vector Y is said to have a
multivariate normal distribution Np(µ,Σ) if, for each fixed (i.e.
non-random) a = (a1, . . . , ap)T ∈ Rp,

a>Y ≡
p∑

i=1

aiY i ∼ N(a>µ, a>Σa) [i.e. univariate normal].

If Y ∼ Np(µ,Σ) then E (Y ) = µ and Cov(Y ) = Σ.

When Σ is positive definite, the probability density function (pdf)
of Np(µ,Σ) is given by

f (y |µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2(y − µ)>Σ−1(y − µ)
}

where |Σ| is the determinant of Σ.
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Quadratic forms in normal variables

Suppose that Y ∼ Np(0p,Σ) where 0p is the p-vector of zeros.

If Σ is positive definite, then

Y>Σ−1Y ∼ χ2
p, (1)

where χ2
p is the chi-squared distribution with p degrees of freedom.

To see this, consider a general linear transformation of Z = TY
where T is non-singular. Then Z ∼ Np(0p,TΣT>) and

Z>(TVT>)−1Z = Y>T>(T>)−1Σ−1T−1TY = Y>Σ−1Y , (2)

i.e. the quadratic form in normal variables is invariant with respect
to non-singular transformations T .

If we choose T to be the orthogonal matrix whose columns are
orthogonal unit eigenvectors of Σ, then (1) follows.
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Difference of two normal quadratic forms

Suppose now that Y = (Y>1 ,Y
>
2 )> ∼ Np(0p,Σ), where Y1 and Y2

are of dimension p1 and p2 respectively, with p1 + p2 = p, and, in
obvious notation,

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

Then, provided Σ is non-singular,

Y>Σ−1Y − Y>2 Σ−122 Y2 ∼ χ2
p1 .

To see why, consider a linear transformation T which maps
Y = (Y>1 ,Y

>
2 )> to Ỹ = (Ỹ>1 , Ỹ

>
2 )>, where Ỹ2 = Y2 and Ỹ1 and

Ỹ2 are uncorrelated.

The following choice achieves this goal:

Ỹ1 = Y1 − Σ12Σ−122 Y2
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Difference of two normal quadratic forms (continued)

Straightforward calculation shows that, with this choice of Ỹ1,

Cov(Ỹ1) = Σ11 − Σ12Σ−122 Σ21. (3)

Then, using the invariance property established in (2), some
further calculations show that

Y>Σ−1Y − Y>2 Σ−122 Y2 = Ỹ>1 (Σ11 − Σ12Σ−122 Σ21)−1Ỹ1

+ Y>2 Σ−122 Y2 − Y>2 Σ−122 Y2

= Ỹ>1 (Σ11 − Σ12Σ−122 Σ21)−1Ỹ1

∼ χ2
p1 ,

where in the final step we have used (1) and (3).
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Convergence in Distribution

Let (Yn)∞n=1 denote a sequence of p-dimensional random vectors,
where Yn = (Y 1

n , . . . ,Y
p
n )> has distribution function Fn(y), i.e.

Fn(y) = P(Y 1
n ≤ y1, . . . ,Y p

n ≤ yp), y = (y1, . . . , yp)> ∈ Rp.

Also, let Y = (Y 1, . . . ,Y p)> denote a random vector with
distribution function F (y).

Definition: we say that the sequence (Yn)∞n=1 of random vectors
converges in distribution to Y as n→∞ if

lim
n→∞

Fn(y) = F (y)

for all y ∈ Rp at which F is continuous. We write Yn
d−→ Y .

Remark: in all cases of convergence in distribution that we shall
encounter in this module, the limit distribution will be a familiar
one, such as multivariate normal or χ2.
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Convergence in Probability

Definition: a sequence of random vectors (Yn)∞n=1 converges to a
random vector Y in probability if, for each ε > 0,

lim
n→∞

P(||Yn − Y || > ε) = 0,

where ||.|| denotes Euclidean distance on Rp,

i.e. ||a|| = (a>a)1/2 for a ∈ Rp.

We write Yn
p−→ Y .
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Comments

I Convergence in probability implies convergence in distribution.

I Convergence in distribution implies convergence in probability
if the convergence is to a constant, but not otherwise.

I Two other modes of convergence, mentioned in the
preliminary notes, are almost sure convergence and Lp

convergence, both of which imply convergence in probability.

