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Introduction

Two notions in probability

“. . . you never learn anything unless you are willing to take a risk and
tolerate a little randomness in your life.”

– Heinz Pagels,
The Dreams of Reason, 1988.

This module is intended to introduce students to two important
notions in stochastic processes — reversibility and martingales —
identifying the basic ideas, outlining the main results and giving a
flavour of some significant ways in which these notions are used in
statistics.

These notes outline the content of the module; they represent
work-in-progress and will grow, be corrected, and be modified as
time passes. Comments and suggestions are most welcome! Please
feel free to e-mail us.
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Introduction

Learning outcomes

What you should be able to do
after working through this module

After successfully completing this module an APTS student will be
able to:

I describe and calculate with the notion of a reversible Markov
chain, both in discrete and continuous time;

I describe the basic properties of discrete-parameter martingales
and check whether the martingale property holds;

I recall and apply some significant concepts from martingale
theory;

I explain how to use Foster-Lyapunov criteria to establish
recurrence and speed of convergence to equilibrium for
Markov chains.
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Introduction

An important instruction

First of all, read the preliminary notes . . .

They provide notes and examples concerning a basic framework
covering:

I Probability and conditional probability;

I Expectation and conditional expectation;

I Discrete-time countable-state-space Markov chains;

I Continuous-time countable-state-space Markov chains;

I Poisson processes.
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Introduction

Books

Some useful texts (I)
“There is no such thing as a moral or an immoral book. Books are well
written or badly written.”

– Oscar Wilde (1854–1900),
The Picture of Dorian Gray, 1891, preface

The next three slides list various useful textbooks.
At increasing levels of mathematical sophistication:

1. Häggström (2002) “Finite Markov chains and algorithmic
applications”.

2. Grimmett and Stirzaker (2001) “Probability and random
processes”.

3. Breiman (1992) “Probability”.

4. Norris (1998) “Markov chains”.

5. Ross (1996) “Stochastic processes”.

6. Williams (1991) “Probability with martingales”.
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Introduction

Books

Some useful texts (II): free on the web
1. Doyle and Snell (1984) “Random walks and electric networks”

available on web at
www.arxiv.org/abs/math/0001057.

2. Kelly (1979) “Reversibility and stochastic networks” available
on web at
http://www.statslab.cam.ac.uk/~frank/BOOKS/kelly_book.html.

3. Kindermann and Snell (1980) “Markov random fields and
their applications” available on web at
www.ams.org/online_bks/conm1/.

4. Meyn and Tweedie (1993) “Markov chains and stochastic
stability” available on web at
www.probability.ca/MT/.

5. Aldous and Fill (2001) “Reversible Markov Chains and
Random Walks on Graphs” only available on web at
www.stat.berkeley.edu/~aldous/RWG/book.html.
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Markov chains and reversibility

Markov chains and reversibility

“People assume that time is a strict progression of cause to effect, but
actually from a non-linear, non-subjective viewpoint, it’s more like a big
ball of wibbly-wobbly, timey-wimey . . . stuff.”

The Tenth Doctor,
Doctor Who, in the episode “Blink”, 2007
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Markov chains and reversibility

Reminder: convergence to equilibrium

Recall from the preliminary notes that if a Markov chain X on a
countable state-space (in discrete time) is

I irreducible

I aperiodic (only an issue in discrete time)

I positive recurrent

then
P [Xn = i |X0 = j ]→ πi

as n→∞ for all states i .

π is the unique solution to πP = π such that
∑

i πi = 1.
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Markov chains and reversibility

Introduction to reversibility

Detailed balance in a nutshell

Suppose we could solve (non-trivially) for π in πx px ,y = πy py ,x

(discrete-time) or πx qx ,y = πy qy ,x (continuous-time).

In both cases, simple algebra then shows that π solves the
equilibrium equations.

So on a prosaic level it is always worth trying this easy route; if the
detailed balance equations are insoluble then revert to the more
complicated equilibrium equations πP = π and πQ = 0
respectively.

We will consider the computation of equilibrium distributions for
Markov chains in both discrete and continuous time and discuss
applications via some illustrative examples.
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Markov chains and reversibility

Introduction to reversibility

Time reversal

The detailed balance equations turn out to be intimately
connected to the notion of reversibility.

