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Statistics: another short introduction

From APTS Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2016.

In Statistics we quantify our beliefs about things which we would
like to know in the light of other things which we have measured,
or will measure. This programme is not unique to Statistics: one
distinguishing feature of Statistics is the use of probability to quan-
tify the uncertainty in our beliefs. Within Statistics we tend to
separate Theoretical Statistics, which is the study of algorithms
and their properties, from Applied Statistics, which is the use of
carefully-selected algorithms to quantify beliefs about the real
world. This chapter is about Theoretical Statistics.

If I had to recommend one introductory book about Theoretical
Statistics, it would be Hacking (2001). The two textbooks I find
myself using most regularly are Casella and Berger (2002) and
Schervish (1995). For travelling, Cox (2006) and Cox and Donnelly
(2011) are slim and full of insights. If you can find it, Savage et al.
(1962) is a short and gripping account of the state of Statistics at a
critical transition, in the late 1950s and early 1960s.1 1 And contains the funniest sentence

ever written in Statistics, contributed
by L.J. Savage.

1.1 Statistical models

This section covers the nature of a statistical model, and some of the
basic conventions for notation.

A statistical model is an artefact to link our beliefs about things
which we can measure to things we would like to know. Denote
the values of the things we can measure as Y, and the values of the
things we would like to know as X. These are random quantities,
indicating that their values, ahead of taking the measurements, are
unknown to us.

The convention in Statistics is that random quantities are de-
noted with capital letters, and particular values of those random
quantities with small letters; e.g., x is a particular value that X
could take. This sometimes clashes with another convention that
matrices are shown with capital letters and scalars with small let-
ters. A partial resolution is to use normal letters for scalars, and
bold-face letters for vectors and matrices. However, I have stopped
adhering to this convention, as it it usually clear what X is from the
context. Therefore both X and Y may be collections of quantities.

I term the set of possible (numerical) values for X the realm of
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X, after Lad (1996), and denote it X. This illustrates another con-
vention, common throughout Mathematics, that sets are denoted
with ornate letters. The realm of (X, Y) is denoted X× Y. Where the
realm is a product, then the margins are denoted with subscripts.
So if Z = X× Y, then Z1 = X and Z2 = Y. The most common
example is where X = (X1, . . . , Xm), and the realm of each Xi is X,
so that the realm of X is Xm.

In the definition of a statistical model, ‘artefact’ denotes an object
made by a human, e.g. you or me. There are no statistical models
that don’t originate inside our minds. So there is no arbiter to
determine the ‘true’ statistical model for (X, Y)—we may expect to
disagree about the statistical model for (X, Y), between ourselves,
and even within ourselves from one time-point to another.2 In 2 Some people refer to the unknown

data generating process (DGP) for (X, Y),
but I have never found this to be a
useful concept.

common with all other scientists, statisticians do not require their
models to be true. Statistical models exist to make prediction
feasible (see Section 1.3).

Maybe it would be helpful to say a little more about this. Here is
the usual procedure in ‘public’ Science, sanitised and compressed:

1. Given an interesting question, formulate it as a problem with a
solution.

2. Using experience, imagination, and technical skill, make some
simplifying assumptions to move the problem into the mathemat-
ical domain, and solve it.

3. Contemplate the simplified solution in the light of the assump-
tions, e.g. in terms of robustness. Maybe iterate a few times.

4. Publish your simplified solution (including, of course, all of
your assumptions), and your recommendation for the original
question, if you have one. Prepare for criticism.

MacKay (2009) provides a masterclass in this procedure.3 The statis- 3 Many people have discussed the
“unreasonable effectiveness of mathe-
matics”, to use the phrase of Eugene
Wigner; see https://en.wikipedia.

org/wiki/The_Unreasonable_

Effectiveness_of_Mathematics_

in_the_Natural_Sciences. Or, for a
more nuanced view, Hacking (2014).

tical model represents a statistician’s ‘simplifying assumptions’.
A statistical model takes the form of a family of probability distribu-

tions over X× Y. I will assume, for notational convenience, that X× Y

is countable.4 Dropping Y for a moment, let X = {x(1), x(2), . . . }.

4 Everything in this chapter general-
izes to the case where the realm is
uncountable.

The complete set of probability distributions for X is

P =

{
p ∈ Rk : ∀i pi ≥ 0,

k

∑
i=1

pi = 1

}
, (1.1)

where pi = Pr(X = x(i)), and k = |X|, the number of elements
of X. A family of distributions is a subset of P, say F. In other
words, a statistician creates a statistical model by ruling out many
possible probability distributions. The family is usually denoted by
a probability mass function (PMF) fX, a parameter θ, and a parameter
space Ω, such that

F =
{

p ∈ P : ∀i pi = fX(x(i); θ) for some θ ∈ Ω
}

. (1.2)

https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
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For obvious reasons, we require that if θ′ 6= θ′′, then

fX(· ; θ′) 6= fX(· ; θ′′); (1.3)

such models are termed identifiable.5 Taken all together, it is conve- 5 Some more notation. fX is a func-
tion; formally, fX : X×Ω → [0, 1].
Two functions can be compared for
equality: as functions are sets of tuples,
the comparison is for the equality of
two sets. fX(· ; θ) is also a function,
fX(· ; θ) : X → [0, 1] but different for
each value of θ. It is a convention in
Statistics to separate the argument x
from the parameter θ using a semi-
colon.

nient to denote a statistical model for X as the triple

E =
{
X, Ω, fX

}
. (1.4)

I will occasionally distinguish between the family F and the statis-
tical model E. This is because the model is just one of uncountably
many different instantiations of the same family. That is to say, two
statisticians may agree on the family F, but choose different models
E1 and E2.6 6 Some algorithms, such as the MLE

(see eq. 1.6), are model-invariant in the
sense that their results translate from
one model to another, within the same
family. But many are not. It’s a moot
question whether we should value
algorithms that are model-invariant.
My feeling is that we should, but the
topic does not get a lot of attention in
textbooks.

Most statistical procedures start with the specification of a statis-
tical model for (X, Y),

E =
{
X× Y, Ω, fX,Y

}
. (1.5)

The method by which a statistician chooses F and then E is hard to
codify, although experience and precedent are obviously relevant.
See Davison (2003) for a book-length treatment with many useful
examples.

1.2 Hierarchies of models

The concept of a statistical model was crystalized in the early
part of the 20th century. At that time, when the notion of a digital
computer was no more than a twinkle in John von Neumann’s
eye, the ‘ fY’ in the model

{
Y, Ω, fY

}
was assumed to be a known

analytic function of y for each θ.7 As such, all sorts of other useful 7 That is, a function which can be
evaluated to any specified precision
using a finite number of operations,
like the Poisson PMF or the Normal
probability density function (PDF).

operations are possible, such as differentiating with respect to θ.
Expressions for the PMFs of specified functions of set of random
quantities are also known analytic functions: sums, differences, and
more general transformations.

This was computationally convenient—in fact it was critical
given the resources of the time—but it severely restricted the mod-
els which could be used in practice, more-or-less to the models
found today at the back of every textbook in Statistics (e.g. Casella
and Berger, 2002), or simple combinations thereof. Since about the
1950s—the start of the computer age—we have had the ability to
evaluate a much wider set of functions, and to simulate random
quantities on digital computers. As a result, the set of usable statis-
tical models has dramatically increased. In modern Statistics, we
now have the freedom to specify the model that most effectively
represents our beliefs about the set of random quantities of inter-
est. Therefore we need to update our notion of statistical model,
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according to the following hierarchy.

A. Models where fY has a known analytic form.

B. Models where fY(y; θ) can be evaluated.

C. Models where Y can be simulated from fY(·; θ).

Between (B) and (C) exist models where fY(y; θ) can be evaluated
up to an unknown constant, which may or may not depend on θ.

To illustrate the difference, consider the Maximum Likelihood
Estimator (MLE) of the ‘true’ value of θ based on Y, defined as

θ̂(y) := sup
θ∈Ω

fY(y; θ). (1.6)

Eq. (1.6) is just a sequence of mathematical symbols, waiting to be
instantiated into an algorithm. If fY has a known analytic form,
i.e. level (A) of the hierarchy, then it may be possible to solve the
first-order conditions,8 8 For simplicity and numerical stability,

these would usually be applied to
log fY not fY .∂

∂θ
fY(y; θ) = 0, (1.7)

uniquely for θ as a function of y (assuming, for simplicity, that Ω
is a convex subset of R) and to show that ∂2

∂θ2 fY(y; θ) is negative at
this solution. In this case we are able to derive an analytic expres-
sion for θ̂. Even if we cannot solve the first order conditions, we
might be able to prove that fY(y; ·) is strictly concave, so that we
know there is a unique maximum. This means that any numerical
maximization of fY(y; ·) is guaranteed to converge to θ̂(y).

But what if we can evaluate fY(y; θ), but do not know its form,
i.e. level (B) of the hierarchy? In this case we can still numerically
maximize fY(y; ·), but we cannot be sure that the maximizer will
converge to θ̂(y): it may converge to a local maximum. So the
algorithm for finding θ̂(y) must have some additional procedures to
ensure that all local maxima are ignored: this is very complicated in
practice, very resource intensive, and there are no guarantees.9 So 9 See, e.g., Nocedal and Wright (2006).

Do not be tempted to make up your
own numerical maximization algo-
rithm.

in practice the Maximum Likelihood algorithm does not necessarily
give the MLE. We must recognise this distinction, and not make
claims for the MLE algorithm which we implement, that are based
on theoretical properties of the MLE.

And what about level (C) of the hierarchy? It is very tricky
indeed to find the MLE in this case, and any algorithm that tries
will be very imperfect. Other estimators of θ would usually be
preferred. This example illustrates that in Statistics it is the choice
of algorithm that matters. The MLE is a good choice only if (i) you
can prove that it has good properties for your statistical model,10 10 Which is often very unclear; see

Le Cam (1990).and (ii) you can prove that your algorithm for finding the MLE is
in fact guaranteed to find the MLE for your statistical model. If
you have used an algorithm to find the MLE without checking both
(i) and (ii), then your results bear the same relation to Statistics as
Astrology does to Astronomy. Doing Astrology is fine, but not if
your client has paid you to do Astronomy.
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1.3 Prediction and inference

The task in Applied Statistics is to predict X using yobs, the mea-
sured value of Y. It is convenient to term Y the observables and yobs

the observations. X is the predictand.
The applied statistician proposes a statistical model for (X, Y),

E =
{
X× Y, Ω, fX,Y

}
.

She then turns E and yobs into a prediction for X. Ideally she uses
an algorithm, in the sense that were she given the same statistical
model and same observations again, she would produce the same
prediction.

A statistical prediction is always a probability distribution for X,
although it might be summarised, for example as the expectation
of some specified function of X. From the starting point of the
statistical model E and the value of an observable Y we derive the
predictive model

E∗ =
{
X, Ω, f ∗X

}
(1.8a)

where

f ∗X(·; θ) =
fX,Y(·, y; θ)

fY(y; θ)
(1.8b)

and fY(y; θ) = ∑
x

fX,Y(x, y; θ); (1.8c)

I often write ‘∗’ to indicate a suppressed y argument. Here f ∗X is
the conditional PMF of X given that Y = y, and fY is the marginal
PMF of Y. Both of these depend on the parameter θ. The challenge
for prediction is to reduce the family of distributions E∗ down to a
single distribution; effectively, to ‘get rid of’ θ.

There are two approaches to getting rid of θ: plug in and integrate
out, found in the Frequentist and Bayesian paradigms respectively,
for reasons that will be made clear below. We accept, as our work-
ing hypothesis, that one of the elements of the family F is true. For
a specified statistical model E, this is equivalent to stating that ex-
actly one element in Ω is true: denote this element as Θ.11,12 Then 11 Note that I do not feel the need to

write ‘true’ in scare-quotes. Clearly
there is no such thing as a true value
for θ, because the model is an artefact
(i.e. not true in any defensible sense).
But once we accept, as a working
hypothesis, that one of the elements of
F is true, we do not have to belabour
the point.
12 I am following Schervish (1995)
and using Θ for the true value of θ,
although it is a bit clunky as notation.

f ∗X(·; Θ) is the true predictive PMF for X.
For the plug-in approach we replace Θ with an estimate based

on y, for example the MLE θ̂. In other words, we have an algorithm

y 7→ f ∗X
(
· ; θ̂(y)

)
(1.9)

to derive the predictive distribution for X for any y. The estimator
does not have to be the MLE: different estimators of Θ produce
different algorithms.

For the integrate-out approach we provide a prior distribution
over Ω, denoted π.13 This produces a posterior distribution 13 For simplicity, and almost always

in practice, π is a probability density
function (PDF), given that Ω is almost
always a convex subset of Euclidean
space.

π∗(·) = fY(y; ·)π(·)
p(y)

(1.10a)
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where

p(y) =
∫

Ω
fY(y; θ)π(θ)dθ (1.10b)

(Bayes’s theorem, of course). Here p(y) is termed the marginal
likelihood of y. Then we integrate out θ according to the posterior
distribution—another algorithm:

y 7→
∫

Ω
f ∗X(· ; θ)π∗(θ)dθ. (1.11)

Different prior distributions produce different algorithms.
That is prediction in a nutshell. In the plug-in approach, each

estimator for Θ produces a different algorithm. In the integrate-
out approach each prior distribution for Θ produces a different
algorithm. Neither approach works on y alone: both need the statis-
tician to provide an additional input: a point estimator, or a prior
distribution. Frequentists dislike specifying prior distributions,
and therefore favour the plug-in approach. Bayesians like speci-
fying prior distributions, and therefore favour the integrate-out
approach.14 14 We often write ‘Frequentists’ and

‘Bayesians’, and most applied statisti-
cians will tend to favour one approach
or the other. But applied statisticians
are also pragmatic. Although a ‘mostly
Bayesian’ myself, I occasionally pro-
duce confidence sets.

* * *

This outline of prediction illustrates exactly how Statistics has
become so concerned with inference. Inference is learning about
Θ, which is a key part of either approach to prediction: either we
need a point estimator for Θ (plug-in), or we need a posterior dis-
tribution for Θ (integrate-out). It often seems as though Statistics is
mainly about inference, but this is misleading. It is about inference
only insofar as inference is the first part of prediction.

Ideally, algorithms for inference should only be evaluated in
terms of their performance as components of algorithms for predic-
tion. This does not happen in practice: partly because it is much
easier to assess algorithms for inference than for prediction; partly
because of the fairly well-justified belief that algorithms that per-
form well for inference will produce algorithms that perform well
for prediction. I will adhere to this practice, and focus mainly on
inference. But not forgetting that Statistics is mainly about prediction.

1.4 Frequentist procedures

As explained immediately above, I will focus on inference. So
consider a specified statistical model E =

{
Y, Ω, fY

}
, where the

objective is to learn about the true value Θ ∈ Ω based on the value
of the observables Y.

We have already come across the notion of an algorithm, which
is represented as a function of the value of the observables; in this
section I will denote the algorithm as ‘g’. Thus the domain of g is
always Y. The co-domain of g depends on the type of inference (see
below for examples). The key feature of the Frequentist paradigm is
the following principle.
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Definition 1.1 (Certification). For a specified model E and algorithm
g, the sampling distribution of g is

fG(v; θ) = ∑
y:g(y)=v

fY(y; θ). (1.12)

Then:

1. Every algorithm is certified by its sampling distribution, and

2. The choice of algorithm depends on this certification.

This rather abstract principle may not be what you were expect-
ing, based on your previous courses in Statistics, but if you reflect
on the following outline you will see that is the common principle
underlying what you have previously been taught.

