APTS Statistical Computing:
Pre-course material, 2016/17

Simon Wood (2013), updated by Finn Lindgren (2014, 2016)

1 Introduction

The APTS Statistical Computing course aims to introduce some rudiments of numerical analysis, which it is
helpful to know in order to do good statistics research. To get the most out of the course you need to arrive with
a reasonable knowledge of undergraduate statistics/mathematics, (see next section) and you need to be able to do
some basic R programming.

If you do not have good prior knowledge of R then you should work through Ruth Ripley’s R programming for
APTS studentsnotesathttp://portal.stats.ox.ac.uk/userdata/ruth/APTS2013/APTS.html,
before these notes. If you are fluent in R it is still a good idea to look through the notes, even if only briefly (Q8
in Section 4 is easier if you do). Once you are sufficiently well prepared in R programming, Section 4, below,
provides some orientation exercises using R, designed to help you get the most out of the Statistical Computing
module. If you can complete the exercises reasonably well, then you are likely to be well prepared for the course.
Some pointers to other material on R are also given, along with a list of mathematical and statistical things that the
course assumes you already know.

A reasonable attempt at all the exercises in Section 4 is essential in order to get the most out of the lab sessions
during the APTS week. Just being comfortable that in principle you could do them is not enough in this case.
Bringing your solution code with you to the APTS week may help with the labs.

If you have a laptop, then it is worth bringing it along for the computer lab sessions and having the latest
version of R installed on it — there are only a limited number of computers available in the labs in Cambridge. R
is available from http://cran.r-project.org.

2 Mathematical and statistical preliminaries

Here is a check-list of basic mathematical/statistical concepts that it might help to brush up on if you are a little
rusty on any of them.

1. The multivariate version of Taylor’s theorem.

2. The chain rule for differentiation.

3. The multivariate normal distribution and its p.d.f.

4. Linear models and the notion of a random effect.

5. How to multiply matrices (by each other and with vectors). Matrix addition.

6. The meaning of: square matrix, matrix transposition; upper/lower triangular matrix; symmetric matrix;
diagonal matrix; trace of a matrix; identity matrix; positive (semi-) definite matrix.

7. The notion of a matrix inverse and its relationship to solving the matrix equation Ax = y for x, where A is
a square matrix and y and x are vectors.

8. The definition of eigenvectors and eigenvalues.
9. The determinant of a matrix.
10. Orthogonal matrices. The fact that if QQ is an orthogonal matrix then Qy is a rotation/reflection of vector y.

11. The rank of a matrix and the problems associated with not being full rank.

Most textbooks with titles like ‘Mathematics for Engineers/Scientists/Science students’ will provide all that is
necessary: pick the one you like best, or is nearest to hand. At time of writing, the Wikepedia entries on the above

material looked fairly reasonable (http://en.wikipedia.org/wiki/).
The course will assume that you know the following basic matrix terminology. ..

T11 Ti2 T13 Ti1 Ti2 T13 y Xy >0Vy#£0

T21 X22 T23 T12 T22 T23 (yTXy >0Vy #£ 0)
T31 T3z T33 13 T23 T33

square symmetric positive (semi—)definite

z11 0 0 T11 T2 T13 11 0 0

To1 w22 O 0 x22 wo3 0 x22 O

T3l T3z T3z 0 0 33 0 0 @3

lower triangular upper triangular diagonal

Q is an orthogonal matrix iff QTQ = QQ" =1.

3 Getting help with R

If you are not already familiar with R then work through the R programming for APTS students notes at
http://portal.stats.ox.ac.uk/userdata/ruth/APTS2013/APTS.html before doing anything
else. In fact, even if you are an expert in R, the notes are worth reviewing.

Here are some pointers to further information. ..

There is a large amount of free documentation available. An introduction to R at is a good place to start. See
http://cran.r-project.org/manuals.html.

http://cran.r-project.org/other-docs.html is also worth a look.
For books on R see http://www.r-project.org/doc/bib/R-books.html.

From the R command line typing help.start () will launch an html version of the R help system: this
is probably the best way to access the online help when starting out.

4 Some exercises

The solutions to these exercises will appear on the APTS web site one week before the start of the course. You
will get most out of the exercises by attempting them before looking at the solutions.

1.

Computers do not represent most real numbers exactly. Rather, a real number is approximated by the nearest
real number that can be represented exactly (floating point number), given some scheme for representing
real numbers as fixed length binary sequences. Often the approximation is not noticeable, but it can make a
big difference relative to exact arithmetic (imagine that you want to know the difference between 2 distinct
real numbers that are approximated by the same binary sequence, for example).