I In these lectures we shall only require convergence in
distribution and convergence in probability.
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Multivariate CLT and WLLN

We now state the weak law of large numbers (WLLN) and the
central limit theorem (CLT) in the multivariate independent and
identically distributed (IID) case.

WLLN. If (Yi )
∞
i=1 is an IID sequence of p-dimensional random

vectors with finite mean µ, then n−1
∑n

i=1 Yi
p−→ µ.

Multivariate CLT. Let (Yi )
∞
i=1 denote a sequence of IID

p-dimensional random vectors with common mean vector
µ = E (Y1) and variance matrix Σ = Cov(Y1). Then as n→∞,

n−1/2
n∑

i=1

(Yi − µ)
d−→ Np(0p,Σ),

where 0p is the zero vector in Rp.
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Continuous Mapping Theorem

A useful supplement to convergence in distribution is the
continuous mapping theorem.

Continuous Mapping Theorem (CMT). Suppose that
p-dimensional random vectors Y and (Yn)∞n=1 are such that

Yn
d−→ Y . Let g : Rp → Rq denote a continuous function. Then

g(Yn)
d−→ g(Y ).

Remarks

I The result may not hold if g is not continuous.

I A much more general version of the CMT, set in function
space, is given by van der Vaart (1998).
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Continuous Mapping Theorem: Example

Example Let (Yn)∞n=1 is a sequence of p-dimensional random

vectors such that Yn
d−→ Np(0p, Ip) where Ip is the p × p identity

matrix.

Consider the function g : Rp → R defined by

g(y) = y>y , y ∈ Rp.

Note that g is continuous.

Recall that if Y ∼ Np(0p, Ip), then Y>Y ∼ χ2
p.

Therefore we may conclude from the CMT that as n→∞,

g(Yn)
d−→ χ2

p.
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Mann-Wald op(.) and Op(.) notation

Mann-Wald notation provides useful shorthand for making
probability statements. We first give the non-random versions.

Let (an)∞n=1 and (bn)∞n=1 denote two sequences of positive numbers.

We write

1. an = o(bn) when limn→∞ an/bn = 0.

2. an = O(bn) when lim supn→∞ an/bn = K <∞,

i.e. when an/bn remains bounded as n→∞.
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Mann-Wald op(.) and Op(.) notation ( continued)

If (Yn)∞n=1 is a sequence of random vectors, then

1. Yn = op(an) means that a−1n Yn
p−→ 0p, the zero vector in Rp.

2. Yn = Op(an) means that a−1n Yn is bounded in probability;
i.e. for any ε > 0, there exist k <∞ and n0 <∞ such that, for all
n > n0,

P(||a−1n Yn|| > k) < ε.
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Slutsky’s Theorem

An elementary but important result, which we shall use frequently
in the next chapter, is Slutsky’s theorem.

Slutsky’s Theorem

Suppose that as n→∞, Xn
d−→ X and Yn

d−→ c , a finite
constant. Then:

I Xn + Yn
d−→ X + c ;

I XnYn
d−→ cX ; and

I if c 6= 0 then Xn/Yn
d−→ X/c .

Note the requirement that one of the sequences converges to a
constant.
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Taylor’s Theorem: multivariable case

Consider a function f : Rp → R, and suppose x , h ∈ Rp.

Assuming all 3rd order partial derivatives of f are continuous, the
4-term Taylor expansion of f (x + h) about h = 0p is given by

f (x + h) = f (x) +

p∑
i=1

fi (x)hi +
1

2!

p∑
i ,j=1

fij(x)hihj + R(x , h), (4)

where

fi (x) =
∂f

∂x i
(x), fij(x) =

∂2f

∂x i∂x j
(x),

p∑
i ,j=1

≡
p∑

i=1

p∑
j=1

,

and the remainder term R(x , h) is given by

R(x , h) =
1

3!

p∑
i ,j ,k=1

fijk(x∗)hihjhk , (5)

where x∗ = x + θh for some θ ∈ [0, 1].
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Taylor’s Theorem (continued)

An equivalent way of writing the expansion (4) is

f (x + h) = f (x) + h>∇f (x) +
1

2!
h>∇∇>f (x)h + R(x , h),

where R(x , h) is given in (5),

∇f (x) = (f1(x), . . . , fp(x))>

is the vector of partial derivatives of f evaluated at x , and

∇∇>f (x) = {fij(x)}pi ,j=1

is the p × p Hessian of f , evaluated at x .
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Index notation and summation convention

The Taylor expansion (4) can be written more simply if we adopt
the following summation convention.