Different algorithms are certified in different ways, depending on
their nature. Briefly, point estimators of Θ may be certified by their
Mean Squared Error function. Set estimators of Θ may be certified
by their coverage function. Hypothesis tests for Θ may be certified
by their power function. The definition of each of these certifications
is not important here, although they are easy to look up. What
is important to understand is that in each case an algorithm g is
proposed, fG is inspected, and then a certificate is issued.

Individuals and user communities develop conventions about
what certificates they like their algorithms to possess, and thus they
choose an algorithm according to its certification. They report both
g(yobs) and the certification of g. For example, “(0.73, 0.88) is a 95%
confidence interval for Θ”. In this case g is a set estimator for Θ, it
is certified as ‘level 95%’, and its value is g(yobs) = (0.73, 0.88).

* * *

Certification is extremely challenging. Suppose I possess an
algorithm g : Y → 2Ω for set estimation.15 In order to certify it 15 Notation. 2Ω is the set of all subsets

of Ω, termed the ‘power set’ of Ω.as a confidence procedure for my model E I need to compute its
coverage for every θ ∈ Ω, defined as

coverage(θ;E) = Pr{θ ∈ g(Y); θ} = ∑
v
1θ∈v fG(v; θ), (1.13)

where ‘1a’ is the indicator function of the proposition a, which
is 0 when a is false, and 1 when a is true. Except in special cases,
computing the coverage for every θ ∈ Ω is impossible, given that Ω
is uncountable.16 16 The special cases are a small subset

of models from (A) in the model
hierarchy in Section 1.2, where, for a
particular choice of g, the sampling
distribution of g and the coverage
of g can be expressed as an analytic
function of θ. If you ever wondered
why the Normal linear model is so
common in applied statistics (linear
regression, z-scores, t-tests, and F-
statistics, ANOVA, etc.), then wonder
no more. Effectively, this family makes
up most of the special cases.

So, in general, I cannot know the coverage function of my algo-
rithm g for my model E, and thus I cannot certify it accurately, but
only approximately. Unfortunately, then I have a second challenge.
After much effort, I might (approximately) certify g for my model E
as, say, ‘level 83%’; this means that the coverage is at least 83% for
every θ ∈ Ω. Unfortunately, the convention in my user community
is that confidence procedures should be certified as ‘level 95%’. So
it turns out that my community will not accept g. I have to find a
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way to work backwards, from the required certificate, to the choice
of algorithm.

So Frequentist procedures require the solution of an intractable
inverse problem: for specified model E, produce an algorithm g
with the required certificate. Actually, it is even harder than this,
because it turns out that there are an uncountable number of algo-
rithms with the right certificate, but most of them are useless. Most
applied statisticians do not have the expertise or the computing
resources to solve this problem to find a good algorithm with the re-
quired certificate, for their model E. And so Frequentist procedures,
when they are used by applied statisticians, tend to rely on a few
special cases. Where these special cases are not appropriate, applied
statisticians tend to reach for an off-the-shelf algorithm justified
using a theoretical approximation, plus hope.

The empirical evidence collected over the last decade suggests
that the hope has been in vain. Most algorithms (including those
based on the special cases) did not, in fact, have the certificate that
was claimed for them.17 Opinion is divided about whether this is 17 See Madigan et al. (2014) for one

such study or, if you want to delve,
google “crisis reproducibility science”.
There is even a wikipedia page,
https://en.wikipedia.org/wiki/

Replication_crisis, which dates from
Jan 2015.

fraud or merely ignorance. Practically speaking, though, there is
no doubt that Frequentist procedures are not being successfullly
implemented by applied statisticians.

1.5 Bayesian procedures

We continue to treat the model E as given. As explained in the pre-
vious section, Frequentist procedures select algorithms according
to their certificates. By contrast, Bayesian procedures select algo-
rithms mainly according to the prior distribution π (see Section 1.3),
without regard for the algorithm’s certificate.

A Bayesian inference is synonymous with the posterior distribu-
tion π∗, see (1.10). This posterior distribution may be summarized
according to some method, for example to give a point estimate, a
set estimate, do a hypothesis test, and so on. These summary meth-
ods are fairly standard, and do not represent an additional source
of choice for the statistician. For example, a Bayesian algorithm for
choosing a set estimator for Θ would be (i) choose a prior distribu-
tion π, (ii) compute the posterior distribution π∗, and (iii) extract
the 95% High Density Region (HDR).

In principle, we could compute the coverage function of this al-
gorithm, and certify it as a confidence procedure. It is very unlikely
that it would be certified as a ‘level 95%’ confidence procedure,
because of the influence of the prior distribution.18 A Bayesian 18 Nevertheless, there are theorems

that give conditions on the model and
the prior distribution such that the
posterior 95% HDR is approximately
a level 95% confidence procedure; see,
e.g., Schervish (1995, ch. 7).

statistician would not care, though, because she does not concern
herself with the certificate of her algorithm. When the model is
given, the only thing the Bayesian has to worry about is her prior
distribution.

Bayesians see the prior distribution as an opportunity to con-
struct a richer model for (X, Y) than is possible for Frequentists.
This is most easily illustrated with a hierarchical model, for a

https://en.wikipedia.org/wiki/Replication_crisis
https://en.wikipedia.org/wiki/Replication_crisis
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population of quantities that are similar, and a sample from that
population. Hierarchical models have a standard notation:19 19 See, e.g., Lunn et al. (2013) or

Gelman et al. (2014). Each of the f
functions is a PMF or PDF, and the
first argument is suppressed. The i
index in the first three rows indicates
that the components are mutually
independent, and then the f function
shows the marginal distribution for
each i, which may depend on i. In the
third row f does not depend on i, so
that the θi’s are mutually independent
and identically distributed, or ‘IID’.

Yi | Xi, σ2 ∼ fεi (Xi, σ2) i = 1, . . . , n (1.14a)

Xi | θi ∼ fXi (θi) i = 1, . . . , m (1.14b)

θi | ψ ∼ fθ(ψ) i = 1, . . . , m (1.14c)

(σ2, ψ) ∼ f0 . (1.14d)

At the top (first) level is the measurement model for the sample
(Y1, . . . , Yn), where fεi describes the measurement error and σ2

would usually be a scale parameter. At the second level is the
model for the population (X1, . . . , Xm), where n ≤ m, showing
how each element Xi is ‘summarised’ by its own parameter θi. At
the third level is the parameter model, in which the parameters
are allowed to be different from each other. At the bottom (fourth)
level is the ‘hyper-parameter’ model, which describes how much
the parameters can differ, and also provides a PDF for the scale
parameter σ2.

Frequentists would specify their statistical model using just the
top two levels, in terms of the parameter (σ2, θ1, . . . , θm), or, if this
is too many parameters for the n observables, as it usually is, they
will insist that θ1 = · · · = θm = θ, and have just (σ2, θ). The bottom
two levels are the Bayesian’s prior distribution. By adding these
two levels, Bayesians can allow the θi’s to vary, but in a limited way
that can be controlled by their choices for fθ and f0. Usually, f0 is a
‘vague’ PDF selected according to some simple rules.

In a Frequentist model we can count the number of param-
eters, namely 1 + m · dim Ω, or just 1 + dim Ω if the θi’s are
all the same. We can do that in a Bayesian model too, to give
1 + m · dim Ω + dim Ψ, if Ψ is the realm of ψ. Bayesian models
tend to have many more parameters, which makes them more flex-
ible. But there is a second concept in a Bayesian model, which is
the effective number of parameters. This can be a lot lower than the
actual number of parameters, if it turns out that the observations
indicate that the θi’s are all very similar. So in a Bayesian model the
effective number of parameters can depend on the observations. In
this sense, a Bayesian model is more adaptive than a Frequentist
model.20 20 The issue of how to quantify the

effective number of parameters is
quite complicated. Spiegelhalter
et al. (2002) was a controversial
suggestion, and there have been
several developments since then,
summarised in Spiegelhalter et al.
(2014).

1.6 So who’s right?

We return to the problem of inference, based on the model E =
{
Y, Ω, fY

}
.

Here is the pressing question, from the previous two sections:
should we concern ourselves with the certificate of the algorithm, or
with the choice of the prior distribution?

A Frequentist would say “Don’t you want to know that you will
be right ‘on average’ according to some specified rate?” (like 95%).
And a Bayesian will reply “Why should my rate ‘on average’ matter
to me right now, when I am thinking only of Θ?”21 The Bayesian 21 And if she really wants to twist

the knife she will also mention the
overwhelming evidence that Frequen-
tist statisticians have apparently not
been able to achieve their target rates,
mentioned at the end of Section 1.4.
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will point out the advantage of being able to construct hierarchical
models with richer structure. Then the Frequentist will criticise
the ‘subjectivity’ of the Bayesian’s prior distribution. The Bayesian
will reply that the model is also subjective, and so ‘subjectivity’ of
itself cannot be used to criticise only Bayesian procedures. And she
will go on to point out that there is just as much subjectivity in the
Frequentist’s choice of algorithm as there is in the Bayesian’s choice
of prior.

There is no clear winner when two paradigms butt heads. How-
ever, momentum is now on the side of the Bayesians. Back in the
1920s and 1930s, at the dawn of modern Statistics, the Frequentist
paradigm seemed to provide the ‘objectivity’ that was then prized
in science. And computation was so rudimentary that no one
thought beyond the simplest possible models, and their natural al-
gorithms. But then the Frequentist paradigm took a couple of hard
knocks: from Wald’s Complete Class Theorem in 1950 (covered
in Chapter 3), and from Birnbaum’s Theorem and the Likelihood
Principle in the 1960s (covered in Chapter 2). Significance testing
was challenged by Lindley’s paradox; estimator theory by Stein’s
paradox and the Neyman-Scott paradox. Bayesian methods were
much less troubled by these results, and were developed in the
1950s and 1960s by two very influential champions, L.J. Savage and
Dennis Lindey, building on the work of Harold Jeffreys.22 22 With a strong assist from the mav-

erick statistician I.J. Good. The intel-
lectual forebears of the 20th century
Bayesian revival included J.M. Keynes,
F.P. Ramsey, Bruno de Finetti, and
R.T. Cox.

And then in the 1980s, the exponential growth in computer
power and new Monte Carlo methods combined to make the
Bayesian approach much more practical. Additionally, datasets
have got larger and more complicated, favouring the Bayesian
approach with its richer model structure, when incorporating the
prior distribution. Finally, there is now much more interest in
uncertainty in predictions, something that the Bayesian integrate-
out approach handles much better than the Frequentist plug-in
approach (Section 1.3).

However, I would not rule out a partial reversal in due course,
under pressure from Machine Learning (ML). ML is all about
algorithms, which are often developed quite independently of any
statistical model. With modern Big Data (BD), the primary concern
of an algorithm is that it executes in a reasonable amount of time
(see, e.g., Cormen et al., 1990). But it would be natural, when an
ML algorithm might be applied by the same agent thousands of
times in quite similar situations, to be concerned about its sampling
distribution.23 With BD the certificate can be assessed from a held- 23 For example, if an algorithm is a

binary classifier, to want to know its
‘false positive’ and ‘false negative’
rates.

out subset of the data, without any need for a statistical model—no
need for statisticians at all then! Luckily for us statisticians, there
will always be plenty of applications where ML techniques are less
effective, because the datasets are smaller, or more complicated.
In these applications, I expect Bayesian procedures will come to
dominate.



2
Principles for Statisical Inference

From APTS Lecture Notes on Statistical
Inference, Jonathan Rougier, Copyright
© University of Bristol 2016.

This chapter will be a lot clearer if you have recently read Chap-
ter 1. An extremely compressed version follows. As a working
hypothesis, we accept the truth of a statistical model

E :=
{
X, Ω, f

}
(2.1)

where X is the realm of a set of random quantities X, θ is a param-
eter with domain Ω (the ‘parameter space’), and f is a probability
mass function for which f (x; θ) is the probability of X = x under
parameter value θ.1 The true value of the parameter is denoted 1 As is my usual convention, I assume,

without loss of generality, that X is
countable, and that Ω is uncountable.

Θ. Statistical inference is learning about Θ from the value of X,
described in terms of an algorithm involving E and x. Although
Statistics is really about prediction, inference is a crucial step in
prediction, and therefore often taken as a goal in its own right.

Statistical principles guide the way in which we learn about Θ.
They are meant to be either self-evident, or logical implications
of principles which are self-evident. What is really interesting
about Statistics, for both statisticians and philosophers (and real-
world decision makers) is that the logical implications of some self-
evident principles are not at all self-evident, and have turned out
to be inconsistent with prevailing practices. This was a discovery
made in the 1960s. Just as interesting, for sociologists (and real-
world decision makers) is that the then-prevailing practices have
survived the discovery, and continue to be used today.

This chapter is about statistical principles, and their implications
for statistical inference. It demonstrates the power of abstract
reasoning to shape everyday practice.

2.1 Reasoning about inferences

Statistical inferences can be very varied, as a brief look at the ‘Re-
sults’ sections of the papers in an Applied Statistics journal will
reveal. In each paper, the authors have decided on a different inter-
pretation of how to represent the ‘evidence’ from their dataset. On
the surface, it does not seem possible to construct and reason about
statistical principles when the notion of ‘evidence’ is so plastic. It
was the inspiration of Allan Birnbaum (Birnbaum, 1962) to see—
albeit indistinctly at first—that this issue could be side-stepped.
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Over the next two decades, his original notion was refined; key
papers in this process were Birnbaum (1972), Basu (1975), Dawid
(1977), and the book by Berger and Wolpert (1988).

The model E is accepted as a working hypothesis, and so the
existence of the true value Θ is also accepted under the same terms.
How the statistician chooses her statements about the true value Θ
is entirely down to her and her client: as a point or a set in Ω, as a
choice among alternative sets or actions, or maybe as some more
complicated, not ruling out visualizations. Dawid (1977) puts this
well—his formalism is not excessive, for really understanding this
crucial concept. The statistician defines, a priori, a set of possible
‘inferences about Θ’, and her task is to choose an element of this
set based on E and x. Thus the statistician should see herself as
a function ‘Ev’: a mapping from (E, x) into a predefined set of
‘inferences about Θ’, or

(E, x) �
statistician, Ev

// Inference about Θ.

Birnbaum called E the ‘experiment’, x the ‘outcome’, and Ev the
‘evidence’.

Birnbaum’s formalism, of an experiment, an outcome, and an
evidence function, helps us to anticipate how we can construct
statistical principles. First, there can be different experiments with
the same Θ. Second, under some outcomes, we would agree that
it is self-evident that these different experiments provide the same
evidence about Θ. Finally, as will be shown, these self-evident
principles imply other principles. These principles all have the
same form: under such and such conditions, the evidence about Θ
should be the same. Thus they serve only to rule out inferences that
satisfy the conditions but have different evidences. They do not tell
us how to do an inference, only what to avoid.

2.2 The principle of indifference

Here is our first example of a statistical principle, using the name
conferred by Basu (1975). Recollect that once f (x; θ) has been
defined, f (x; •) is a function of θ, potentially a different function for
each x, and f (• ; θ) is a function of x, potentially a different function
for each θ.2 2 I am using ‘•’ instead of ‘·’ in this

chapter and subsequent ones, be-
cause I like to use ‘·’ to denote scalar
multiplication.

