
APTS Statistical Inference, assessment questions, 2015

To students and supervisors. These questions are formative rather than summative.

It may be necessary to delete some parts of some questions for a summative assess-

ment, or to provide additional questions.

1. Here is a question which involves some simple and then not-quite-so-simple

maths, concerning the properties of Expectation. Start with the properties of

Lower-boundedness and Additivity, and assume complete coherence. Prove

the following (in this order, because the earlier ones help with the later ones).

(a) E(0) = 0. To prove this, identify the value 0 with the random variable 0̃

which has realm
{

0
}

, and show that E(0̃) = 0.

(b) E(−X) = −E(X).

(c) E(a) = a for any real-valued constant a, termed ‘Normalisation’.

(d) That if X ≤ Y then E(X) ≤ E(Y ), termed ‘Monotonicity’.

(e) That if X is the realm of X, then minX ≤ E(X) ≤ maxX, termed ‘Con-

vexity’.

(f) The Triangle inequality, |E(X)| ≤ E(|X|). Prove this directly, not using

Jensen’s inequality.

(g) That if q is rational, then E(qX) = q E(X). There was a strong hint for

this in the course notes.

(h) (Harder.) That if X is bounded, then E(aX) = aE(X) for any real-

valued constant a. The proof requires Analysis. You will need to consider

a sequence of rationals q1, q2, . . . converging monotonically to a.

(i) (Only if you succeeded with Q1h.) Show that the boundedness of X can

be lifted under the stronger condition of Countable Additivity. You might

consider a telescoping series for aX in terms of q1, q2, . . . .

These last two results are important for the basic mathematics of Expecta-

tion. If X is an operationally-defined random quantity, then X is bounded

(i.e. there is a value u ∈ R for which |x| ≤ u for all x ∈ X). It is satisfy-

ing that in this case only finite additivity is required for the crucial property

E(aX) = aE(X). It is also a relief to see that countable additivity is enough

to handle the extension to an unbounded X.
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2. This is a question about Lindley’s paradox (Lindley, 1957), P -values, and the

conventional 0.05 threshold.

(a) Suppose you are sitting in a bar talking to an experimental psychologist

about significance levels. An informal statement of Lindley’s paradox is

that a P -value for H0 smaller than α can correspond to a likelihood ratio

f0(y)/f1(y) greater than 1/α. Provide a proof of this statement which

you can sketch on a napkin (by all means include the napkin in your an-

swer.) Hint: see DeGroot and Schervish (2002, sec. 8.9), or work back-

wards from the next question.

(b) Study Figure 1, and see if you can replicate it, either showing your work-

ings or including your code. What is this graph showing? For example,

how would you feel about rejecting H0 in favour of H1 at a P -value of

0.0499, when n = 20?

Some hints:

X̄ ∼ N(µ, σ2/n) (1a)

with σ2 known (take σ = 1). The competing hypotheses are

H0 : µ = 0 versus H1 : µ = 1, (1b)

i.e. a separation of σ. In this case, a sensible statistic for forming a P -

value for H0 is g(x̄) = x̄, which will be larger under H1 than H0. This

gives

p(x̄;H0) = Pr(X̄ ≥ x̄;H0) = 1− Φ(x̄; 0, 1/n)

where Φ is the Normal distribution function with specified expectation

and variance. You can then find the value of x̄ which implies a P -value

of 0.05 (use the qnorm function), and at this value compute the likelihood

ratio φ(x̄;H0)/φ(x̄;H1) where φ is the Normal PDF (use the dnorm func-

tion).

(c) Consider

H0 : µ = 0 versus H1 : µ > 0

in the case where σ2 is known and n is fixed. Produce a graph showing

the value of the minimum likelihood ratio over H1 for a range of P -values

for H0 from 0.001 to 0.1. Check your graph against the minimum shown

in Figure 1. Hint: you should be able to compute this graph directly.

You might find Edwards et al. (1963) or Goodman (1999a,b) helpful.
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Figure 1: The likelihood ratio corresponding to a P -value for H0 of 0.05, for the
model and hypotheses given in (1).

Comment on whether the conventional choice of 0.05 is a suitable thresh-

old for choosing between hypotheses, or whether some other choice might

be better. You may also like to reflect on the origin of the value 0.05, see

Cowles and Davis (1982).

3. Here’s a question about confidence sets and P -values for the Poisson distribu-

tion. Let the model be

Y1, . . . , Yn
iid∼ Poisson(λ), λ > 0.

(a) Show that the log-likelihood function has the form

`(λ;y) =
n∑

i=1

(
−λ+ yi log(λ)− log(yi!)

)
= c− nλ+ nȳ log(λ)

where ȳ := n−1(y1 + · · · + yn), and c is some additive constant which
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can be ignored. Check that the Maximum Likelihood (ML) estimator is

λ̂(y) = ȳ (don’t forget to check the second-order condition).