Summation convention: when an index appears in the same
expression as both a subscript and superscript, then summation
over that index is implied.

Applying the summation convention to (4) we obtain

f (x + h) = f (x) + fi (x)hi + 1
2! fij(x)hihj + 1

3! fijk(x∗)hihjhk ,

where x∗ is defined as in (5).
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Moments and Cumulants

The Moment Generating Function (MGF) of a random variable X
is defined by MX (t) = E{exp(tX )}, t ∈ R.

When M(t) <∞ for all t in an open neighbourhood containing
t = 0, the MGF for such t has an absolutely convergent expansion

MX (t) = 1 +
∞∑
r=1

µ′r
tr

r !
,

where µ′r = E (X r ), r = 1, 2, . . ., are the (uncentred) power
moments of X .

The Cumulant Generating Function (CGF) is defined by

KX (t) = log{MX (t)} =
∞∑
r=1

κr
tr

r !

where the coefficient κr is defined at the r th cumulant of X .
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Moments and Cumulants (continued)

Cumulants can be expressed in terms of moments by equating
coefficients in the expansions of KX (t) and log{MX (t)}.

Note that κ1 = µ′1 = E (X ) and κ2 = µ′2 − (µ′1)2 = Var(X ).

The normal distribution is characterised by the following: κ2 > 0
and κr = 0, r ≥ 3.

Note that, for constants a, b ∈ R,

MaX+b(t) = ebtMX (at) and KaX+b = bt + KX (at).
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Statistical framework

Goal: to analyse a sample of observations S = {y1, . . . , yn}. For
the moment we shall assume that the sample is IID.

I Assume the sample S is drawn from an unknown probability
distribution specified by a probability density function (pdf) or
probability mass function (pmf).

I Restrict the unknown density to a suitable family F , of known
analytical form, involving a finite number of real unknown
parameters θ = (θ1, . . . , θd)T . The region Ωθ ⊂ Rd of
possible values of θ is called the parameter space. To indicate
dependency of the density on θ write f (y ; θ), the ‘model
function’.

I Assume that the objective of the analysis is to assess some
aspect of θ, for example the value of a single component θi .

Andrew Wood Statistical Asymptotics Part I: Background Material



Statistical Preliminaries

Statistical framework (continued)

We want to provide a framework for the relatively systematic
analysis of a wide range of possible F .

Quite a lot of the module will be focused on a likelihood-based
approach.

We do not aim to satisfy formal optimality criteria.
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Exponential Families

An important class of models, particularly relevant in theory and
practice, is the exponential family of models.

Suppose that Y depends on parameter φ = (φ1, . . . , φm)T , to be
called natural parameters, through a density of the form

fY (y ;φ) = h(y) exp{sTφ− K (φ)}, y ∈ Y,

where Y is a set not depending on φ.

Here s ≡ s(y) = (s1(y), . . . , sm(y))T , are called natural statistics.
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The value of m may be reduced if either s = (s1, . . . , sm)T or
φ = (φ1, . . . , φm)T satisfies a linear constraint.

Assume that representation is minimal, in that m is as small as
possible.
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Full Exponential Family

Provided the natural parameter space Ωφ consists of all φ such that∫
h(y) exp{sTφ}dy <∞,

we refer to the family F as a full exponential model, or an (m,m)
exponential family.

If y is discrete, the integral above is replaced by a sum over y ∈ Y.
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Properties of exponential families

Let s(y) = (t(y), u(y)) be a partition of the vector of natural
statistics, where t has k components and u has m − k
components. Consider the corresponding partition of the natural
parameter φ = (τ, ξ).

The density of a generic element of the family can be written as

fY (y ; τ, ξ) = exp{τT t(y) + ξTu(y)− K (τ, ξ)}h(y).

Two key results hold which allow inference about components of
the natural parameter, in the absence of knowledge about the
other components.
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Result 1

The family of marginal distributions of U = u(Y ) is an m − k
dimensional exponential family,

fU(u; τ, ξ) = exp{ξTu − Kτ (ξ)}hτ (u),

say.
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Result 2

The family of conditional distributions of T = t(Y ) given
u(Y ) = u is a k dimensional exponential family, and the
conditional densities are free of ξ, so that

fT |U=u(t | u; τ) = exp{τT t − Ku(τ)}hu(t),

say.
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Curved exponential families

In the above, both the natural statistic and the natural parameter
lie in m-dimensional regions.