Definition 2.1 (Weak Indifference Principle, WIP). Let E = {X, Ω, f }.
If f (x; •) = f (x′; •) then Ev(E, x) = Ev(E, x′).

In my opinion, this is not self-evident, although, at the same
time, is it not obviously wrong.3 But we discover that it is the 3 Birnbaum (1972) thought it was

self-evident.logical implication of two other principles which I accept as self-
evident. These other principles are as follows, using the names
conferred by Dawid (1977).

Definition 2.2 (Distribution Principle, DP). If E = E′, then
Ev(E, x) = Ev(E′, x).
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As Dawid (1977) puts it, any information which is not repre-
sented in E is irrelevant. This seems entirely self-evident to me,
once we enter the mathematical realm in which we accept the truth
of our statistical model.

Definition 2.3 (Transformation Principle, TP). Let E = {X, Ω, f }.
Let g : X → Y be bijective, and let Eg be the same experiment
as E but expressed in terms of Y = g(X), rather than X. Then
Ev(E, x) = Ev(Eg, g(x)).

This principle states that inferences should not depend on the
way in which the sample space is labelled, which also seems self-
evident to me; at least, to violate this principle would be bizarre.
But now we have the following result (Basu, 1975; Dawid, 1977).

Theorem 2.1. (DP∧ TP )→ WIP.

Proof. Fix E, and suppose that x, x′ ∈ X satisfy f (x; •) = f (x′; •),
as in the condition of the WIP. Now consider the transformation
g : X → X which switches x for x′, but leaves all of the other
elements of X unchanged. In this case E = Eg. Then

Ev(E, x′) = Ev(Eg, x′) by the DP

= Ev(Eg, g(x))

= Ev(E, x) by the TP,

which is the WIP.

So I find, as a matter of logic, I must accept the WIP, or else I
must decide which of the two principles DP and TP are, contrary to
my initial impression, not self-evident at all. This is the pattern of
the next two sections, where either I must accept a principle, or, as
a matter of logic, I must reject one of the principles that implies it.
From now on, I will treat the WIP as self-evident.

2.3 The Likelihood Principle

The new concept in this section is a ‘mixture’ of two experiments.
Suppose I have two experiments,

E1 = {X1, Ω, f1} and E2 = {X2, Ω, f2},

which have the same parameter θ. Rather than do one experiment
or the other, I imagine that I can choose between them randomly,
based on known probabilities (p1, p2), where p2 = 1 − p1. The
resulting mixture is denoted E∗, and it has outcomes of the form
(i, xi), and a statistical model of the form f ∗

(
(i, xi); •

)
= pi · fi(xi; •).

The famous example of a mixture experiment is the ‘two in-
struments’ (see Cox and Hinkley, 1974, sec. 2.3). There are two
instruments in a laboratory, and one is accurate, the other less so.
The accurate one is more in demand, and typically it is busy 80%
of the time. The inaccurate one is usually free. So, a priori, there is
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a probability of p1 = 0.2 of getting the accurate instrument, and
p2 = 0.8 of getting the inaccurate one. Once a measurement is
made, of course, there is no doubt about which of the two instru-
ments was used. The following principle asserts what must be
self-evident to everybody, that inferences should be made according
to which instrument was used, and not according to the a priori
uncertainty.

Definition 2.4 (Weak Conditionality Principle, WCP). If E∗ is a
mixture experiment, as defined above, then

Ev
(
E∗, (i, xi)

)
= Ev(Ei, xi).

Another principle does not seem, at first glance, to have anything
to do with the WCP. This is the Likelihood Principle.4 4 The LP is self-attributed to

G. Barnard, see his comment to
Birnbaum (1962), p. 308. But it is al-
luded to in the statistical writings of
R.A. Fisher, almost appearing in its
modern form in Fisher (1956).

Definition 2.5 (Likelihood Principle, LP). Let E1 and E2 be two
experiments which have the same parameter θ. If x1 ∈ X1 and
x2 ∈ X2 satisfy

f1(x1; •) = c(x1, x2) · f2(x2; •) (2.2)

for some function c > 0, then Ev(E1, x1) = Ev(E2, x2).

For a given (E, x), the function f (x; •) is termed the ‘likelihood
function’ for θ ∈ Ω. Thus the LP states that if two likelihood
functions for the same parameter have the same shape, then the
evidence is the same. As will be discussed in Section 2.6.3, Frequen-
tist inferences violate the LP. Therefore the following result was
something of the bombshell, when it first emerged in the 1960s. The
following form is due to Birnbaum (1972) and Basu (1975).5 5 Birnbaum’s original result (Birnbaum,

1962), used a stronger condition than
WIP and a slightly weaker condition
than WCP. Theorem 2.2 is clearer.

Theorem 2.2 (Birnbaum’s Theorem). (WIP∧WCP )↔ LP.

Proof. Both LP → WIP and LP → WCP are straightforward. The
trick is to prove (WIP ∧WCP ) → LP. So let E1 and E2 be two
experiments which have the same parameter, and suppose that
x1 ∈ X1 and x2 ∈ X2 satisfy f2(x2; •) = c · f1(x1; •), where c > 0 is
some constant which may depend on (x1, x2), as in the condition of
the LP. The value c is known, so consider the mixture experiment
with p1 = c/(1 + c) and p2 = 1/(1 + c). Then

f ∗
(
(1, x1); •

)
=

c
1 + c

· f1(x1; •)

=
1

1 + c
· f2(x2; •)

= f ∗
(
(2, x2); •

)
.

Then the WIP implies that

Ev
(
E∗, (1, x1)

)
= Ev

(
E∗, (2, x2)

)
.

Finally, apply the WCP to each side to infer that

Ev(E1, x1) = Ev(E2, x2),

as required.
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Again, to be clear about the logic: either I accept the LP, or I
explain which of the two principles, WIP and WCP, I refute. To me,
the WIP is the implication of two principles that are self-evident,
and the WCP is itself self-evident, so I must accept the LP, or else
invoke and justify an ad hoc abandonment of logic.

A simple way to understand the impact of the LP is to see what
it rules out. The following result is used in Section 2.6.3.

Theorem 2.3. If Ev is affected by the allocation of probabilities for out-
comes that do not occur, then Ev does not satisfy the LP.

Proof. Let the experiment E and the outcome x be fixed. Let
E2 := {X, Ω, f2} be another experiment, where f2(x; •) = f (x; •),
but f2(x′; θ) 6= f (x′; θ) for at least one x′ ∈ X \ {x} and at
least one θ ∈ Ω.6 If Ev is affected by the allocation of probabil- 6 Actually, f2(x′; θ) must vary at at

least two values in X \ {x}, due to the
constraint that ∑x f2(x; θ) = 1.

ities for outcomes that do not occur, then we can be sure that
Ev(E2, x) 6= Ev(E, x) for some choice of f2. This contradicts
the LP, which would imply that Ev(E2, x) = Ev(E, x) because
f2(x; •) = f (x; •).

2.4 Stronger forms of the Conditionality Principle

The new concept in this section is ‘ancillarity’. This has several
different definitions in the Statistics literature; mine is close to that
of Cox and Hinkley (1974, sec. 2.2).

Definition 2.6 (Ancillarity). X is ancillary for θ2 in experiment
E =

{
X× Y, Ω1 ×Ω2, fX,Y

}
exactly when fX,Y factorises as

fX,Y(x, y; θ) = fX(x; θ1) · fY|X(y | x; θ2).

X is ancillary in
{
X× Y, Ω, fX,Y

}
exactly when fX does not depend

on θ.

Not all families of distributions will factorise in this way, but
when they do, there are new possibilities for inference, based
around stronger forms of the WCP, such as the CP immediately
below, and the SCP (Definition 2.9).

When X is ancillary, we can consider the conditional experiment

EY|x =
{
Y, Ω, fY|x

}
, (2.3)

where fY|x(• ; θ) := fY|X(• | x; θ). This is an experiment where
we condition on X = x, i.e. treat X as known, and treat Y as the
only random quantity. This is an attractive idea, captured in the
following principle.

Definition 2.7 (Conditionality Principle, CP). If X is ancillary in E,
then Ev

(
E, (x, y)

)
= Ev(EY|x, y).

Clearly the CP implies the WCP, with the experiment indicator
I ∈

{
1, 2
}

being ancillary, since p is known. It is almost obvious
that the CP comes for free with the LP. Another way to put this is
that the WIP allows us to ‘upgrade’ the WCP to the CP.
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Theorem 2.4. LP→ CP.

Proof. Suppose that X is ancillary in E =
{
X× Y, Ω, fX,Y

}
. Thus

fX,Y(x, y; •) = fX(x) · fY|X(y | x; •) = c(x) · fY|x(y; •)

Then the LP implies that

Ev
(
E, (x, y)

)
= Ev(EY|x, y),

as required.

I am unsure how useful the CP is in practice. Conditioning
on ancillary random quantities is a nice option, but how often
do we contemplate an experiment in which X is ancillary? Much
more common is the weaker condition that X is ancillary for θ2,
where Ω1 is not empty. In other words, the distribution for X is
incompletely specified, but its parameters (i.e. θ1) are distinct from
the parameters of fY|X (i.e. θ2).

Definition 2.8 (Auxiliary parameter). θ1 is auxiliary in the exper-
iment defined in Definition 2.6 exactly when X is ancillary for θ2,
and Θ2 is of interest.

Now this would be a really useful principle:

Definition 2.9 (Strong Conditionality Principle, SCP). If θ1 is auxil-
iary in experiment E, and Ev2 denotes the evidence about Θ2, then
Ev2

(
E, (x, y)

)
= Ev(EY|x, y).

The SCP would allow us to treat all ancillary quantities whose
parameters were uninteresting to us as though they were known,
and condition on them, thus removing all reference to their un-
known marginal distribution and their parameters.

For example, we have a sample of size n, but we are unsure
about all the circumstances under which the sample was collected,
and suspect that n itself is the outcome of an experiment with
a random N. But as long as we are satisfied that the parameter
controlling the sampling process was auxiliary, the SCP asserts that
we can treat n as known, and condition on it.

Here is another example, which will be familiar to all statisti-
cians. A regression of Y on X appears to make a distinction be-
tween Y, which is random, and X, which is not. This distinction
is insupportable, given that the roles of Y and X are often inter-
changeable, and determined by the hypothèse du jour. What is really
happening is that (X, Y) is random, but X is being treated as ancil-
lary for the parameters in fY|X, so that its parameters are auxiliary
in the analysis. Then the SCP is invoked (implicitly), which justifies
modelling Y conditionally on X, treating X as known.

There are many other similar examples, to suggest that not only
would the SCP be a really useful principle, but in fact it is routinely
applied in practice. So it is important to know how the SCP relates
to the other principles. The SCP is not deducible from the LP
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alone. However, it is deducibe with an additional and very famous
principle, due originally to Savage (1954, sec. 2.7), in a different
form.7 7 See Pearl (2016) for an interesting

take on the STP.

Definition 2.10 (Sure Thing Principle, STP). Let E and E′ be two
experiments with the same parameter θ = (θ1, θ2). Let Ev2(• ; θ1)

denote the evidence for Θ2, with Θ1 = θ1. If

Ev2(E, x; θ1) = Ev2(E
′, x′; θ1) for every θ1 ∈ Ω1,

then Ev2(E, x) = Ev2(E
′, x′), where Ev2 is the evidence for Θ2.

This use of the STP to bridge from the CP to the SCP is similar
to the Noninformative Nuisance Parameter Principle (NNPP) of
Berger and Wolpert (1988, p. 41.5): my point here is that the NNPP
is actually the well-known Sure Thing Principle, and does not need
a separate name.

Theorem 2.5. (CP∧ STP )→ SCP.

Proof. Consider the experiment from Definition 2.6. Treat θ1 as
known, in which case the parameter is θ2, X is ancillary, and the CP
asserts that

Ev2
(
E, (x, y); θ1

)
= Ev2(E

Y|x, y; θ1).

As this equality holds for all θ1 ∈ Ω1, the STP implies that

Ev2
(
E, (x, y)

)
= Ev2(E

Y|x, y),

as required.

I am happy to accept the STP as self-evident, and since I also
accept the LP (which implies the CP), for me to violate the SCP
would be illogical. The SCP constrains the way in which I link Ev
and Ev2.

2.5 Stopping rules

Here is a surprising but gratifying consequence of the LP, which
can be strengthened under the SCP.

Consider a sequence of random quantities X1, X2, . . . with
marginal PMFs8 8 These must satisfy Kolmogorov’s

consistency theorem.

fn(x1, . . . , xn; θ) n = 1, 2, . . . .

In a sequential experiment, the number of X’s that are observed
is not fixed in advanced but depends deterministically on the val-
ues seen so far. That is, at time j, the decision to observe Xj+1

can be modelled by a set Aj ⊂ Xj, where sampling stops if
(x1, . . . , xj) ∈ Aj, and continues otherwise.9 We can assume, re- 9 Implicit in this definition is that

(x1, . . . , xj−1) 6∈ Aj−1.sources being finite, that the experiment must stop at specified
time m, if it has not stopped already. Denote the stopping rule as
τ := (A1, . . . ,Am), where Am = Xm.
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Definition 2.11 (Stopping Rule Principle, SRP). In a sequential ex-
periment Eτ , Ev

(
Eτ , (x1, . . . , xn)

)
does not depend on the stopping

rule τ.

The SRP is nothing short of revolutionary, if it is accepted. It
implies that that the intentions of the experimenter, represented by
τ, are irrelevant for making inferences about Θ, once the observa-
tions (x1, . . . , xn) are available. Thus the statistician could proceed
as though the simplest possible stopping rule were in effect, which
is A1 = · · · = An−1 = ∅, and An = Xn, an experiment with n fixed
in advance. Obviously it would be liberating for the statistician
to put aside the experimenter’s intentions (since they may not be
known and could be highly subjective), but can the SRP possibly be
justified? Indeed it can.

Theorem 2.6. LP→ SRP.

Proof. Let τ be an arbitrary stopping rule. Let Y = X∪ {s}, where
Yi = Xi while the experiment is running, and Yi = s once it has
stopped. Then the experiment is

Eτ := (Ym, Ω, f )

where

f (y1, . . . , ym; θ) =

 fn(x1, . . . xn; θ) (y1, . . . , yn) ∈ An and yn+1 = · · · = ym = s

0 otherwise.

The condition in the top branch is a deterministic function of
y1, . . . , ym, which we can write as q(y1, . . . , ym) ∈

{
FALSE, TRUE

}
.

Thus we have

f (y1, . . . , ym; θ) = 1q(y1,...,ym) · fn(x1, . . . , xn; θ) for all θ ∈ Ω

where 1q is the indicator function of the first-order sentence q.
Hence

f (y1, . . . , ym; •) = c(y1, . . . , ym) · fn(x1, . . . , xn; •)

and so, by the LP,

Ev
(
Eτ , (x1, . . . , xn, s, . . . , s)

)
= Ev

(
En, (x1, . . . , xn)

)
, (†)

where En :=
{
Xn, Ω, fn

}
. Since the choice of stopping rule was

arbitrary, (†) holds for all stopping rules, showing that the choice of
stopping rule is irrelevant.

I think this is one of the most beautiful results in the whole of
Theoretical Statistics.