(b) Now suppose that ȳ = 0.20 from n = 20 observations. Draw the log-

likelihood function, and indicate the Wilks’s Theorem 95% approximately

exact confidence set.

(c) Compute the P -value for the hypothesis H0 : λ = 0.1. Hint: although

you could do this by trial and error, you can also do it exactly (i.e. to

within computer precision) once you know the value of the log-likelihood

at λ = 0.1.

4. Here is a question on the Neyman-Pearson approach to Null Hypothesis Sig-

nificance Testing (NHST). Suppose there are two simple hypotheses,

H0 : Y ∼ f0 versus H1 : Y ∼ f1.

(a) You must choose between H0 and H1 according to the loss function

‘True’

H0 H1

Choose
H0 c00 c01

H1 c10 c11

where c00 < c10 and c11 < c01. Show that a decision rule for choosing

between H0 and H1 is admissible if and only if it has the form

f0(y)

f1(y)


< c choose H1

= c toss a coin

> c choose H0

(2)

for some critical value c > 0. Hint: find the Bayes Rule for prior prob-

abilities (π0, π1) where π1 = 1 − π0, and then apply the Complete Class

Theorem (CCT).

(b) Neyman-Pearson proposed a different approach. Let R ⊂ Y be the re-

gion in which H0 is rejected. Define the Type 1 (α) and Type 2 (β) error

rates as

α := Pr(Y ∈ R;H0) (Type 1)

β := Pr(Y 6∈ R;H1) (Type 2)
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Provide a verbal description of each of these errors. Now show that α + c · β
is minimised when

R =
{
y ∈ Y : f0(y)

/
f1(y) < c

}
(3)

for some c > 0. Conclude by explaining why R defined in (3) minimises

the β for any specified α.

(c) Define

r(y) := f0(y)
/
f1(y).

Show that E{r(Y );H1} = 1 and E{r(Y );H0} ≥ 1 (hint: Jensen’s inequal-

ity). Sketch, on the same axis, the PMFs of r(Y ) under H0 and H1. Add

a critical value c, and shade in the areas representing the α and β values.

(d) The operating characteristics curve (OCC) of R in (3) plots α (x-axis)

against β (y-axis) for varying c. Sketch this curve: you will need to show

that it goes through (0, 1) and (1, 0), and also that it is convex. Hint for

the last part: consider tossing a coin to choose between two different val-

ues of c: what would α and β be for this mixed decision rule?

(e) (Harder.) Explain why the gradient of the OCC is ∆β/∆α ≈ −1/c. Add

a few different specific values of c to your sketch: you should make sure

that the aspect ratio of your sketch is approximately 1.

(f) Now consider

H0 : Y1, . . . , Yn
iid∼ f0 versus H1 : Y1, . . . , Yn

iid∼ f1.

Draw a new sketch showing the two cases where n is small and n is large

(i.e. two OCCs on the same sketch). On the sketch draw the line α = 0.05

and comment on the value of β in the two cases.

(g) Finally, explain how a sketch such as the one you have drawn in Q4f can

be used to choose the sample size and the critical value for target values

such as α = 0.05 and β = 0.2. (These are common values in practice.)

5. Here is a brief exercise on one- and two-sided hypothesis tests. Suppose that

Y ∼ f(· ;µ, σ2) where µ and σ2 are respectively the expectation and variance

of Y . Consider two different Null Hypothesis Significance Tests (NHSTs):

Test A

H0 : κ = c

H1 : κ 6= c

Test B

H0 : κ ≥ c

H1 : κ < c
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where κ := σ/µ ∈ R++. Sketch the parameter space with µ on the x-axis,

and σ on the y-axis. In this parameter space draw the set κ = c for some c >

0. Now add three different 95% confidence sets for (µ, σ), corresponding to

observations y, y′, and y′′, which satisfy the following tableau:

y y′ y′′

Test A Reject H0 Fail to reject H0 Reject H0

Test B Accept H0 & reject H1 Undecided Reject H0 & accept H1

all at a significance level of 5%.

Brief comment. Test A is known as a ‘one-sided’ test, and Test B as a

‘two-sided’ test (also known as ‘one-tailed’ and ‘two-tailed’). I find talk of one-

sided and two-sided tests arcane and unhelpful. The key difference, it seems to

me, is that sometimes one of the hypotheses, usually H0, is reduced to a tiny

set, so that it is never possible to ‘Accept H0’: this seems to be the character-

istic of a two-sided test. But if H0 is a decent size, then it becomes possible to

‘Accept H0’: a one-sided test.

In applications you will usually want to do a one-sided test. For example, if µ

is the performance of a new treatment relative to a control, then you can be

fairly sure a priori that µ = 0 is false: different treatments seldom have iden-

tical effects. What you want to know is whether the new treatment is worse or

better than the control: i.e. you want H0 : µ ≤ 0 versus H1 : µ > 0. In this

case you can find in favour of H0, or in favour of H1, or be undecided.

Jonathan Rougier

University of Bristol

Dec 2015
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