Sometimes, φ may be restricted to lie in a d-dimensional subspace,
d < m.

This is most conveniently expressed by writing φ = φ(θ) where θ is
a d-dimensional parameter.
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We then have

fY (y ; θ) = h(y) exp[sTφ(θ)− K{φ(θ)}]

where θ ∈ Ωθ ⊂ Rd .

We call this system an (m, d) exponential family, or curved
exponential family, noting we require that (φ1, . . . , φm) does not
belong to a v -dimensional linear subspace of Rm with v < m.

Think of the case m = 2, d = 1: {φ1(θ), φ2(θ)} describes a curve
as θ varies.
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Likelihood

We have a parametric model, involving a model function fY (y |θ)
for a random variable Y and parameter θ ∈ Ωθ.

The likelihood function is

LY (θ; y) = L(θ; y) = L(θ) = fY (y ; θ).
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Log-likelihood

Usually we work with the log-likelihood

lY (θ; y) = l(θ; y) = l(θ) = log fY (y ; θ),

sometimes studied as a random variable

lY (θ;Y ) = l(θ;Y ) = log fY (Y ; θ).
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Score function

We define the score function by

ur (θ; y) =
∂l(θ; y)

∂θr

uY (θ; y) = u(θ; y) = ∇θl(θ; y),

where ∇θ = (∂/∂θ1, . . . , ∂/∂θd)T .
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To study the score function as a random variable we write

uY (θ;Y ) = u(θ;Y ) = U(θ) = U.
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Score function and information

For regular problems we have

Eθ{U(θ)} = 0.

Here, Eθ{.} means expectation with respect to fY (y ; θ).
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Observed and expected information

The covariance matrix of U is

Covθ{U(θ)} = E{−∇θ∇>θ l}.

This matrix is called the expected information matrix for θ, or
sometimes the Fisher information matrix, and will be denoted by
i(θ).
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The Hessian matrix −∇θ∇>θ l is called the observed information
matrix, and is denoted by j(θ).

Note that i(θ) = E{j(θ)}.
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Logistic regression example

We now introduce a logistic regression example that we shall
return to from time to time.

Suppose Y1, . . . ,Yn are independent Bernoulli random variables,
with

P(Yi = 1) = pi , P(Yi = 0) = 1− pi .

Assume a logistic model for pi , i.e.

pi =
eβ

>xi

1 + eβ>xi
,

where β = (β1, . . . , βd)> is a vector of parameters and, for each i ,
xi = (xi1, . . . , xid)> is a covariate vector.

It is customary to treat the xi as non-random quantities. If they
were generated randomly, then we would usually condition on their
values.
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Logistic regression example (continued)

For a sample y1, . . . , yn, the likelihood is given by

L(β) =
n∏

i=1

pyii (1− pi )
1−yi ,

and a short calculation shows that the log-likelihood is

l(β) =
n∑

i=1

{yiβ>xi − log(1 + eβ
>xi )}.

The score statistic and observed information are found to be

U(β) = ∇β l(β) =
n∑

i=1

yixi − pixi =
n∑

i=1

(yi − pi )xi (6)

and

j(β) = −∇β∇>β l(β) =
n∑

i=1

pi (1− pi )xix
>
i . (7)
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Logistic regression example (continued)

Comments

1. Note that U(β) is a vector of dimension d and that j(β) is a
d × d matrix.

2. Because E (Yi ) = pi , it follows that U(β), with Yi replacing yi
satisfies

Eβ[U(β)] = 0d ,

where 0d is the d-vector of zeros.

3. Note that in this somewhat special model j(β) in (7) does not
depend on any random quantities, so the Fisher information equals
the observed information, i.e. i(β) = j(β).

4. It is clear from the RHS of (7) that j(β) is non-negative definite
and will be positive definite if x1, . . . , xn span Rd .
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Pseudo-likelihoods

Consider a model parameterised by a parameter θ which may be
written as θ = (ψ, λ), where ψ is the parameter of interest and λ is
a nuisance parameter.