To illustrate the SRP, consider the following example from Basu
(1975, p. 42). Four different coin-tossing experiments have the same
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outcome x = (T,H,T,T,H,H,T,H,H,H):

E1 Toss the coin exactly 10 times;

E2 Continue tossing until 6 heads appear;

E3 Continue tossing until 3 consecutive heads appear;

E4 Continue tossing until the accumulated number of heads exceeds
that of tails by exactly 2.

One could easily adduce more sequential experiments which gave
the same outcome. According to the SRP, the evidence for the
probability of heads is the same in every case. Once the sequence
of heads and tails is known, the intentions of the original experi-
menter (i.e. the experiment she was doing) are immaterial to infer-
ence about the probability of heads, and the simplest experiment E1

can be used for inference.
The SRP can be strengthened, twice. First, to stopping rules

which are stochastic functions of (x1, . . . , xj), i.e. where the prob-
ability of stopping at j is some known function pj(x1, . . . , xj), for
j = 1, 2, . . . , m, with pm(x1, . . . , xm) = 1. This stronger version is still
implied by the LP. Second, to stopping rules which are unknown
stochastic functions of (x1, . . . , xj), as long as the true value of the
parameter ψ in pj(x1, . . . , xj; ψ) is unrelated to the true value Θ.
This much stronger version is implied by the SCP (Definition 2.9).
Both proofs are straightforward, although tedious to type. In the
absence of any information about the experimenter’s intentions, the
strongest version of the SRP is the one that needs to be invoked.

* * *

The Stopping Rule Principle has become enshrined in our profes-
sion’s collective memory due to this iconic comment from L.J. Sav-
age, one of the great statisticians of the Twentieth Century:

May I digress to say publicly that I learned the stopping rule prin-
ciple from Professor Barnard, in conversation in the summer of
1952. Frankly, I then thought it a scandal that anyone in the profes-
sion could advance an idea so patently wrong, even as today I can
scarcely believe that some people resist an idea so patently right.
(Savage et al., 1962, p. 76)

This comment captures the revolutionary and transformative nature
of the SRP.

2.6 The Likelihood Principle in practice

Finally in this chapter we should pause for breath, and ask the
obvious questions: is the LP vacuuous? Or trivial? In other words,
Is there any inferential approach which respects it? Or do all in-
ferential approaches respect it? In this section I consider three
approaches: likelihood-based inference, Bayesian inference, and Fre-
quentist inference. The first two satisfy the LP, and the third does
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not. I also show that the first two also satisfy the SCP, which is the
best possible result for conditioning on ancillary random quantities
and ignoring stopping rules.

2.6.1 Likelihood-based inference (LBI)

The evidence from (E, x) can be summarised in the likelihood func-
tion:

L : θ 7→ f (x; θ). (2.4)

A small but influential group of statisticians have advocated that
evidence is not merely summarised by L, but is actually derived
entirely from the shape of L; see, for example, Hacking (1965),
Edwards (1992), Royall (1997), and Pawitan (2001). Hence:

Definition 2.12 (Likelihood-based inference, LBI). Let E be an
experiment with outcome x. Under LBI,

Ev(E, x) = φ(L) = φ
(
c(x) · L

)
for some operator φ depending on Ev, and any c > 0.

The invariance of φ to c shows that only the shape of L matters:
its scale does not matter at all.

The main operators for LBI are the Maximum Likelihood Estimator
(MLE)

θ̂ = argsup
θ∈Ω

L(θ) (2.5)

for point estimation, and Wilks level sets

Ĉk =
{

θ ∈ Ω : log L(θ) ≥ log L(θ̂)− k
}

(2.6)

for set estimation and hypothesis testing, where k may depend on
y. Wilks level sets have the interesting and reassuring property that
they are invariant to bijective transformations of the parameter.10 10 It is insightful to formalize this

notion, and prove it.Both of these operators satisfy φ(L) = φ(c · L). However, they are
not without their difficulties: the MLE is sometimes undefined and
often ill-behaved (see, e.g., Le Cam, 1990), and it is far from clear
which level set is appropriate, and how this might depend on the
dimension of Ω (i.e. how to choose k in eq. 2.6).

LBI satisfies the LP by construction, so it also satisfies the CP.
To see whether it satisfies the SCP requires a definition of Ev2, the
evidence for Θ2 in the case where Θ = (Θ1, Θ2). The standard
definition is based on the profile likelihood,

L2 : θ2 7→ sup
θ1∈Ω1

L(θ1, θ2), (2.7)

from which
Ev2(E, x) := φ(L2). (2.8)

Then we have the following result.

Theorem 2.7. If profile likelihood is used for Ev2, then LBI satisfies the
SCP.
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Proof. Under the conditions of Definition 2.9 we have, putting ‘•’
where the θ2 argument goes,

Ev2{E, (x, y)} = φ{sup
θ1

L(θ1, •)}

= φ{sup
θ1

fX(x; θ1) · fY|X(y | x; •)}

= φ{c(x) · fY|X(y | x; •)}

= Ev(EY|x, y),

where EY|x was defined in (2.3).

Therefore, LBI satisfies the SCP and the strong version of the SRP,
which is the best possible outcome. But another caveat: profile like-
lihood inherits all of the same difficulties as Maximum Likelihood,
and some additional ones as well. LBI has attractive theoretical
properties but unattractive practical ones, and for this reason it
has been more favoured by philosophers and physicists than by
practising statisticians.

2.6.2 The Bayesian approach

The Bayesian approach for inference was outlined in Section 1.5.
The Bayesian approach augments the experiment E := {X, Ω, f }
with a prior probability distribution π on Ω, representing initial
beliegfs abourt Θ. The posterior distribution for Θ is found by condi-
tioning on the outcome x, to give

π∗(θ) ∝ f (x; θ) · π(θ) = L(θ) · π(θ) (2.9)

where L is the Likelihood Function from Section 2.6.1. The missing
multiplicative constant can be inferred, if it is required, from the
normalisation condition

∫
Ω π∗(θ)dθ = 1. By Bayes’s Theorem, it is

1
/

Pr(X = x).
Bayesian statisticians follow exactly one principle.

Definition 2.13 (Bayesian Conditionalization Principle, BCP). Let E
be an experiment with outcome x. Under the BCP

Ev(E, x) = φ(π∗) = φ
(
c(x) · π∗

)
for some operator φ depending on Ev, and any c > 0.

The presence of c in φ indicates that the BCP will, if necessary,
normalize the argument to φ if it does not integrate to 1 over Ω. So
it is fine to write Ev(E, x) = φ(L · π). Compared to LBI, Bayesian
inference needs an extra object in order to compute Ev, namely the
prior distribution π.

There is a wealth of operators for Bayesian inference. A common
one for a point estimator is the Maxium A Posteriori (MAP) estimator

θ̂∗ = argsup
θ∈Ω

π∗(θ). (2.10)
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The MAP estimator does not require the calculation of the multi-
plicative constant 1/ Pr(X = x). In a crude sense, it improves on the
MLE from Section 2.6.1 by using the prior distribution π to ‘regular-
ize’ the likelihood function, by downweighting less realistic values.
This is the point of view taken in inverse problems, where Θ is the
signal, x is a set of measurements, f represents the ‘forward model’
from the signal to the measurements, and π represents beliefs about
regularities in Θ. Inverse problems occur throughout science, and
this Bayesian approach is ubiquitous where the signal has inherent
structure (e.g., the weather, or an image).

A common operator for a Bayesian set estimator is the High
Posterior Density (HPD) region

C∗k :=
{

θ ∈ Ω
∣∣∣ log π∗(θ) ≥ k

}
. (2.11)

The value k is usually set according to the probability content of C∗k .
A level-95% HPD will have k which satisfies∫

C∗k
π∗(θ)dθ = 0.95. (2.12)

In contrast to the Wilks level sets in Section 2.6.1, the Bayesian
approach ‘solves’ the problem of how to choose k. HPD regions
are not transformation invariant. Instead, an HPD region is the
smallest set which contains exactly 95% of the posterior probability.
Alternatively, the ‘snug’ region Ĉk satisfying

∫
Ĉk

π∗(θ)dθ = 0.95
is transformation-invariant, but it is typically not the smallest set
estimator which contains exactly 95% of the posterior probability.11 11 I came across ‘snug’ regions in the

Cambridge lecture notes of Prof. Philip
Dawid.

The two estimators often give similar results, for well-understood
theoretical reasons (see, e.g., van der Vaart, 1998).

It is straightforward to establish that Bayesian inference satisfies
the LP.

Proof. Let E1 := {X1, Ω, f1} and E2 := {X2, Ω, f2} be two experi-
ments with the same parameter. Because this parameter is the same,
the prior distribution is the same; denote it π. Let x1 and x2 be two
outcomes satisfying L1 = c · L2, which is the condition of the LP,
where L1 is the likelihood function for (E1, x1), L2 is the likelihood
function for (E2, x2), and c > 0 may depend on (x1, x2). Then

Ev(E1, x1) = φ(L1 · π)

= φ(c · L2 · π)

= φ(L2 · π)

= Ev(E2, x2).

Hence BCP also satisfies the CP. What about the SCP? As for LBI
in Section 2.6.1, this requires a definition of Ev2. In the Bayesian
approach there is only one choice, based on the marginal posterior
distribution

π∗2 := θ2 7→
∫

θ1∈Ω1

π∗(θ1, θ2)dθ1, (2.13)
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from which
Ev2(E, x) = φ(π∗2 ) = φ

(
c(x) · π∗2

)
. (2.14)

Then we have the following result.

Theorem 2.8. If π(θ1, θ2) = π1(θ1) · π2(θ2), then Bayesian inference
satisfies the SCP.

Proof. Under the conditions of Definition 2.9 and the theorem, the
posterior distribution satisfies

π∗(θ1, θ2) ∝ L(θ1, θ2) · π(θ1, θ2)

= fX(x; θ1) · fY|X(y | x; θ2) · π1(θ1) · π2(θ2)

∝ fY|X(y | x; θ2) · π2(θ2) · π∗1 (θ1 | x).

Integrating out θ1 shows that

π∗2 (•) ∝ fY|x(y; •) · π2(•),

using the definition of fY|x from (2.3). Thus

Ev2
(
E, (x, y)

)
= φ(π∗2 )

= φ
(

fY|x(y; •) · π2(•)
)

= Ev(EY|x, y)

Therefore, under the mild condition that π = π1 · π2, Bayesian
inference satisfies the SCP and the strong version of the SRP, which
is the best possible outcome.

However . . . Bayesian practice is heterogeneous. Two issues are
pertinent. First, the Bayesian statistician does not just magic up a
model f and a prior distribution π. Instead, she iterates through
some different possibilities, modifying her choices using the obser-
vations. The decision to replace a model or a prior distribution may
depend on probabilities of outcomes which did not occur (see the
end of Section 2.3). But this practice does not violate the LP, which
is about what happens while accepting the model and the prior as
true. Statisticians are immune from this criticism while ‘inside’ their
statistical inference. But Applied Statisticians are obliged to con-
tinue the stages in Section 1.1, in order to demonstrate the relevance
of their mathematical solution for the real-world problem.

Second, the Bayesian statistician faces the additional challenge
of providing a prior distribution. In principle, this prior reflects
beliefs about Θ that exist independently of the outcome, and can be
an opportunity rather than a threat. In practice, though, is hard to
do. Some methods for making default choices for π depend on fX,
notably Jeffreys priors and reference priors (see, e.g., Bernardo and
Smith, 2000, sec. 5.4). These methods violate the LP.

2.6.3 Frequentist inference

LBI and Bayesian inference both have simple representations in
terms of an operator φ. Frequentist inference adopts a different
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approach, described in Section 1.4, notably Definition 1.1. In a
nutshell, algorithms are certified in terms of their sampling distri-
butions, and selected on the basis of their certification. Theorem 2.3
shows that Frequentist methods do not respect the LP, because the
sampling distribution of the algorithm depends on values for f
other than f (x; •).

Frequentist statisticians are caught between between Scylla and
Charybdis.12 To reject the LP is to reject one of the WIP and WCP, 12 Or, colloquially, between a rock and

a hard place. This was not known
before Birnbaum’s Theorem, which is
why we might think of this result as
‘Birnbaum’s bombshell’.

and these seem self-evident. On the other hand, in their everyday
practice Frequentist statisticians use the (S)CP or SRP, both of which
are most easily justified as consequences of the LP. The (S)CP and
SRP are not self-evident. This means that, if we are to accept them
without the support of the LP, we must do so on the personal
authority of individual statisticians; see, e.g., Cox and Mayo (2010).
No matter how much we respect these statisticians, this is not a
scientific attitude.

As a practising statistician I want to be able to satisfy an auditor
who asks about the logic of my approach.13 I do not want to agree 13 As discussed in Smith (2010, ch. 1),

there are three players in an inference
problem, although two roles may be
taken by the same person. There is
the client, who has the problem, the
statistician whom the client hires
to help solve the problem, and the
auditor whom the client hires to check
the statistician’s work.

with him that the WIP and the WCP are self-evident, and then
illogically choose to violate the LP. And I do not want to violate the
LP, but use the (S)CP or SRP. In terms of volume, most Frequentist
Applied Statistics is being done by non-statisticians (despite what
it might say on their business cards). Non-statisticians do not know
about statistical principles, and are ignorant about whether their
approach violates the LP, and what this entails.

I offer this suggestion to auditors: ask which of the WIP or
the WCP the Frequentist statistician rejects—this should elicit an
informative response. I would not rule out, from a statistician, “I
know that my practice is illogical, but if the alternative is to specify
a prior distribution, then so be it.” This is encouraging, and the
basis for further discussion. But anything along the lines of “I’m
not sure what you mean” suggests that the so-called statistician has
misrepresented herself: she is in fact a ‘data analyst’—which is fine,
as long as that was what the client paid for.14 14 Another response might be “I’m not

interested in principles, I let the data
speak for itself.” This person would
suit a client who wanted an illogical
and unprincipled data analyst. If you
are this person, you can probably
charge a lot of money.
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Statistical Decision Theory
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The basic premise of Statistical Decision Theory is that we want to
make inferences about the parameter of a family of distributions.
So the starting point of this chapter is a family of distributions for
the observables Y ∈ Y of the general form

E =
{
Y, Ω, f

}
,

where f is the ‘model’, θ is the ‘parameter’, and Ω the ‘parameter
space’, just as in Chapter 1 and Chapter 2. The parameter space Ω
may be finite or non-finite, possibly uncountable. In this chapter I
will treat it as finite, because this turns out to be much simpler, and
the results generalize; hence

Ω =
{

θ1, . . . , θk
}

.

The value f (y; θ) denotes the probability that Y = y under family
member θ. I will assume throughout this chapter that f (y; θ) is easy
to evaluate (see Section 1.2).

We accept as our working hypothesis that E is true, and then
inference is learning about Θ, the true value of the parameter. More
precisely, we would like to understand how to construct the ‘Ev’
function from Chapter 2, in such a way that it reflects our needs,
which will vary from application to application.

3.1 General Decision Theory

There is a general theory of decision-making, of which Statistical
Decision Theory is a special case. Here I outline the general theory,
subject to one restriction which always holds for Statistical Decision
Theory (to be introduced below). In general we should imagine
the statistician applying decision theory on behalf of a client, but
for simplicity of exposition I will assume the statistician is her own
client.