One consequence of working in finite precision arithmetic is that for any number x, there is a small number
e for which z + € is indistinguishable from x (with any number smaller than this having the same property).

(a) Try out the following code to find the size of this number, when x = 1.

eps <- 1

x <=1

while (x+eps != x) eps <- eps/2
eps/x

(b) Confirm that the final eps here is close to the largest € for which x and = + € give rise to the same
floating point number.

(c) 2xepsisstoredin R as .Machine$Sdouble.eps. Confirm this.
(d) Confirm that you get the same eps/x value for x = 1/8,1/4,1/2,1,2, 4 or 8.

(e) Now try some numbers which are not exactly representable as modest powers of 2, and note the differ-
ence.

(f) In terms of decimal digits, roughly how accurately are real numbers numbers being represented here?

2. Ris an interpreted language. Instructions are interpreted ‘on the fly’. This tends to mean that it is efficient to
code in such a way that many calculations are performed per interpreted instruction. Often this implies that
loops should be avoided, otherwise R can spend much more time interpreting the instructions to carry out a
calculation than on performing the calculation itself.

(a) Re-write the following to eliminate the loops, first using apply and then using rowSums

X <- matrix (runif (100000),1000,100)
z <- rep(0,1000)
for (i in 1:1000) {
for (j in 1:100) =z[i] <- z[i] + X[1i, 7]
}

Confirm that all three versions give the same answers, but that your re-writes are much faster than the
original. (system.time is a useful function.)

(b) Re-write the following, replacing the loop with efficient code.

n <- 100000
z <— rnorm(n)
zneg <- 0;3 <- 1
for (1 in 1:n) {
if (z[1]1<0) |
zneg[j] <- z[i]
J <=3+ 1

}
Confirm that your re-write is faster but gives the same result.

Note that while it is important to avoid loops which perform a few computationally cheap operations at each
step, little will be gained by removing loops where each pass of the loop is itself irreducibly expensive.

3. Run the following code

set.seed (1)

n <- 1000

A <- matrix(runif(n*n),n,n)
x <= runif (n)

Evaluate xT Ax, tr(A) and tr(ATWA) where W is the diagonal matrix such that W;; = x;.

4. Consider solving the matrix equation Ax = y for x, where y is a known n vector and A a knownn X n
matrix. The formal solution to the problem is x = A ~ly, but it is possible to solve the equation directly,
without actually forming A ~!. This question will explore this a little. Read the help file for solve before
trying it.

(a) First create an A, x and y satisfying Ax =y.

set.seed (0)

n <- 1000

A <- matrix(runif(nxn),n,n)
x.true <— runif (n)

y <— A%$x%x.true

The idea is to experiment with solving the Ax = y for x, but with a known truth to compare the
answer to.

(b) Using solve form the matrix A~! explicitly, and then form x; = A~'y. Note how long this takes.
Also assess the mean absolute difference between x1 and x .t rue (the approximate mean absolute
‘error’ in the solution).

(c) Now use solve to directly solve for x without forming A~!. Note how long this takes and assess the
mean absolute error of the result.

(d) What do you conclude?

5. The empirical cumulative distribution function for a set of measurements {x; : i = 1,...n} is

- ;<
F(z) = i <z}
n
where #{x; < z} denotes ‘number of z; values less than .
When answering the following, try to ensure that your code is commented, clearly structured, and tested. To
test your code, generate random samples using rnorm, runif etc.
(a) Write an R function which takes an un-ordered vector of observations x and returns the values of the
empirical c.d.f. for each value, in the order corresponding to the original x vector. (See ?sort.int.)
(b) Modify your function to take an extra argument plot . cdf, which when TRUE will cause the empir-

ical c.d.f. to be plotted as a step function, over a suitable x range.

6. Try out the debug function on your function from the previous question. Then install the debug package
from CRAN and see how using the mt race function compares (take a look at the html help for the debug
package, in order to get started).

7. This (slightly more challenging) question is about function writing and about quadratic approximation,
which plays an important part in statistics. Review Taylor’s theorem (multivariate) before starting.

Rosenbrock’s function is a simple and useful test function for optimization methods:
f(z,2) =100(z — 2*)* + (1 — x)?
(a) Write an R function, rb, which takes as arguments the equal length vectors x and z and returns the

vector of values of Rosenbrock’s function ateach x[1], z[1].

(b) Produce a contour plot of the function over the rectangle: —1.5 < x < 1.5, —0.5 < z < 1.5. Functions
contour and outer are useful here.

(c) For visualization purposes it may be more useful to contour the 10g10 of the function, and to adjust
the default 1evels argument.

