
HIGH-DIMENSIONAL STATISTICS APTS
Assessment material RDS/July 2017

You may wish to pick out 3 or 4 questions from those given below. In all of the following,
assume that the design matrix X ∈ Rn×p has had its columns mean-centred and then scaled to
have `2-norm

√
n.

Ridge regression

1. Consider performing ridge regression when Y = Xβ0 + ε− 1ε̄ (so the response has been
centred), where X ∈ Rn×p has full column rank, and Var(ε) = σ2I. Let the (thin) SVD
of X be UDVT and write UTXβ0 = γ. Show that
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Now suppose the size of the signal is n, so ‖Xβ0‖22 = n. For what γ is the mean squared
prediction error above minimised? For what γ is it maximised?

2. In the following, assume that forming AB where A ∈ Ra×b, B ∈ Rb×c requires O(abc)
computational operations, and that if M ∈ Rd×d is invertible, then forming M−1 requires
O(d3) operations.

(a) Suppose we wish to apply ridge regression to data (Y,X) ∈ Rn ×Rn×p with n� p.
A complication is that the data is split into m separate datasets of size n/m ∈ N,

Y =

Y(1)

...

Y(m)

 X =
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...

X(m)

 ,

with each dataset located on a different server. Moving large amounts of data be-

tween servers is expensive. Explain how one can produce ridge estimates β̂
R

λ by
communicating only p(p+1) numbers from each server to some central server. What
is the total order of the computation time required at each server, and at the central
server for your approach?

(b) Now suppose instead that p� n and it is instead the variables that are split across
m servers, so each server has only a subset of p/m ∈ N variables for each observation,

and some central server stores Y. Explain how one can obtain the fitted values Xβ̂
R

λ

communicating only n2 numbers from each server to the central server. What is the
total order of the computation time required at each server, and at the central server
for your approach?

3. Suppose we have a matrix of predictors X ∈ Rn×p where p � n. Explain how to obtain
the fitted values of the following ridge regression using the kernel trick:

Minimise over β ∈ Rp,θ ∈ Rp(p−1)/2,γ ∈ Rp,
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+ λ1‖β‖22 + λ2‖θ‖22 + λ3‖γ‖22.

Note we have indexed θ with two numbers for convenience.
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The Lasso

4. (a) When proving results on the Lasso, we started with the so-called basic inequality
that

1

2n
‖X(β0 − β̂)‖22 ≤

1
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εTX(β̂ − β0) + λ‖β0‖1 − λ‖β̂‖1.

Show that in fact we can improve this to
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n
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Hint: Start from the KKT conditions for the Lasso.

(b) Under the assumptions of Theorem 7 on the prediction and estimation proper-
ties of the Lasso under a compatibility condition, show that, with probability 1 −
2p−(A

2/8−1), we have
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5. Consider once more the setup of Theorem 7 and its proof. Let Ŝ = {j : β̂j 6= 0} and set
ŝ = |Ŝ|. Show that on the event Ω = {2‖XTε‖∞/n ≤ λ}, for any non-empty subset B of
Ŝ, we have
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n
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BX(β0 − β̂) ≥ λ|B|
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Let κ2m be the maximum eigenvalue of XT
MXM/n over all M ⊂ {1, . . . , p} with |M | = m.

Let
m∗ = min{m ≥ 1 : m > 9κ2ms/φ

2},
with m∗ =∞ if there does not exist any m satisfying the condition defining the set above.
Prove that on Ω, we have ŝ < m∗. Hint: First try to obtain an upper bound on the LHS
of (2) involving κ|B| by making use of the (1) and the Cauchy–Schwarz inequality .

By considering the minimality of m∗, show furthermore that on Ω, we have ŝ ≤ 9κ2m∗s/φ2.
[In words, the number of non-zero coefficients of the Lasso is of the same order as the
number of true non-zeroes.]

Graphical modelling

7. Let Z = (Z1, . . . , Zp)
T ∈ {0, 1}p be a binary random vector with probability mass function

given by

P(Z1 = z1, . . . , Zp = zp) = exp

Θ00 +

p∑
k=1
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p∑
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where exp(−Φ(Θ)) is a normalising constant. Show that

logit(P(Zk = 1|Z−k = z−k)) = Θ0k +
∑
j:j<k

Θjkzj +
∑
j:j>k

Θkjzj ,

where logit(q) = log{q/(1− q)} for q ∈ (0, 1). Conclude that, for j < k,

Zj ⊥⊥ Zk|Z−jk ⇐⇒ Θjk = 0.

Note that for discrete random variables we can replace the densities in our definition of
conditional independence with probability mass functions (which are in any case densities
with respect to counting measure). How might we go about estimating the Θjk?
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High-dimensional inference

In the following questions, suppose there are m null hypotheses being tested, H1, . . . ,Hm. Let
p1, . . . , pm be the associated p-values, and let p(1) ≤ · · · ≤ p(m) be the ordered p values (so (i)
is the index of the ith smallest p-value). Further let I0 be the set of true null hypotheses.

8. Consider the closed testing procedure applied to m hypotheses and let R be the collection
of all I ⊆ {1, . . . ,m} for which for all J ⊇ I, the local test φJ = 1. Now suppose that
(perhaps after having looked at the results of the φI), we decide we want to reject a set
of hypotheses indexed by B ⊆ {1, . . . ,m}. Let

tα(B) = max{|I| : I ⊆ B, I /∈ R}.

Show that {0, 1, . . . , tα(B)} gives a 1− α confidence set for the number of false rejections
in B. That is, show that

P(|B ∩ I0| > tα(B)) ≤ α,

and that this is true no matter how B is chosen. Hint: Argue by working on the event
{φI0 = 0}. This question is based on the cherry picking procedure of Goeman and Solari
[2011].

9. Suppose we have a family of intersection hypotheses HI : I ∈ I that is hierarchical in the
sense that for any I, J ∈ I, we either have I ∩ J = ∅ or I ⊆ J or J ⊆ I. Suppose that for
each HI , I ∈ I we have a p-value pI . Define the adjusted p-value of HI to be

padjI = max
J :J∈I, J⊇I

m

|J |
pJ .

Consider the procedure [Meinshausen, 2008] that rejects all hypotheses HI for which

padjI ≤ α. Let I0 be the subset of I consisting of true intersection hypotheses, so

I0 = {I ∈ I : I ⊆ I0}.

Show that with probability at least 1− α, this procedure makes no false rejections, so no
intersection hypothesis indexed by I0 is rejected. Hint: Consider the set T0 ⊆ I of I ∈ I0
that are maximal, that is

T0 = {I ∈ I0 : if J ∈ I0 then J ⊆ I or J ∩ I = ∅}.

10. The Benjamini–Hochberg procedure allows us to control the FDR when the p-values of
true null hypotheses are independent of each other, and independent of the false null
hypotheses. The following variant of the method, known as the Benjamini–Yekutieli
procedure [Benjamini and Yekutieli, 2001] allows us to control the FDR under arbitrary
dependence of the p-values, and works as follows. Define

γm = 1 +
1

2
+ · · ·+ 1

m
.

Let k̂ = max{i : p(i) ≤ αi/(mγm)} and reject H(1), . . . ,H(k̂). First show that the FDR of
this procedure satisfies

FDR =
∑
i∈I0

E
(

1

R
1{pi≤αR/(mγm)}1{R>0}

)
.
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Now go on to prove that FDR ≤ αm0/m ≤ α. Hint: Verify that that for any r ∈ N we
have

1

r
=
∞∑
j=1

1{j≥r}

j(j + 1)
,

and use this to replace 1/R.
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