There is a set of random quantities X ∈ X. The statistician
contemplates a set of actions, a ∈ A. Associated with each action is
a consequence which depends on X. This is quantified in terms of
a loss function, L : A× X → R, with larger values indicating worse
consequences. Thus L(a, x) is the loss incurred by the statistician if
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action a is taken and X turns out to be x. Before making her choice
of action, the statistician will observe Y ∈ Y. Her choice should be
some function of the value of Y, and this is represented as a decision
rule, δ : Y→ A.

The statistician’s beliefs about (X, Y) are represented by a prob-
ability distribution fX,Y, from which she can derive marginal dis-
tributions fX and fY, and conditional distributions fX|Y and fY|X,
should she need them. Of the many ways in which she might
choose δ, one possibility is to minimize her expected loss, and this
is termed the Bayes rule,

δ∗ := argmin
δ∈D

E{L(δ(Y), X)},

where D is the set of all possible rules. The value E{L(δ(Y), X)}
is termed the Bayes risk of decision rule δ, and therefore the Bayes
rule is the decision rule which minimizes the Bayes risk, for some
specified action set, loss function, and joint distribution.

There is a justly famous result which gives the explicit form for
a Bayes rule. I will give this result under the restriction anticipated
above, which is that fX|Y does not depend on the choice of action.
Decision theory can handle the more general case, but it is seldom
appropriate for Statistical Decision Theory.

Theorem 3.1 (Bayes Rule Theorem, BRT). A Bayes rule satisfies

δ∗(y) = argmin
a∈A

E{L(a, X) |Y = y} (3.1)

whenever y ∈ supp Y.1 1 Here, supp Y =
{

y : fY(y) > 0
}

.

This astounding result indicates that the minimization of ex-
pected loss over the space of all functions from Y to A can be
achieved by the pointwise minimization over A of the expected
loss conditional on Y = y. It converts an apparently intractable
problem into a simple one.

Proof. We have to show that E{L(δ(Y), X)} ≥ E{L(δ∗(Y), X)} for
all δ : Y→ A. So let δ be arbitrary. Then

E{L(δ(Y), X)} = ∑ x,y L(δ(y), x) · fX,Y(x, y)

= ∑ y ∑ x L(δ(y), x) · fX|Y(x | y) fY(y)

≥ ∑ y

{
mina ∑ x L(a, x) fX|Y(x | y)

}
fY(y) as fY ≥ 0

= ∑ y

{
∑ x L(δ∗(y), x) fX|Y(x | y)

}
fY(y)

= ∑ y ∑ x L(δ∗(y), x) · fX|Y(x | y) fY(y)

= E{L(δ∗(Y), X)},

as needed to be shown.

3.2 Inference about parameters

Now consider the special case of Statistical Decision Theory, in
which inference is not about some random quantities X, but about
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the true value of the parameter, denoted Θ. The three main types
of inference about Θ are (i) point estimation, (ii) set estimation,
and (iii) hypothesis testing. It is a great conceptual and practical
simplification that Statistical Decision Theory distinguishes between
these three types simply according to their action sets, which are:

Type of inference Action set A

Point estimation The parameter space, Ω. See Section 3.4.

Set estimation The set of all subsets of Ω, denoted 2Ω. See
Section 3.5.

Hypothesis testing A specified partition of Ω, denoted P below.
See Section 3.6.

One challenge for Statistical Decision Theory is that finding the
Bayes rule requires specifying a prior distribution over Ω, which I
will denote

π := (π1, . . . , πk) ∈ Sk−1

where Sk−1 is the (k− 1)-dimensional unit simplex.2 Applying the 2 That is, the set{
p ∈ Rk : pi ≥ 0, ∑ i pi = 1

}
.BRT (Theorem 3.1),

δ∗(y) = argmin
a∈A

E{L(a, Θ) |Y = y}

= argmin
a∈A

∑ j L(a, θj) · π∗j (y)

where π∗(y) is the posterior distribution, which must of course
depend on the prior distribution π. So the Bayes rule will not be
an attractive way to choose a decision rule for Frequentist statisti-
cians, who are reluctant to specify a prior distribution for Θ. These
statisticians need a different approach to choosing a decision rule.

The accepted approach for Frequentist statisticians is to nar-
row the set of possible decision rules by ruling out those that are
obviously bad. Define the risk function for rule δ as

R(δ, θ) := E{L(δ(Y), θ); θ}
= ∑ y L(δ(y), θ) · f (y; θ). (3.2)

That is, R(δ, θ) is the expected loss from rule δ in family member θ.
A decision rule δ dominates another rule δ′ exactly when

R(δ, θ) ≤ R(δ′, θ) for all θ ∈ Ω,

with a strict inequality for at least one θ ∈ Ω. If you had both δ

and δ′, you would never want to use δ′.3 A decison rule is admissible 3 Here I am assuming that all other
considerations are the same in the
two cases: e.g. δ(y) and δ′(y) take
about the same amount of resource to
compute.

exactly when it is not dominated by any other rule; otherwise it is
inadmissible. So the accepted approach is to reduce the set of pos-
sible decision rules under consideration by only using admissible
rules.

It is hard to disagree with this approach, although one wonders
how big the set of admissible rules will be, and how easy it is to
enumerate the set of admissible rules in order to choose between
them. This is the subject of Section 3.3. To summarise,
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Theorem 3.2 (Wald’s Complete Class Theorem, CCT). In the case
where both the action set A and the parameter space Ω are finite, a deci-
sion rule δ is admissible if and only if it is a Bayes rule for some prior
distribution π with strictly positive values.

There are generalisations of this theorem to non-finite realms for
Y, non-finite action sets, and non-finite parameter spaces; however,
the results are highly technical. See Schervish (1995, ch. 3), Berger
(1985, chs 4, 8), and Ghosh and Meeden (1997, ch. 2) for more
details and references to the original literature.

So what does the CCT say? First of all, if you select a Bayes
rule according to some prior distribution π � 0 then you cannot
ever choose an inadmissible decision rule.4 So the CCT states that 4 Here I am using a fairly common

notion for vector inequalities. If all
components of x are non-negative, I
write x ≥ 0. It in addition at least one
component is positive, I write x > 0.
If all components are positive I write
x � 0. For comparing two vectors,
x ≥ y exactly when x− y ≥ 0, and so
on.

there is a very simple way to protect yourself from choosing an
inadmissible decision rule. Second, if you cannot produce a π � 0
for which your proposed rule δ is a Bayes Rule, then you cannot
show that δ is admissible.

But here is where you must pay close attention to logic. Suppose
that δ′ is inadmissible and δ is admissible. It does not follow that
δ dominates δ′. So just knowing of an admissible rule does not
mean that you should abandon your inadmissible rule δ′. You
can argue that although you know that δ′ is inadmissible, you do
not know of a rule which dominates it. All you know, from the
CCT, is the family of rules within which the dominating rule must
live: it will be a Bayes rule for some π � 0. This may seem a
bit esoteric, but it is crucial in understanding modern parametric
inference. Statisticians sometimes use inadmissible rules according
to standard loss functions. They can argue that yes, their rule δ is or
may be inadmissible, which is unfortunate, but since the identity of
the dominating rule is not known, it is not wrong to go on using δ.
Do not attempt this line of reasoning with your client!

3.3 The Complete Class Theorem

This section can be skipped once the previous section has been
read. But it describes a very beautiful result, Theorem 3.2 above,
originally due to an iconic figure in Statistics, Abraham Wald.5 I 5 For his tragic story, see https://en.

wikipedia.org/wiki/Abraham_Wald.assume throughout this section that all sets are finite: the realm Y,
the action set A, and the parameter space Ω.

The CCT is if-and-only-if. Let π be any prior distribution on Ω.
Both branches use a simple result that relates the Bayes Risk of a
decision rule δ to its Risk Function:

E{L(δ(Y), Θ)} = ∑ j E{L(δ(Y), θj); θj} · πj by the LIE

= ∑ j R(δ, θj) · πj, (†)

where ‘LIE’ is the Law of Iterated Expectation.6 The first branch is 6 Sometimes called the ‘Tower Property’
of Expectation.easy to prove.

Theorem 3.3. If δ is a Bayes rule for prior distribution π � 0, then it is
admissible.

https://en.wikipedia.org/wiki/Abraham_Wald
https://en.wikipedia.org/wiki/Abraham_Wald
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Proof. By contradiction. Suppose that the Bayes rule δ is not admis-
sible; i.e. there exists a rule δ′ which dominates it. In this case

E{L(δ(Y), Θ)} = ∑ j R(δ, θj) · πj from (†)

> ∑ j R(δ′, θj) · πj if π � 0

= E{L(δ′(Y), θ)}

and hence δ cannot have been a Bayes rule, because δ′ has a smaller
expected loss. The strict inequality holds if δ′ dominates δ and
π � 0. Without it, we cannot deduce a contradiction.

The second branch of the CCT is harder to prove. The proof
uses one of the great theorems in Mathematics, the Supporting
Hyperplane Theorem (SHT, given below in Theorem 3.5).

Theorem 3.4. If δ is admissible, then it is a Bayes rule for some prior
distribution π � 0.

I will give an algebraic proof here, but blackboard proof in the
simple case where Ω = {θ1, θ2} is more compelling. The blackboard
proof is given in Cox and Hinkley (1974, sec. 11.6).

For a given loss function L and model f , construct the risk matrix,

Rij := R(δi, θj)

over the set of all decision rules. If there are m decision rules alto-
gether (m is finite because Y and A are both finite), then R repre-
sents m points in k-dimensional space, where k is the cardinality of
Ω.

Now consider randomised rules, indexed by w ∈ Sm−1. For
randomised rule w, actual rule δi is selected with probability wi.
The risk for rule w is

R(w, θj) := ∑ i E{L(δi(Y), θj); θj} · wi by the LIE

= ∑ i R(δi, θj) · wi.

If we also allow randomised rules—and there is no reason to dis-
allow them, as the original rules are all still available as special
cases—then the set of risks for all possible randomised rules is the
convex hull of the rows of the risk matrix R, denoted [R] ⊂ Rk, and
termed the risk set.7 We can focus on the risk set because every 7 If x(1), . . . , x(m) are m points in

Rk, then the convex hull of these
points is the set of x ∈ Rk for which
x = w1x(1) + · · ·+ wmx(m) for some
w ∈ Sm−1.

point in [R] corresponds to at least one choice of w ∈ Sm−1.
Only a very small subset of the risk set will be admissible. A

point r ∈ [R] is admissible exactly when it is on the lower boundary
of [R]. More formally, define the ‘quantant’ of r to be the set

Q(r) :=
{

x ∈ Rk : x ≤ r
}

(see footnote 4). By definition, r is dominated by every r′ for
which r′ ∈ Q(r) \ {r}. So r ∈ [R] is admissible exactly when
[R] ∩Q(r) = {r}. The set of r for satisfying this condition is the
lower boundary of [R], denoted λ(R).
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Now we have to show that every point in λ(R) is a Bayes rule for
some π � 0. For this we use the SHT, the proof of which can be
found in any book on convex analysis (e.g., Çınlar and Vanderbei,
2013).

Theorem 3.5 (Supporting Hyperplane Theorem, SHT). Let [R] be a
convex set in Rk, and let r be a point on the boundary of [R]. Then there
exists an a ∈ Rk not equal to 0 such that

aTr = min
r′∈[R]

aTr′.

So let r ∈ λ(R) be any admissible risk. Let a ∈ Rk be the co-
efficients of its supporting hyperplane. Because r is on the lower
boundary of [R], a� 0.8 Set 8 Proof: because if r is on the lower

boundary, the slightest decrease in any
component of r must move r outside
[R].πj :=

aj

∑ j′ aj′
j = 1, . . . , k,

so that π ∈ Sk−1 and π � 0. Then the SHT asserts that

∑ j rj · πj ≤ ∑ j r′j · πj for all r′ ∈ [R]. (‡)

Let w be any randomised strategy with risk r. Since ∑ j rj · πj is
the expected loss of w (see †), (‡) asserts that w is a Bayes rule for
prior distribution π. Because r was an arbitrary point on λ(R),
and hence an arbitrary admissible rule, this completes the proof of
Theorem 3.4.

3.4 Point estimation

For point estimation the action space is A = Ω, and the loss func-
tion L(θ, θ′) represents the (negative) consequence of choosing θ as
a point estimate of Θ, when in fact Θ = θ′.

There will be situations where an obvious loss function L : Ω×Ω→ R

presents itself. But not very often. Hence the need for a generic loss
function which is acceptable over a wide range of situations. A
natural choice in the very common case where Ω is a convex subset
of Rd is a convex loss function,9 9 If Ω is convex then it is uncountable,

and hence definitely not finite. But
this does not have any disturbing
implications for the following analysis.

L(θ, θ′) = h(θ − θ′) (3.3)

where h : Rd → R is a smooth non-negative convex function
with h(0) = 0. This type of loss function asserts that small errors
are much more tolerable than large ones. One possible further
restriction would be that h is an even function.10 This would assert 10 I.e. h(−x) = h(x).

that under-prediction incurs the same loss as over-prediction. There
are many situations where this is not appropriate, but in these cases
a generic loss function should be replaced by a more specific one.

Proceeding further along the same lines, an even, differentiable
and strictly convex loss function can be approximated by a quadratic
loss function,

h(x) ∝ xTQ x (3.4)
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where Q is a symmetric positive-definite d× d matrix. This follows
directly from a Taylor series expansion of h around 0:

h(x) = 0 + 0 + 1
2 xT∇2h(0) x + 0 + O(‖x‖4)

where the first 0 is because h(0) = 0, the second 0 is because
∇h(0) = 0 since h is minimized at x = 0, and the third 0 is because
h is an even function. ∇2h is the hessian matrix of second deriva-
tives, and it is symmetric by construction, and positive definite at
x = 0, if h is strictly convex and minimized at 0.

In the absence of anything more specific the quadratic loss
function is the generic loss function for point estimation. Hence the
following result is widely applicable.

Theorem 3.6. Under a quadratic loss function, the Bayes rule for point
prediction is the conditional expectation

δ∗(y) = E(Θ |Y = y).

A Bayes rule for a point estimation is known as a Bayes estima-
tor. Note that although the matrix Q is involved in defining the
quadratic loss function in (3.4), it does not influence the Bayes es-
timator. Thus the Bayes estimator is the same for an uncountably
large class of loss functions. Depending on your point of view, this
is either its most attractive or its most disturbing feature.

Proof. Here is a proof that does not involve differentiation. The BRT
(Theorem 3.1) asserts that

δ∗(y) = argmin
t∈Ω

E{L(t, Θ) |Y = y}. (3.5)

So let ψ(y) := E(Θ |Y = y). For simplicity, treat θ as a scalar. Then

L(t, θ) ∝ (t− θ)2

= (t− ψ(y) + ψ(y)− θ)2

= (t− ψ(y))2 + 2(t− ψ(y))(ψ(y)− θ) + (ψ(y)− θ)2.

Take expectations conditional on Y = y to get

E{L(t, Θ) |Y = y} ∝ (t− ψ(y))2 + E{(ψ(y)− θ)2 |Y = y}. (†)

Only the first term contains t, and this term is minimized over t by
setting t← ψ(y), as was to be shown.

The extension to vector θ with loss function (3.4) is straightfor-
ward, but involves more ink. It is crucial that Q in (3.4) is positive
definite, because otherwise the first term in (†), which becomes
(t− ψ(y))TQ (t− ψ(y)), is not minimized if and only if t = ψ(y).

Note that the same result holds in the more general case of a
point prediction of random quantities X based on observables Y:
under quadratic loss, the Bayes estimator is E(X |Y = y).