(d) Write an R function rb . grad which takes single values for each of x and z as arguments, and returns
the gradient vector of Rosenbrock’s function, i.e. a vector of length 2 containing 9f/0x and 9f/0z
evaluated at the supplied z, z values (you need to first differentiate f algebraically to do this).

(e) Test rb.grad by ‘“finite differencing’. That is by comparing the derivatives it produces to approxima-
tions calculated using using
af _ fla+A)— f()

oxr A
(and similar for z). Use A = 10~7 (Delta <- le-7).

(f) Write an R function rb . hess which takes single values for each of z and z as arguments, and returns
a 2 x 2 Hessian matrix of Rosenbrock’s function, H, where

82f 32f 82f
goz M2 = g5 and Hip = Hoy = 57

(evaluated at the supplied x, z values, of course).

Hy =

(g) Test rb.hess by finite differencing the results from rb.grad.

(h) Taylor’s theorem implies that you can use rb, rb.grad and rb.hess to produce a quadratic func-
tion approximating f(x, z) in the neigbourhood of any particular point z*, z*. Write an R function to
find such an approximation, given a point z*, z*, and to add a contour plot of the approximation to an
existing contour plot of f (see add argument of contour). Your function should accept an argument
col allowing you to set the colour of the contours of the quadratic approximation. Do make sure that
the same transformation (if any) and levels are used when contouring the approximation and f itself.

(i) Plot the quadratic approximations centred on (-1,0.5), (0,0) and the function’s minimum (1,1). Note
the somewhat limited region over which the quadratic approximation is reasonable, in each case.

(j) The quadratic approximations in the last part all had well defined minima. When this is the case,
the vector from the approximation point, *, z*, to that minimum is a ‘descent direction’— moving
along this direction from the approximation point leads to decrease of the function f, at least initially
(provided we are not already at the function minimum, in which case minima of approximation and
function coincide). The quadratic approximation is not always so well behaved. Try plotting the
approximation at (.5,.5), for example (you may need to adjust the plotting scales to do this — the
approximation is no longer always positive).

8. By inspection Rosenbrock’s function has a minimum of 0 at 1, 1, but it is useful test function for optimization
methods. As an introduction to numerical optimization it is instructive to try out some of the optimization
methods supplied in the R function opt im.

(a) Read the help file ?opt im, noting in particular the required arguments, how to select the optimization
method, and what the function returns.

(b) Write a version of Rosenbrock’s function in which arguments = and z are supplied as first and second
elements of a single vector, so that this function is suitable for passing as the £n argument of opt im.
Do the same for the gradient function for Rosenbrock’s function, so that it is suitable for supplying as
the gr argument to opt im. The easiest way to do this is to write simple ‘wrapper’ functions that call
rb and rb.grad created in the previous question.

(c) From an initial point x+ = —0.5, z = 1 use optim to minimize Rosenbrock’s function, using the
default Nelder-Mead method. Check whether the method appears to have converged properly, and note
the accuracy with which the minimum has been located.

(d) From the same starting point retry the optimization using the BFGS method. Do not supply a gr
function, for the moment (which means that opt im will have to approximate the derivatives required
by the method). Note the number of function evaluations used, and the apparent accuracy with which
the minimum has been located.

(e) Repeat the optimization in (d) but this time provide a gr argument to opt im. Compare the number of
evaluations used this time, and the accuracy of the solution.

(f) Now repeat the optimization once more using the CG method (with gr argument supplied). How far
do you have to increase the maxit argument of optim to get convergence?

Nelder-Mead and the BFGS method will be covered in the course. The CG (Conjugate Gradient) method
will not be (although it is sometimes the only feasible method for very large scale optimization problems).

Once you have completed the exercises, check that your solutions are compatible with the solutions posted on the
APTS website. Once you are happy with the material, read on. ..

S Why bother learning about numerical computation?

In combination, modern computer hardware, algorithms and numerical methods are extraordinarily impressive.
Take a moment to consider some simple examples, all using R.

1. Simulate a million random numbers x <- runif (1000000), and then sort them into ascending order,
xXs <—- sort (x)

The sorting operation took 0.4 seconds on the laptop used to prepare these notes. If each of the numbers in
x had been written on its own playing card, the resulting stack of cards would have been 40 metres high.
Imagine trying to sort x without computers and clever algorithms.