A nuisance parameter is a parameter not of primary interest.

For example, when testing

H0 : ψ = ψ0, λ unrestricted versus HA : ψ, λ both unrestricted,

we would usually regard λ as a nuisance parameter.

To draw inferences about the parameter of interest, we must deal
with the nuisance parameter. Ideally, we would like to construct a
likelihood function for ψ alone.
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Marginal likelihood

Suppose that there exists a statistic T such that the density of the
data Y may be written as

fY (y ;ψ, λ) = fT (t;ψ)fY |T (y |t;ψ, λ).

Inference can be based on the marginal distribution of T which
does not depend on λ. The marginal likelihood function based on t
is given by

L(ψ; t) = fT (t;ψ).
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Conditional likelihood

Suppose that there exists a statistic S such that

fY (y ;ψ, λ) = fY |S(y |s;ψ)fS(s;ψ, λ).

A likelihood function for ψ may be based on fY |S(y |s;ψ), which
does not depend on λ.
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The conditional log-likelihood function may be calculated as

l(ψ; y |s) = l(θ)− l(θ; s),

where l(θ; s) denotes the log-likelihood function based on the
marginal distribution of S and l(θ) is the log-likelihood based on
the full data Y .
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Sufficiency

Let the data y correspond to a random variable Y with density
fY (y ; θ), θ ∈ Ωθ. Let s(y) be a statistic such that if S ≡ s(Y )
denotes the corresponding random variable, then the conditional
density of Y given S = s does not depend on θ, so that

fY |S(y | s; θ) = g(y , s),

for all θ ∈ Ωθ. Then S is said to be sufficient for θ.
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Minimal sufficient statistic

The definition does not define S uniquely. We usually take the
minimal S for which this holds, the minimal sufficient statistic. S
is minimal sufficient if it is a function of every other sufficient
statistic.
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Factorisation

Determination of S from the definition above is often difficult.
Instead we use the factorisation theorem: a necessary and sufficient
condition that S is sufficient for θ is that for all y , θ

fY (y ; θ) = g(s, θ)h(y),

for some functions g and h.
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A useful result

To identify minimal sufficient statistics.

A statistic T is minimal sufficient iff

T (x) = T (y)⇔ L(θ1; x)

L(θ2; x)
=

L(θ1; y)

L(θ2; y)
, ∀θ1, θ2 ∈ Ωθ.
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Examples

Exponential families

Here the natural statistic S is sufficient.

In a curved (m, d) exponential family the dimension m of the
sufficient statistic exceeds that of the parameter.
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The Bayesian approach

In the Bayesian approach to statistical inference, the parameter θ
in a model fY (y |θ) is itself regarded as a random variable.

Our prior knowledge about θ is represented through a pdf π(θ)
known as the prior distribution.

Then Bayes’ Theorem gives the posterior density

π(θ|y) ∝ fY (y |θ)π(θ),

where the constant of proportionality is {
∫
fY (y |θ)π(θ)dθ}−1.

Later, we will see that, in a large-sample framework, the posterior
is typically asymptotically normal, and that Laplace’s method often
provides a useful way to approximate the posterior.
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Parameter Orthogonality

We work now with a multi-dimensional parameter θ. There are a
number of advantages if the Fisher information matrix
i(θ) ≡ [irs(θ)] is diagonal.

Suppose that θ is partitioned into components

θ = (θ1, . . . , θd1 ; θd1+1, . . . , θd)T = (θT(1), θ
T
(2))

T .

Suppose that irs(θ) = 0 for all r = 1, . . . , d1; s = d1 + 1, . . . , d , for
all θ ∈ Ωθ, so that i(θ) is block diagonal.

We say that θ(1) is orthogonal to θ(2).
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Orthogonality implies that the corresponding components of the
score statistic are uncorrelated.
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Statistical Preliminaries

The case d1 = 1

Write θ = (ψ, λ1, . . . , λq), with q = d − 1. If we start with an
arbitrary parameterisation (ψ, χ1, . . . , χq) with ψ given, it is always
possible to find λ1, . . . , λq as functions of (ψ, χ1, . . . , χq) such
that ψ is orthogonal to (λ1, . . . , λq).
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Statistical Preliminaries

The case d1 > 1

When dim(ψ) > 1 there is no guarantee that a λ may be found so
that ψ and λ are orthogonal.
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