* * *
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Now apply the CCT (Theorem 3.2) to this result. For quadratic
loss, a point estimator for θ is admissible if and only if it is the
conditional expectation with respect to some prior distribution
π � 0.11 Among the casualties of this conclusion is the Maximum 11 This is under the conditions of

Theorem 3.2, or with appropriate
extensions of them in the non-finite
cases.

Likelihood Estimator (MLE),

θ̂(y) := argsup
θ∈Ω

f (y; θ).

Stein’s paradox showed that under quadratic loss, the MLE is not
always admissible in the case of a Multinormal distribution with
known variance, by producing an estimator which dominated
it. This result caused such consternation when first published
that it might be termed ‘Stein’s bombshell’. See Efron and Morris
(1977) for more details, and Samworth (2012) for an accessible
proof. Persi Diaconis thought this was such a powerful result that
he focused on it for his brief article on Mathematical Statistics in
the The Princeton Companion to Mathematics (Ed. T. Gowers, 2008,
1056 pages). Interestingly, the MLE is still the dominant point
estimator in applied statistics, even though its admissibility under
quadratic loss is questionable.

3.5 Set estimation

For set estimation the action space is A = 2Ω, and the loss function
L(C, θ) represents the (negative) consequences of choosing C ⊂ Ω
as a set estimate of Θ, when the true value of Θ is θ.

There are two contradictory requirements for set estimators of Θ.
We want the sets to be small, but we also want them to contain Θ.
There is a simple way to represent these two requirements as a loss
function, which is to use

L(C, θ) = |C|+ κ · (1− 1θ∈C) for some κ > 0 (3.6a)

where |C| is the cardinality of C.12 The value of κ controls the 12 Here and below I am treating Ω as
countable, for simplicity; otherwise |•|
would denote volume.

trade-off between the two requirements. If κ ↓ 0 then minimizing
the expected loss will always produce the empty set. If κ ↑ ∞
then minimizing the expected loss will always produce Ω. For κ

in-between, the outcome will depend on beliefs about Y and the
value y.

It is important to note that the crucial result, Theorem 3.7 below,
continues to hold for the much more general set of loss functions

L(C, θ) = g(|C|) + h(1− 1θ∈C) (3.6b)

where g is non-decreasing and h is strictly increasing. This is a
large set of loss functions, which should satisfy most statisticians
who do not have a specific loss function already in mind.

For point estimators there was a simple characterisation of
the Bayes rule for quadratic loss functions (Theorem 3.6). For
set estimators the situation is not so simple. However, for loss
functions of the form (3.6) there is a simple necessary condition for
a rule to be a Bayes rule.
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Theorem 3.7 (Level set property, LSP). Say that C : Y → 2Ω has the
‘level set property’ exactly when C(y) is a subset of a level set of π∗(y) for
every y.13 If C is a Bayes rule for the loss function in (3.6a), then it has 13 Dropping the y argument, C

is a level set of π∗ exactly when
C =

{
θj : π∗j ≥ k

}
for some k.

the level set property.

Proof. Let ‘BR’ denote ‘C is a Bayes rule for (3.6a)’ and let ‘LSP’
denote ‘C has the level set property’. The theorem asserts that
BR→ LSP, showing that LSP is a necessary condition for BR. We
prove the theorem by proving the contra-positive, that ¬LSP→ ¬BR.
¬LSP asserts that there is a y for which:

∃θj ∈ C, ∃θj′ 6∈ C such that π∗j′ > π∗j ,

where I have suppressed the y argument on C and π∗. For this y, j,
and j′, let C′ ⊂ Ω be the same as C, except with θj swapped for θj′ .
In this case |C′| = |C|, but

Pr(Θ 6∈ C |Y = y) > Pr(Θ 6∈ C′ |Y = y).

Hence

E{L(C, Θ) |Y = y} = |C|+ κ · Pr(Θ 6∈ C |Y = y)

>
∣∣C′∣∣+ κ · Pr(Θ 6∈ C′ |Y = y)

= E{L(C′, Θ) |Y = y},
i.e.

C 6= argmin
C′

E{L(C′, Θ) |Y = y}

which shows that C is not a Bayes rule, by the BRT (Theorem 3.1).

Now relate this result to the CCT (Theorem 3.2). First, Theo-
rem 3.7 asserts that C having the LSP is necessary (but not suffi-
cient) for C to be a Bayes rule for loss functions of the form (3.6a).
Second, the CCT asserts that being a Bayes rule is a necessary (but
not sufficient) condition for C to be admissible.14 So unless C has 14 As before, terms and conditions

apply in the non-finite cases.the LSP then it is impossible for C to be admissible for loss func-
tions of the form (3.6a). Bayesian HPD regions (see eq. 2.11) satisfy
this necessary condition for admissibility.

Things are trickier for Frequentist set estimators, which must
proceed without a prior distribution π, and thus cannot compute
π∗(y). But, at least in the case where Ω is finite (and more gen-
erally when it is bounded) a prior of πj ∝ 1 would imply that
π∗j (y) ∝ f (y; θj), by Bayes’s Theorem. So in this case levels sets of
f (y; •) would also be level sets of π∗(y), and hence would satisfy
the necessary condition for admissibility. So my strong recommen-
dation for Frequentist set estimators is

• In the absence of a prior distribution, base set estimators on level
sets of f (y; •), i.e.

C(y) =
{

θ : f (y; θ) ≥ k(y)
}

for some k > 0 which may depend on y.

These are effectively Wilks set estimators from Section 2.6.1. I will
be adopting this recommendation in Chapter 4.
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3.6 Hypothesis tests

For hypothesis tests, the action space is a partition of Ω, denoted

H :=
{

H0, H1, . . . , Hd
}

.

Each element of H is termed a hypothesis; it is traditional to number
the hypotheses from zero. The loss function L(Hi, θ) represents
the (negative) consequences of choosing element Hi, when the true
value of Θ is θ. It would be usual for the loss function to satisfy

θ ∈ Hi =⇒ L(Hi, θ) = min
i′

L(Hi′ , θ)

on the grounds that an incorrect choice of element should never
incur a smaller loss than the correct choice.

I will be quite cavalier about hypothesis tests. If the statistician
has a complete loss function, then the CCT (Theorem 3.2) applies,
a π � 0 must be found, and there is nothing more to be said.
The famous Neyman-Pearson (NP) Lemma is of this type. It has
Ω = {θ0, θ1}, with Hi = {θi}, and loss function

L θ0 θ1

H0 0 `1

H1 `0 0

with `0, `1 > 0. The NP Lemma asserts that a decision rule for
choosing between H0 and H1 is admissible if and only if it has the
form

f (y; θ0)

f (y; θ1)


< c choose H1

= c toss a coin

> c choose H0

for some c > 0. This is just the CCT (Theorem 3.2).15 15 In fact, c = (π1/π0) · (`1/`0), where
(π0, π1) is the prior probability for
which π1 = 1− π0.

The NP Lemma is particularly simple, corresponding to a choice
in a family with only two elements. In situations more complicated
than this, it is extremely challenging and time-consuming to specify
a loss function. And yet statisticians would still like to choose
between hypotheses, in decision problems whose outcome does not
seem to justify the effort required to specify the loss function.16 16 Just to be clear, important decisions

should not be based on cut-price
procedures: an important decision
warrants the effort required to specify
a loss function.

There is a generic loss function for hypothesis tests, but it is
hardly defensible. The 0-1 (’zero-one’) loss function is

L(Hi, θ) = 1− 1θ∈Hi ,

i.e., zero if θ is in Hi, and one if it is not. Its Bayes rule is to select
the hypothesis with the largest conditional probability. It is hard
to think of a reason why the 0-1 loss function would approximate
a wide range of actual loss functions, unlike in the cases of generic
loss functions for point estimation and set estimation. This is not
to say that it is wrong to select the hypothesis with the largest
conditional probability; only that the 0-1 loss function does not
provide a very compelling reason.
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* * *

There is another approach which has proved much more popular.
In fact, it is the dominant approach to hypothesis testing. This is to
co-opt the theory of set estimators, for which there is a defensible
generic loss function, which has strong implications for the selec-
tion of decision rules (see Section 3.5). The statistician can use her
set estimator C : Y→ 2Ω to make at least some distinctions between
the members of H, on the basis of the value of the observable, yobs:

• ‘Accept’ Hi exactly when C(yobs) ⊂ Hi,

• ‘Reject’ Hi exactly when C(yobs) ∩ Hi = ∅,

• ‘Undecided’ about Hi otherwise.

Note that these three terms are given in scare quotes, to indicate
that they acquire a technical meaning in this context. We do not use
the scare quotes in practice, but we always bear in mind that we
are not “accepting Hi” in the vernacular sense, but simply asserting
that C(yobs) ⊂ Hi for our particular choice of δ.

Looking at the three options above, there are two classes of
outcome. If we accept Hi then we must reject all of the other hy-
potheses. But if we are undecided about Hi then we cannot accept
any hypothesis. One very common case is where H =

{
H0, H1

}
,

where H0 is the null hypothesis and H1 is the alternative hypothesis.
There are two versions. In the first, known as a two-sided test (or
‘two-tailed test’), H0 is a tiny subset of Ω, too small for C(yobs) to
get inside. Therefore it is impossible to accept H0, and all that we
can do is reject H0 and accept H1, or be undecided. In the second
case, known as a one-sided test (or ‘one-tailed test’), H0 is a sizeable
subset of Ω, and then it is possible to accept H0 and reject H1.

For example, suppose that the model is Y ∼ Norm(µ, σ2), for
which θ = (µ, σ2) ∈ R++ ×R++. Consider two different tests:

Test A

H0 : κ = c

H1 : κ 6= c

Test B

H0 : κ ≥ c

H1 : κ < c

where κ := σ/µ ∈ R++, known as the ‘coefficient of variation’, and
c is some specified constant. Test A is a two-sided test, in which it
is impossible to accept H0, and so there are only two outcomes: to
reject H0, or to be undecided, which is usually termed ‘fail to reject
H0’. Test B is a one-sided test in which we can accept H0 and reject
H1, or accept H1 and reject H0, or be undecided.

In applications we usually want to do a one-sided test. For
example, if µ is the performance of a new treatment relative to
a control, then we can be fairly sure a priori that µ = 0 is false:
different treatments seldom have identical effects. What we want
to know is whether the new treatment is worse or better than the
control: i.e. we want H0 : µ ≤ 0 versus H1 : µ > 0. In this case we
can find in favour of H0, or in favour of H1, or be undecided. In a
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one-sided test, it would be sensible to push the upper bound of H0

above µ = 0 to some value µ0 > 0, which is the minimial clinically
significant difference (MCSD).

Hypothesis testing is practiced mainly by Frequentist statisti-
cians, and so I will continue in a Frequentist vein. In the Frequen-
tist approach, it is conventional to use a 95% confidence set as the
set estimator for hypothesis testing. Other levels, notably 90% and
99%, are occasionally used. If H0 is rejected using a 95% confidence
set, then this is reported as “H0 is rejected at a significance level of
5%” (occasionally 10% or 1%). Confidence sets are covered in detail
in Chapter 4.

This confidence set approach to hypothesis testing seems quite
clear-cut, but we must end on a note of caution. First, the statisti-
cian has not solved the decision problem of choosing an element
of H. She has solved a different problem. Based on a set estimator,
she may reject H0 on the basis of yobs, but that does not mean she
should proceed as though H0 is false. This would require her to
solve the correct decision problem, for which she would have to
supply a loss function. So, first caution:

• Rejecting H0 is not the same as deciding that H0 is false. Hypoth-
esis tests do not solve decision problems.

Second, loss functions of the form (3.6) may be generic, but that
does not mean that there is only one 95% confidence procedure.
As Chapter 4 will show, there are an uncountable number of ways
of constructing a 95% confidence procedure. In fact, there are an
uncountable number of ways of constructing a 95% confidence
procedure based on level sets of f (y; •). So the statistician still
needs to make and to justify two subjective choices, leading to the
second caution:

• Accepting or rejecting a hypothesis is contingent on the choice of
confidence procedure, as well as on the level.
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This chapter is a continuation of Chapter 3, and the same condi-
tions hold; re-read the introduction to Chapter 3 if necessary.

In this chapter we have the tricky situation in which a specified
function g : Y×Ω → R becomes a random quantity when Y is a
random quantity. Then the distribution of g(Y, θ) depends on the
value in Ω controlling the distribution of Y, which need not be the
same value as θ in the argument. However, in this chapter the value
in Ω controlling the distribution of Y will always be the same value
as θ. Hence g(Y, θ) has the distribution induced by Y ∼ f (• ; θ).

4.1 Confidence procedures and confidence sets

A confidence procedure is a special type of decision rule for the
problem of set estimation. Hence it is a function of the form
C : Y→ 2Ω, where 2Ω is the set of all sets of Ω.1 Decision rules 1 In this chapter I am using ‘C’ for a

confidence procedure, rather than ‘δ’
for a decision rule.

for set estimators were discussed in Section 3.5. A confidence set is
not a Bayes Rule for the loss function in (3.6a).

Definition 4.1 (Confidence procedure). C : Y→ 2Ω is a level-(1− α)

confidence procedure exactly when

Pr{θ ∈ C(Y); θ} ≥ 1− α for all θ ∈ Ω.

If the probability equals (1− α) for all θ, then C is an exact level-
(1− α) confidence procedure.2 2 Exact is a special case. But when it

necessary to emphasize that C is not
exact, the term ‘conservative’ is used.The value Pr{θ ∈ C(Y); θ} is termed the coverage of C at θ. Thus

a 95% confidence procedure has coverage of at least 95% for all θ,
and an exact 95% confidence procedure has coverage of exactly 95%
for all θ. The diameter of C(y) can grow rapidly with its coverage.3 3 The diameter of a set in a metric

space such as Euclidean space is the
maximum of the distance between two
points in the set.

In fact, the relation must be extrememly convex when coverage
is nearly one, because, in the case where Ω = R, the diameter
at coverage = 1 is unbounded. So an increase in the coverage
from, say 95% to 99%, could correspond to a doubling or more of
the diameter of the confidence procedure. For this reason, exact
confidence procedures are highly valued, because a conservative
95% confidence procedure can deliver sets that are much larger
than an exact one.
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But, immediately a note of caution. It seems obvious that exact
confidence procedures should be preferred to conservative ones,
but this is easily exposed as a mistake. Suppose that Ω = R.
Then the following procedure is an exact level-(1− α) confidence
procedure for θ. First, draw a random variable U with a standard
uniform distribution.4 Then set 4 See footnote 6.

C(y) :=

R U ≤ 1− α

{0} otherwise.
(†)

This is an exact level-(1− α) confidence procedure for θ, but also
a meaningless one because it does not depend on y. If it is ob-
jected that this procedure is invalid because it includes an auxiliary
random variable, then this rules out the method of generating
approximately exact confidence procedures using bootstrap calibra-
tion (Section 4.3.3). And if it is objected that confidence procedures
must depend on y, then (†) could easily be adapted so that y is the
seed of a numerical random number generator for U. So something
else is wrong with (†). In fact, it fails a necessary condition for ad-
missibility that was derived in Section 3.5. This will be discussed in
Section 4.2.

It is helpful to distinguish between the confidence procedure
C, which is a function of y, and the result when C is evaluated at
the observations yobs, which is a set in Ω. I like the terms used
in Morey et al. (2016), which I will also adapt to p-values in Sec-
tion 4.5.