2. Here is a matrix calculation of comparatively modest dimension, by modern statistical standards.

> n <— 1000

> A <- matrix (runif (nxn),n,n)

> Ai <— solve (A) ## invert A

> range (Ai%$*%$A-diag(n)) ## check accuracy of result
[1] -3.035434e-11 2.632522e-11

The matrix inversion took under 4 seconds to perform, and the inverse satisfied its defining equations to
around one part in 10!, It involved around 2 billion (2 x 10%) basic arithmetic calculations (additions,
subtractions multiplications or divisions). At a very optimistic 10 seconds per calculation this would take 86
average working lives to perform without a computer (and that’s assuming we use the same algorithm as the
computer, rather than Cramer’s rule, and made no mistakes). Checking the result by multiplying the A by
the resulting inverse would take another 86 working lives.

3. The preceding two examples are problems in which smaller versions of the same problem can be solved more
or less exactly without computers and special algorithms or numerical methods. In these cases, computers
allow much more useful sizes of problem to be solved very quickly. Not all problems are like this, and some
problems can really only be solved by computer. For example, here is a scaled version of a simple delay
differential equation model of adult population size, n, in a laboratory blowfly culture.

d

GT? = PTpn(t — 1)e "D — §Tpn(t).

The dynamic behaviour of the solutions to this model is governed by parameter groups P1p and 1D,
but the equation can not be solved analytically, from any interesting set of initial conditions. To see what
solutions actually look like we must use numerical methods.

install.packages ("PBSddesolve") ## install package from CRAN
library (PBSddesolve)

bfly <- function(t,y,parms) {

function defining rate of change of blowfly population, y, at

time t, given y, t, lagged values of y form ‘pastvalue’ and

the parameters in ‘parms’. See ‘ddesolve’ docs for more details.

making names more useful
P <- parms$P;d <- parms$delta;y0 <- parms$yinit

if (t<=1) yl <—- PxyO*exp(-y0)-dxy else { ## initial phase
vlag <- pastvalue (t-1) ## getting lagged y
vyl <- Pxylag*exp (-ylag) - dxy ## the gradient

}
vl ## return gradient

set parameters...

parms <- list (P=150,delta=6,yinit=2.001)

solve model...

yout <- dde (y=parms$yinit,times=seq(0,15,0.05), func=bfly,parms=parms)
plot result...

plot (yout$time, youtSyl, type="1",ylab="n", xlab="time")

02468
1

time

Here the solution of the model (to an accuracy of 1 part in 108), took a quarter of a second.

5.1 Things can go wrong

The amazing combination of speed and accuracy apparent in many computer algorithms and numerical methods
can lead to a false sense of security and the wrong impression that in translating mathematical and statistical ideas
into computer code we can simply treat the numerical methods and algorithms we use as infallible ‘black boxes’.
This is not the case, as the following three simple examples should illustrate. You may be able to figure out the
cause of the problem in each case, but don’t worry if not: we will return to each of the examples in the course.

1. The system. time function in R measures how long a particular operation takes to execute. First generate
two 2000 x 2000 matrices, A and B and a vector, y.

n <- 2000

A <- matrix(runif(n*n),n,n)
B <- matrix(runif (n*n),n,n)
y <- runif (n)

Now form the product ABy in two slightly different ways

> system.time (f0 <- A%$*x%B%$*%Yy)
user system elapsed
31.50 0.03 31.58

> system.time (f1 <- A%*% (B%*%3y))
user system elapsed
0.08 0.00 0.08

f£0 and f1 are identical, to machine precision, so why is one calculation so much quicker than the other?
Clearly anyone wanting to compute with matrices had better know the answer to this.

2. Itis not unusual to require derivatives of complicated functions, for example when estimating models. Such
derivatives can be very tedious or difficult to calculate directly, but can be approximated quite easily by
‘finite differencing’. e.g. if f is a function of z then

of _f@+d) - fla)
or A
where A is a small interval. Taylor’s theorem implies that the left hand side tends to the right hand side,

above, as A — 0. It is easy to try this out on an example where the answer is known, so consider differenti-
ating cos(z) w.r.t. x.

x <- seq(l,2%pi,length=1000)

delta <- le-5 ## FD interval

dsin.dx <- (sin(x+delta)-sin(x))/delta ## FD derivative
error <- dsin.dx-cos (X) ## error in FD derivative

The following plots the results. On the LHS sin(z) is dashed, it’s true derivative cos(z) is dotted and the FD
derivative is continuous. The RHS shows the difference between the FD approximation and the truth.

Q
0 | 8
o aIJ*
X o o «
C o | = 7
7 o
— @7
T
o Ol
= <
| T T T T T T I T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
X X

Note that the error appears to be of about the same magnitude as the finite difference interval A. Perhaps we
could reduce the error to around the machine precision by using a much smaller A. Here is the equivalent of
the previous plot, when

delta <- le-15

o AN
- - o
0 | -
o o
X o §O.,
£ o] o
n ()
S N
‘TiT T T‘ T T T O|7T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
X X

Clearly there is something wrong with the idea that decreasing A must always increase accuracy here.

3. These data

0.5

02 03 04

y

-0.1 0.0 0.1

1000 1002 1004 100.6 100.8 101.0
X

were generated with this code. ..

set.seed(l); n <- 100

XX <— sort (runif(n))

y <= 2% (xx—.5)+(xx-.5)"2 + rnorm(n)=x.1

x <— xx+100

An appropriate and innocuous linear model for these data is y; = 5y + S1x; + 62%2 + ¢;, where the ¢; are
independent, zero mean constant variance r.v.s and the 3; are parameters. This can be fitted in R with

b <- Im(y"x+I(x72))

which results in the following fitted curve.

0.5

02 03 04

y

-0.1 0.0 0.1

1000 1002 1004 1006 100.8 101.0
X

From basic statistical modelling courses, recall that the least squares parameter estimates for a linear model
are given by 3 = (XTX) !XTy where X is the model matrix. An alternative to use of 1m would be to use
this expression for 3 directly.

X <- model.matrix(b) ## get same model matrix used above
beta.hat <- solve (t (X)%$*x%X,t (X)%$+x%y) ## direct solution of ‘normal equations’

Error in solve.default (t(X) %$*% X, t(X) %*% y)
system is computationally singular: reciprocal condition number = 3.98648e-19

Something has gone badly wrong here, and this is a rather straightforward model. It’s important to un-
derstand what has happened before trying to write code to apply more sophisticated approaches to more
complicated models.

In case you are wondering, I can make 1m fail to. Mathematically it is easy to show that the model fitted
values should be unchanged if I simply add 900 to the x values, but if I refit the model to such shifted data
using 1m then the following fitted values result, which can not be correct.

02 03 04 05

y

-0.1 0.0 0.1

1000.0 10002 10004 10006 1000.8 1001.0
X

6 Further reading

The course itself is supposed to provide an introduction to some numerical analysis that is useful in statistics, but
if you can’t wait to get started than here is a list of some possibilities for finding out more.

Burden, R & J.D. Faires (2005) Numerical Analysis (8th ed) Brooks Cole. This is an undergraduate text
covering some of the material in the course: the initial chapter is a good place to start for a discussion of
computer arithmetic.

Press WH, SA Teukolsky, WT Vetterling and BP Flannery (2007) Numerical Recipes (3rd ed), Cambridge.
This covers most of what we will cover in an easily digested form, but, as the name suggests, it is structured
for those wanting to perform a particular numerical task, rather than for providing overview. The brief
introduction to Error, Accuracy and Stability of numerical methods is well worth reading. (For random
number generation the 3rd edition is a better bet than earlier ones).

Monahan, J.F. (2001) Numerical Methods of Statistics, Cambridge. This covers most of the course material
and more, in a bit more depth than the previous books. Chapters 1 and 2 definitely provide useful background
on good coding practice and the problems inherent in finite precision arithmetic. The rest of the book
provides added depth on many of the other topics that the course will cover.

Lange, K. (2000) Numerical Analysis for Statisticians, Springer. This covers a more comprehensive set
of material than the previous book, at a similar level, although with less discussion of the computational
nitty-gritty.

If you want more depth still...

Golub, GH and CF Van Loan (1996) Matrix Computations 3rd ed. John Hopkins. This is the reference for
numerical linear algebra, but not the easiest introduction.

Watkins, DS (2002) Fundamentals of Matrix Computations 2nd ed. Wiley. This is a more accessible book,
but still aimed at those who really want to understand the material (for example, the author encourages you
to write your own SVD routine, and with this book you can).

Nocedal and Wright (2006) Numerical Optimization 2nd ed. Springer, is a very clear and up to date text on
optimization, which also covers automatic differentiation with great clarity.

10

e Gill, PE. , W. Murray and M.H. Wright (1981) Practical Optimization Academic Press, is a classic, par-
ticularly on constrained optimization. Chapter 2 is also an excellent introduction to computer arithmetic,
numerical linear algebra and stability.

e Ripley, B.D. (1987) Stochastic Simulation Wiley (re-published 2006). A classic on the subject. Chapters 2
and 3 are particularly relevant.

e Cormen, T.H., C.E. Leiserson, R.L. Rivest and C. Stein (2001) Introduction to Algorithms (2nd ed.) MIT.
Working with graphs, trees, complex data structures? Need to sort or search efficiently. This book covers
algorithms for these sorts of problems (and a good deal more) in some depth.

11