Definition 4.2 (Confidence set). C(yobs) is a level-(1− α) confidence
set exactly when C is a level-(1− α) confidence procedure.

So a confidence procedure is a function, and a confidence set
is a set. If Ω ⊂ R and C(yobs) is convex, i.e. an interval, then
a confidence set (interval) is represented by a lower and upper
value. We should write, for example, “using procedure C, the 95%
confidence interval for θ is [0.55, 0.74]”, inserting “exact” if the
confidence procedure C is exact.

4.2 Families of confidence procedures

The challenge with confidence procedures is to construct one with
a specified level (look back to Section 1.4). One could propose an
arbitrary C : Y → 2Ω, and then laboriously compute the coverage
for every θ ∈ Ω. At that point one would know the level of C as a
confidence procedure, but it is unlikely to be 95%; adjusting C and
iterating this procedure many times until the minimum coverage
was equal to 95% would be exceedingly tedious. So we need to
go backwards: start with the level, e.g. 95%, then construct a C
guaranteed to have this level.

Define a family of confidence procedures as C : Y× [0, 1]→ 2Ω, where
C(·; α) is a level-(1− α) confidence procedure for each α. If we start



apts lecture notes on statistical inference 41

with a family of confidence procedures for a specified model, then
we can compute a confidence set for any level we choose.

One class of families of confidence procedures has a natural and
convenient form. The key concept is stochastic dominance. Let X and
Y be two scalar random quantities. Then X stochastically dominates
Y exactly when

Pr(X ≤ v) ≤ Pr(Y ≤ v) for all v ∈ R.

Visually, the distribution function for X is never to the left of the
distribution function for Y.5 Although it is not in general use, I 5 Recollect that the distribu-

tion function of X has the form
F(x) := Pr(X ≤ x) for x ∈ R.

define the following term.

Definition 4.3 (Super-uniform). The random quantity X is super-
uniform exactly when it stochastically dominates a standard uni-
form random quantity.6 6 A standard uniform random quantity

being one with distribution function
F(u) = max{0, min{u, 1}}.In other words, X is super-uniform exactly when Pr(X ≤ u) ≤ u

for all 0 ≤ u ≤ 1. Note that if X is super-uniform then its support
is bounded below by 0, but not necessarily bounded above by 1.
Now here is a representation theorem for families of confidence
procedures.7 7 Look back to ‘New notation’ at the

start of the Chapter for the definition
of g(Y; θ).Theorem 4.1 (Families of Confidence Procedures, FCP). Let

g : Y×Ω→ R. Then

C(y; α) :=
{

θ ∈ Ω : g(y, θ) > α
}

(4.1)

is a family of level-(1− α) confidence procedures if and only if g(Y, θ) is
super-uniform for all θ ∈ Ω. C is exact if and only if g(Y, θ) is uniform
for all θ.

Proof.
(⇐). Let g(Y, θ) be super-uniform for all θ. Then, for arbitrary θ,

Pr{θ ∈ C(Y; α); θ} = Pr{g(Y, θ) > α; θ}
= 1− Pr{g(Y, θ) ≤ α; θ}
= 1− (≤ α) ≥ 1− α

as required. For the case where g(Y, θ) is uniform, the inequality is
replaced by an equality.

(⇒). This is basically the same argument in reverse. Let C(·; α)

defined in (4.1) be a level-(1− α) confidence procedure. Then, for
arbtrary θ,

Pr{g(Y, θ) > α; θ} ≥ 1− α.

Hence Pr{g(Y, θ) ≤ α; θ} ≤ α, showing that g(Y, θ) is super-uniform
as required. Again, if C(·; α) is exact, then the inequality is replaced
by a equality, and g(Y, θ) is uniform.

Families of confidence procedures have the very intuitive nesting
property, that

α < α′ =⇒ C(y; α) ⊃ C(y; α′). (4.2)
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In other words, higher-level confidence sets are always supersets
of lower-level confidence sets from the same family. This has some-
times been used as part of the definition of a family of confidence
procedures (see, e.g., Cox and Hinkley, 1974, ch. 7), but I prefer to
see it as a consequence of a construction such as (4.1).

* * *

Section 3.5 made a recommendation about set estimators for θ,
which was that they should be based on level sets of f (y; •). This
was to satisfy a necessary condition to be admissible under the loss
function (3.6). I call this the Level Set Property (LSP). A family of
confidence procedures does not necessarily have the LSP. So it is
not obvious, but highly gratifying, that it is possible to construct
families of confidence procedures with the LSP. Three different
approaches are given in the next section.

4.3 Methods for constructing confidence procedures

All three of these methods produce families of confidence proce-
dures with the LSP. This is a long section, and there is a summary
in Section 4.3.4.

4.3.1 Markov’s inequality

Here is a result that has pedagogic value, because it can be used to
generate an uncountable number of families of confidence proce-
dures, each with the LSP.

Theorem 4.2. Let h be any PMF for Y. Then

C(y; α) :=
{

θ ∈ Ω : f (y, θ) > α · h(y)
}

(4.3)

is a family of confidence procedures, with the LSP.

Proof. Define g(y, θ) := f (y; θ)
/

h(y), which may be ∞. Then the
result follows immediately from Theorem 4.1 because g(Y, θ) is
super-uniform for each θ:

Pr{ f (Y; θ)
/

h(Y) ≤ u; θ} = Pr{h(Y)
/

f (Y; θ) ≥ 1/u; θ}

≤
E{h(Y)

/
f (Y; θ); θ}

1/u
Markov’s inequality

≤ 1
1/u

= u.

For the final inequality,

E{h(Y)
/

f (Y; θ); θ} = ∑
y∈supp f (• ;θ)

h(y)
f (y; θ)

· f (y; θ)

= ∑
y∈supp f (• ;θ)

h(y)

≤ 1.

If supp h ⊂ supp f (• ; θ), then this inequality is an equality.
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Among the interesting choices for g, one possibility is g = f (• ; θ),
for some θ ∈ Ω. Note that with this choice, the confidence set of
(4.3) always contains θ. So we know that we can construct a level-
(1− α) confidence procedure whose confidence sets will always
contain θ, for any θ ∈ Ω.

This is another illustration of the fact that the definition of a con-
fidence procedure given in Definition 4.1 is too broad to be useful.
But now we see that insisting on the LSP is not enough to resolve
the issue. Two statisticians can both construct 95% confidence sets
for θ which satisfy the LSP, using different families of confidence
procedures. Yet the first statistician may reject the null hypothesis
that H0 : Θ = θ0 (see Section 3.6), and the second statistician may
fail to reject it, for any θ0 ∈ Ω.

Actually, the situation is not as grim as it seems. Markov’s
inequality is very slack, and so the coverage of the family of confi-
dence procedures defined in Theorem 4.2 is likely to be much larger
than (1− α), e.g. much larger than 95%. Remembering the com-
ment about the rapid increase in the diameter of the confidence set
as the coverage increases, from Section 4.1, a more likely outcome is
that C(y; 0.05) is large for many different choices of h, in which case
no one rejects the null hypothesis.

All in all, it would be much better to use an exact family of
confidence procedures, if one existed. And, for perhaps the most
popular model in the whole of Statistics, this is the case.

4.3.2 The Linear Model

The Linear Model (LM) can be expressed as

Y D
= Xβ + ε where ε ∼ Nn(0, σ2 In) (4.4)

where Y is an n-vector of observables, X is a specified n× p matrix
of regressors, β is a p-vector of regression coefficients, and ε is an n-
vector of residuals.8 The parameter is θ = (β, σ2) ∈ Rp ×R++, and 8 Usually I would make Y and ε bold,

being vectors, and I would prefer not
to use X for a specified matrix, but this
is the standard notation.

where it is necessary to refer to the true parameter value I would
use (Θ1, Θ2).

‘Nn(·)’ denotes the n-dimensional Multinormal distribution with
specified expectation vector and variance matrix (see, e.g., Mardia

et al., 1979, ch. 3). The symbol ‘ D
=’ denotes ‘equal in distribution’;

this notation is useful here because the Multinormal distribution is
closed under affine transformations. Hence Y has a Multinormal
distribution, because it is an affine transformation of ε. So the LM
must be restricted to applications for which Y can be thought of,
at least approximately, as a collection of n random quantities each
with realm R, and for each of which our uncertainty is approxi-
mately symmetric. Many observables fail to meet these necessary
conditions (e.g. applications in which Y is a collection of counts);
for these applications, we have Generalized Linear Models (GLMs).
GLMs retain many of the attractive properties of LMs.
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Wood (2015, ch. 7) provides an insightful summary of the LM,
while Draper and Smith (1998) give many practical details.

Now I show that the Maximum Likelihood Estimator (MLE) of
(4.4) is

β̂(y) = (XTX)−1XTy

σ̂2(y) = n−1(y− ŷ)T(y− ŷ)

where ŷ := Xβ̂(y).

Proof. For a LM, it is more convenient to minimise −2 log f (y; β, σ2)

over (β, σ2) than to maximise f (y; β, σ2). Then

−2 log f (y; β, σ2) = n log(2πσ2) +
1
σ2 (y− Xβ)T(y− Xβ)

from the PDF of the Multinormal distribution. Now use a simple
device to show that this is minimised at β = β̂(y) for all values of
σ2. I will write β̂ rather than β̂(y):

(y− Xβ)T(y− Xβ)

= (y− Xβ̂ + Xβ̂− Xβ)T(y− Xβ̂ + Xβ̂− Xβ)

= (y− ŷ)T(y− ŷ) + 0 + (Xβ̂− Xβ)T(Xβ̂− Xβ) (†)

where multiplying out shows that the cross-product term in the
middle is zero. Only the final term contains β. Writing this term as

(β̂− β)T(XTX)(β̂− β)

shows that if X has full column rank, so that XTX is positive defi-
nite, then (†) is minimised if and only if β = β̂. Then

−2 log f (y; β̂, σ2) = n log(2πσ2) +
1
σ2 (y− ŷ)T(y− ŷ).

Solving the first-order condition gives the MLE for σ̂2(y), and it is
easily checked that this is a global minimum.

Now suppose we want a confidence procedure for β. For simplic-
ity, I will assume that σ2 is specified, and for practical purposes I
would replace it by σ̂2(yobs) in calculations. This is known as plug-
ging in for σ2. The LM extends to the case where σ2 is not specified,
but, as long as n/(n− p) ≈ 1, it makes little difference in practice to
plug in.9 9 As an eminent applied statistician

remarked to me: it if matters to
your conclusions whether you use
a standard Normal distribution or
a Student-t distribution, then you
probability have bigger things to worry
about. This is good advice.

With β representing an element of the β-parameter space Rp,
and σ2 specified, we have, from the results above,

−2 log
(

f (y; β, σ2)

f (y; β̂(y), σ2)

)
=

1
σ2 {β̂(y)− β}T(XTX){β̂(y)− β}. (4.5)

Now suppose we could prove the following.

Theorem 4.3. With σ2 specified,

1
σ2 {β̂(Y)− β}T(XTX){β̂(Y)− β}

has a χ2
p distribution.
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We could define the decision rule:

C(y; α) :=
{

β ∈ Rp : −2 log
(

f (y; β, σ2)

f (y; β̂(y), σ2)

)
< χ−2

p (1− α)

}
.

(4.6)
where χ−2

p (1− α) denotes the (1− α)-quantile of the χ2
p distribution.

Under Theorem 4.3, (4.5) shows that C in (4.6) would be an exact
level-(1− α) confidence procedure for β; i.e. it provides a family of
exact confidence procedures. Also note that it satisfies the LSP.

After that build-up, it will come as no surprise to find out that
Theorem 4.3 is true. Substituting Y for y in the MLE of β gives

β̂(Y) D
= (XTX)−1XT(Xβ + ε)

D
= β + (XTX)−1XTε,

writing σ for
√

σ2. So the distribution of β̂(Y) is another Multinor-
mal distribution

β̂(Y) ∼ Np(β, Σ) where Σ := σ2(XTX)−1.

Now apply a standard result for the Multinormal distribution to
deduce

{β̂(Y)− β}TΣ−1{β̂(Y)− β}|β=β ∼ χ2
p (†)

(see Mardia et al., 1979, Thm 2.5.2). This proves Theorem 4.3 above.
Let’s celebrate this result!

Theorem 4.4. For the LM with σ2 specified, C defined in (4.6) is a family
of exact confidence procedures for β, which has the LSP.

Of course, when we plug-in for σ2 we slightly degrade this result,
but not by much if n/(n− p) ≈ 1.

This happy outcome where we can find a family of exact con-
fidence procedures with the LSP is more-or-less unique to the
regression parameters in the LM. but it is found, approximately, in
the large-n behaviour of a much wider class of models, including
GLMs, as explained next.

4.3.3 Wilks confidence procedures

There is a beautiful theory which explains how the results from
Section 4.3.2 generalise to a much wider class of models than the
LM. The theory is quite strict, but it almost-holds over relaxations
of some of its conditions. Stated informally, if Y := (Y1, . . . , Yn) and

f (y; θ) =
n

∏
i=1

f1(yi; θ) (4.7)

and f1 is a regular model, and the parameter space Ω is an open
convex subset of Rp (and invariant to n), then

−2 log
(

f (Y; θ)

f (Y; θ̂(Y))

)∣∣∣∣
θ=θ

D−−−→ χ2
p (4.8)

where θ̂ is the Maximum Likelihood Estimator (MLE) of θ, and

‘ D−−−→’ denotes ‘convergence in distribution’ as n increases without
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bound. Eq. (4.8) is sometimes termed Wilks’s Theorem, hence the
name of this subsection.

The definition of ‘regular model’ is quite technical, but a working
guideline is that f1 must be smooth and differentiable in θ; in
particular, supp Y1 must not depend on θ. Cox (2006, ch. 6) provides
a summary of this result and others like it, and more details can be
found in Casella and Berger (2002, ch. 10), or, for the full story, in
van der Vaart (1998).

This result is true for the LM, because we showed that it is
exactly true for any n provided that σ2 is specified, and the ML
plug-in for σ2 converges on the true value as n/(n − p) → 1.10 10 This is a general property of the

MLE, that it is consistent when f has
the product form given in (4.7).

In general, we can use it the same way as in the LM, to derive a
decision rule:

C(y; α) :=
{

θ ∈ Ω : −2 log
(

f (Y; θ)

f (Y; θ̂(Y))

)
< χ−2

p (1− α)

}
. (4.9)

As already noted, this C satisfies the LSP. Further, under the con-
ditions for which (4.8) is true, C is also a family of approximately
exact confidence procedures.

Eq. (4.9) can be written differently, perhaps more intuitively.
Define

L(• ; y) := f (y; •)

known as the likelihood function of θ; sometimes the y argument is
suppressed, notably when y = yobs. Let ` := log L, the log-likelihood
function. Then (4.9) can be written

C(y; α) =
{

θ ∈ Ω : `(θ; y) > `(θ̂(y); y)− κ(α)
}

(4.10)

where κ(α) := χ−2
p (1− α)/2. In this procedure we keep all θ ∈ Ω

whose log-likelihood values are within κ(α) of the maximum log-
likelihood. In the common case where Ω ⊂ R, (4.10) gives ‘Allan’s
Rule of Thumb’:11 11 After Allan Seheult, who first taught

it to me.
• For an approximate 95% confidence procedure for a scalar pa-

rameter, keep all values of θ ∈ Ω for which the log-likelihood is
within 2 of the maximum log-likelihood.

The value 2 is from χ−2
1 (0.95)/2 = 1.9207. . . ≈ 2.

* * *

The pertinent question, as always with methods based on asymp-
totic properties for particular types of model, is whether the ap-
proximation is a good one. The crucial concept here is level error.
The coverage that we want is at least (1− α) everywhere, which is
termed the ‘nominal level’. But were we to evaluate a confidence
procedure such as (4.10) for a general model (not a LM) we would
find that, over all θ ∈ Ω, that the minimum coverage was not
(1− α) but something else; usually something less than (1− α).
This is the ‘actual level’. The difference is

level error := nominal level− actual level.
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Level error exists because the conditions under which (4.10) pro-
vides an exact confidence procedure are not met in practice, outside
the LM. Although it is tempting to ignore level error, experience
suggests that it can be large, and that we should attempt to correct
for level error if we can.

One method for making this correction is bootstrap calibration,
described in DiCiccio and Efron (1996). I used this method in
Rougier et al. (2016); you will have to read the Appendix.

4.3.4 Summary

With the Linear Model (LM) described in Section 4.3.2, we can
construct a family of exact confidence procedures, with the LSP,
for the parameters β. Additionally—I did not show it but it fol-
lows directly—we can do the same for all affine functions of the
parameters β, including individual components.

In general we are not so fortunate. It is not that we cannot con-
struct families of confidence procedures with the LSP: Section 4.3.1
shows that we can, in an uncountable number of different ways.
But their levels will be conservative, and hence they are not very
informative. A better alternative, which ought to work well in large-
n simple models like (4.7) is to use Wilks’s Theorem to construct a
family of approximately exact confidence procedures, which have
the LSP, see Section 4.3.3.

The Wilks approximation can be checked and—one hopes—
improved, using bootstrap calibration. Bootstrap calibration is a
necessary precaution for small n or more complicated models (e.g.
time series or spatial applications). But in these cases a Bayesian ap-
proach is likely to be a better choice, which is reflected in modern
practice.

4.4 Marginalisation

Suppose that g : θ 7→ φ is some specified function, and we would
like a confidence procedure for φ. If C is a level-(1− α) confidence
procedure for φ then it must have φ-coverage of at least (1− α)

for all θ ∈ Ω. The most common situation is where Ω ⊂ Rp, and
g extracts a single component of θ: for example, θ = (µ, σ2) and
g(θ) = µ. So I call the following result the Confidence Procedure
Marginalisation Theorem.

Theorem 4.5 (Confidence Procedure Marginalisation, CPM). Suppose
that g : θ 7→ φ, and that C is a level-(1− α) procedure for θ. Then gC is a
level-(1− α) confidence procedure for φ.12 12 gC

:=
{

φ : φ = g(θ) for some θ ∈ C
}

.
Proof. Follows immediately from the fact that θ ∈ C(y) implies that
φ ∈ gC(y) for all y, and hence

Pr{θ ∈ C(Y); θ} ≤ Pr{φ ∈ gC(Y); θ}

for all θ ∈ Ω. So if C has θ-coverage of at least (1− α), then gC has
φ-coverage of at least (1− α) as well.
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This result shows that we can derive level-(1− α) confidence
procedures for functions of θ directly from level-(1− α) confidence
procedures for θ. But it also shows that the coverage of such de-
rived procedures will typically be more than (1− α), even if the
original confidence procedure is exact.

4.5 p-values

There is a general theory for p-values, also known as significance lev-
els, which is outlined in Section 4.5.2, and critiqued in Section 4.5.3
and ??. But first I want to focus on p-values as used in Hypothesis
Tests, which is a very common situation.

As discussed in Section 4.3, we have methods for constructing
families of good confidence procedures, and the knowledge that
there are also families of confidence procedures which are poor
(including completely uninformative). In this section I will take it
for granted that a family of good confidence procedures has been
used.

4.5.1 p-values and confidence sets

Hypothesis Tests (HTs) were discussed in Section 3.6. In a HT the
parameter space is partitioned as

Ω = {H0, H1},

where typically H0 is a very small set, maybe even a singleton. We
‘reject’ H0 at a significance level of α exactly when a level-(1− α)

confidence set C(yobs; α) does not intersect H0; otherwise we ‘fail to
reject’ H0 at a significance level of α.

In practice, then, a hypothesis test with a significance level of
5% (or any other specified value) returns one bit of information,
‘reject’, or ’fail to reject’. We do not know whether the decision was
borderline or nearly conclusive; i.e. whether, for rejection, H0 and
C(yobs; 0.05) were close, or well-separated. We can increase the
amount of information if C is a family of confidence procedures, in
the following way.

Definition 4.4 (p-value, confidence set). Let C(· ; α) be a family of
confidence procedures. The p-value of H0 is the smallest value α for
which C(yobs; α) does not intersect H0.

The picture for determining the p-value is to dial up the value
of α from 0 and shrink the set C(yobs; α), until it is just clear of
H0. Of course we do not have to do this in practice. From the
Representation Theorem (Theorem 4.1) we take C(yobs; α) to be
synonymous with a function g : Y×Ω → R. Then C(yobs; α) does
not intersect with H0 if and only if

∀θ ∈ H0 : g(yobs, θ) ≤ α.
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Thus the p-value is computed as

pt(yobs; H0) := max
θ∈H0

g(yobs, θ), (4.11)

for a specified family of confidence procedures (represented by the
choice of g). Here is an interesting and suggestive result.13 This will 13 Recollect the definition of ‘super-

uniform’ from Definition 4.3.be the basis for the generalisation in Section 4.5.2.

Theorem 4.6. Under Definition 4.4 and (4.11), pt(Y; H0) is super-
uniform for every θ ∈ H0.

Proof. pt(y; H0) ≤ u implies that g(y, θ) ≤ u for all θ ∈ H0. Hence

Pr{pt(Y; H0) ≤ u; θ} ≤ Pr{g(Y, θ) ≤ u; θ} ≤ u : θ ∈ H0

where the final inequality follows because g(Y, θ) is super-uniform
for all θ ∈ Ω, from Theorem 4.1.

If interest concerns H0, then pt(yobs; H0) definitely returns more
information than a hypothesis test at any fixed significance level,
because pt(yobs; H0) ≤ α implies ‘reject H0’ at significance level α,
and pt(yobs; H0) > α implies ‘fail to reject H0’ at signficance level α.
But a p-value of, say, 0.045 would indicate a borderline ‘reject H0’ at
α = 0.05, and a p-value of 0.001 would indicate nearly conclusive
‘reject H0’ at α = 0.05. So the following conclusion is rock-solid:

• When performing a HT, a p-value is more informative than a
simple ‘reject H0’ or ‘fail to reject H0’ at a specified significance
level (such as 0.05).

4.5.2 The general theory of p-values

Theorem 4.6 suggests a more general definition of a p-value, which
does not just apply to hypothesis tests for parametric models, but
which holds much more generally, for any PMF or model for Y. In
the following f0 is any null model for Y, including as a special case
f0 = f (• ; θ0) for some specified θ0 ∈ Ω.

Definition 4.5 (Significance procedure). p : Y → R is a significance
procedure for f0 exactly when pt(Y) is super-uniform under f0; if
pt(Y) is uniform under Y ∼ f0, then p is an exact significance
procedure for f0. The value pt(yobs) is a significance level or p-value
for f0 exactly when p is a significance procedure for f0.

This definition can be extended to a set of PMFs for Y by requir-
ing that p is a significance procedure for every element in the set;
this is consistent with the definition of pt(y; H0) in Section 4.5.1.
The usual extension would be to take the maximum of the p-values
over the set.14 14 Although Berger and Boos (1994)

have an interesting suggestion for
parametric models.

For any specified f , there are a lot of significance procedures for
H0 : Y ∼ f . An uncountable number, actually, because every test
statistic t : Y → R induces a significance procedure. See Section 4.6 for
the probability theory which underpins the following result.
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Theorem 4.7. Let t : Y→ R. Define

pt(y; f0) := Pr
{

t(Y) ≥ t(y); f0
}

.

Then pt(Y; f0) is super-uniform under Y ∼ f0. That is, pt(· ; t) is a
significance procedure for H0 : Y ∼ f0. If the distribution function of t(Y)
is continuous, then pt(· ; f0) is an exact significance procedure for H0.

Proof.

pt(y; f0) = Pr{t(Y) ≥ t(y); f0} = Pr{−t(Y) ≤ −t(y); f0} =: G(−t(y))

where G is the distribution function of −t(Y) under Y ∼ f0. Then

pt(Y; f0) = G(−t(Y))

which is super-uniform under Y ∼ f0 according to the Probability
Integral Transform (see Section 4.6, notably Theorem 4.9). The
PIT also covers the case where the distribution function of t(Y) is
continuous, in which case pt(· ; f0) is uniform under Y ∼ f0.

Like confidence procedures, significance procedures suffer
from being too broadly defined. Every test statistic induces a
significance procedure. This includes, for example, t(y) = c for
some specified constant c; but clearly a p-value based on this test
statistic is useless.15 So some additional criteria are required to 15 It is a good exercise to check that

t(y) = c does indeed induce a super-
uniform pt(Y; f0) for every f0.

separate out good from poor significance procedures. The most
pertinent criterion is:

• select a test statistic for which t(Y) which will tend to be larger
for decision-relevant departures from H0.

This will ensure that pt(Y; f0) will tend to be smaller under decision-
relevant departures from H0. Thus p-values offer a ‘halfway house’
in which an alterntive to H0 is contemplated, but not stated explic-
itly.

Here is an example. Suppose that there are two sets of observa-

tions, characterised as Y iid∼ f0 and Z iid∼ f1, for unspecified PMFs
f0 and f1. A common question is whether Y and Z have the same
PMF, so we make this the null hypothesis:

H0 : f0 = f1.

Under H0, (Y , Z) iid∼ f0. Every test statistic t(y, z) induces a sig-
nificance procedure. A few different options for the test statistic
are:

1. The sum of the ranks of y in the ordered set of (y, z). This will
tend to be larger if f0 stochastically dominates f1.

2. As above, but with z instead of y.

3. The maximum rank of y in the ordered set of (y, z). This will
tend to be larger if the righthand tail of f0 is longer than that of
f1.
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4. As above, but with z instead of y.

5. The difference between the maximum and minimum ranks of y
in the ordered set of (y, z). This will tend to be larger if f0 and f1

have the same location, but f0 is more dispersed than f1.

6. As above, but with z instead of y.

7. And so on . . .

There is no ‘portmanteau’ test statistic to examine H0, and in my
view H0 should always be replaced by a much more specific null
hypothesis which suggests a specific test statistic. For example,

H0 : f1 stochastically dominates f0.

In this case (2.) above is a useful test statistic. It is implemented as
the Wilcoxon rank sum test (in its one-sided variant).

4.5.3 Being realistic about significance procedures

Section 4.5.1 made the case for reporting a HT in terms of a p-value.
But what can be said about the more general use of p-values to
‘score’ the hypothsis H0 : Y ∼ f0? Let’s look at the logic. As Fisher
himself stated, in reference to a very small p-value,

The force with which such a conclusion is supported is logically
that of the simple disjunction: Either an exceptionally rare chance
has occurred, or the theory of random distribution [i.e. the null
hypothesis] is not true. (Fisher, 1956, p. 39).

Fisher encourages us to accept that rare events seldom happen,
and we should therefore conclude with him that a very small p-
value strongly suggests that H0 is not true. This is uncontroversial,
although how small ‘very small’ should be is more mysterious;
Cowles and Davis (1982) discuss the origin of the α = 0.05 conven-
tion.

But what would he have written if the p-value had turned out
to be large? The p-value is only useful if we conclude something
different in this case, namely that H0 is not rejected. But this is
where Fisher would run into difficulties, because H0 is an artefact:
f0 is a distribution chosen from among a small set of candidates
for our convenience. So we know a priori that H0 is false: nature is
more complex than we can envisage or represent. Fisher’s logical
disjunction is trivial because the second proposition is always true
(i.e. H0 is always false). So either we confirm what we already know
(small p-value, H0 is false) or we fail to confirm what we already
know (large p-value, but H0 is still false). In the latter case, all that
we have found out is that our choice of test statistic is not powerful
enough to tell us what we already know to be true.

This is not how people who use p-values want to interpret them.
They want a large p-value to mean “No reason to reject H0”, so
that when the p-value is small, they can “Reject H0”. They do not
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want it to mean “My test statistic is not powerful enough to tell
me what I already know to be true, namely that H0 is false.” But
unfortunately that is what it means.

Statisticians have been warning about misinterpreting p-values
for nearly 60 years (dating from Lindley, 1957). They continue to
do so in fields which use statistical methods to examine hypotheses,
indicating that the message has yet to sink in. So there is now a
huge literature on this topic. A good place to start is Greenland and
Poole (2013), and then work backwards.

4.6 The Probability Integral Transform

Here is a very elegant and useful piece of probability theory. Let
X be a scalar random quantity with realm X and distribution
function F(x) := Pr(X ≤ x). By convention, F is defined for all
x ∈ R. By construction, limx↓−∞ F(x) = 0, limx↑∞ F(x) = 1, F is
non-decreasing, and F is continuous from the right, i.e.

lim
x′↓x

F(x′) = F(x).

Define the quantile function

F−(u) := inf
{

x ∈ R : F(x) ≥ u
}

. (4.12)

The following result is a cornerstone of generating random quanti-
ties with easy-to-evaluate quantile functions.

Theorem 4.8 (Probability Integral Transform, PIT). Let U have a
standard uniform distribution. If F− is the quantile function of X, then
F−(U) and X have the same distribution.

Proof. Let F be the distribution function of X. We must show that

F−(u) ≤ x ⇐⇒ u ≤ F(x) (†)

because then

Pr{F−(U) ≤ x} = Pr{U ≤ F(x)} = F(x)

as required. So stare at Figure 4.1 for a while.

It is easy to check that

u ≤ F(x) =⇒ F−(u) ≤ x,

which is one half of (†). It is also easy to check that

u′ > F(x) =⇒ F−(u′) > x.

Taking the contrapositive of this second implication gives

F−(u′) ≤ x =⇒ u′ ≤ F(x),

which is the other half of (†).
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Values for x0

1

••

•

F•

x

F(x)
u

F−(u)

u′

F−(u′)

Figure 4.1: Figure for the proof of
Theorem 4.8. The distribution function
F is non-decreasing and continuous
from the right. The quantile function
F− is defined in (4.12).

Theorem 4.8 is the basis for the following result; recollect the
definition of a super-uniform random quantity from Definition 4.3.
This result is used in Theorem 4.7.

Theorem 4.9. If F is the distribution function of X, then F(X) has a
super-uniform distribution. If F is continuous then F(X) has a uniform
distribution.

Proof. Check from Figure 4.1 that F(F−(u)) ≥ u. Then

Pr{F(X) ≤ u} = Pr{F(F−(U)) ≤ u} from Theorem 4.8

≤ Pr{U ≤ u}
= u.

In the case where F is continuous, it is strictly increasing except on
sets which have probability zero. Then

Pr{F(X) ≤ u} = Pr{F(F−(U)) ≤ u} = Pr{U ≤ u} = u,

as required.





5
Bibliography

Bartlett, M. (1957). A comment on D.V. Lindley’s statistical paradox.
Biometrika, 44:533–534. 57

Basu, D. (1975). Statistical information and likelihood. Sankhyā,
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