Recall that for a Markov chain “the future and the past are
independent given the present”. This property is symmetric in
time, which suggests that a Markov chain run backwards in time is
again Markov. Consider any discrete-time Markov chain X . Fix n.
For 0 ≤ k ≤ n, let Yk = Xn−k . Then (Yk )0≤k≤n is the
time-reversal of X (up to time n).
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Markov chains and reversibility

Introduction to reversibility

Let’s show that (Yk )0≤k≤n is Markov:

P [Yk = yk |Y0 = y0, . . . ,Yk−1 = yk−1]

= P [Xn−k = yk |Xn = y0, . . . ,Xn−k+1 = yk−1]

=
P [Xn−k = yk ,Xn−k+1 = yk−1, . . . ,Xn = y0]

P [Xn−k+1 = yk−1, . . . ,Xn = y0]

=
P [Xn−k = yk ,Xn−k+1 = yk−1]

P [Xn−k+1 = yk−1]

× P [Xn−k+2 = yk−2, . . . ,Xn = y0|Xn−k = yk ,Xn−k+1 = yk−1]

P [Xn−k+2 = yk−2, . . . ,Xn = y0|Xn−k+1 = yk−1]

= P [Yk = yk |Yk−1 = yk−1]

by the Markov property of X . Notice that this calculation doesn’t
tell us anything about the transition mechanism (indeed, it
depends on k).
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Markov chains and reversibility

Introduction to reversibility

Reversibility

Definition
Suppose that (Xn−k )0≤k≤n and (Xk )0≤k≤n have the same
distribution for every n. Then we say that X is reversible.
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Markov chains and reversibility

Introduction to reversibility

We will consider progressively more and more complicated Markov
chains:

I simple symmetric random walk;

I the birth-death-immigration process;

I the M/M/1 queue;

I a discrete-time chain on a 8× 8 state space;

I Gibbs samplers (briefly);

I and Metropolis-Hastings samplers (briefly).
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Markov chains and reversibility

Introduction to reversibility

Simplest non-trivial example (I)
Consider doubly-reflected simple symmetric random walk X on
{0, 1, . . . , k}, with reflection “by prohibition”: moves 0→ −1,
k → k + 1 are replaced by 0→ 0, k → k .

1. X is irreducible and aperiodic, so there is a unique
equilibrium distribution π = (π0, π1, . . . , πk ).

2. The equilibrium equations πP = π are solved by πi = 1
k+1

for all i .

3. Consider X in equilibrium and run backwards in time.
Calculation: ANIMATION

P [Xn−1 = x |Xn = y ] = πx P [Xn = y |Xn−1 = x ] /πy =
P [Xn = y |Xn−1 = x ] so here by symmetry of the kernel the
equilibrium chain has the same transition kernel (so looks the
same) whether run forwards or backwards.

4. X is reversible in equilibrium.
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Markov chains and reversibility

Introduction to reversibility

Simplest non-trivial example (II)

There is a computational aspect to this.

1. Even in more general cases, if the πx depend on x then the
above computations show that reversibility holds if an
equilibrium distribution exists and the detailed balance
equations hold: πx px ,y = πy py ,x . ANIMATION

2. Moreover, if one can solve for πx in πx px ,y = πy py ,x then it is
easy to show that πP = π.

3. Consequently, if one can solve the detailed balance equations,
and if the solution can be normalized to have unit total
probability, then the result also solves the equilibrium
equations.
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Markov chains and reversibility

Population transitions

Birth-death-immigration process
The same idea works for continuous-time Markov chains: replace
transition probabilities px ,y by rates qx ,y and the equilibrium
equation πP = π by the differentiated variant using the Q-matrix:
πQ = 0. (Recall: Q = d

d t Pt

∣∣
t=0

.)

Definition
The birth-death-immigration process has transitions:

I birth (x → x + 1 at rate λx);

I death (x → x − 1 at rate µx);

I plus an extra immigration term (x → x + 1 at rate α).

Hence, qx ,x+1 = λx + α; qx ,x−1 = µx . ANIMATION

Equilibrium is easily derived from detailed balance:

πx = λ(x−1)+α
µx · λ(x−2)+α

µ(x−1) · · · αµπ0 .
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Markov chains and reversibility

A key theorem

Detailed balance and reversibility

Definition
The Markov chain X satisfies detailed balance if

Discrete time: there is a non-trivial solution of
πx px ,y = πy py ,x ;

Continuous time: there is a non-trivial solution of
πx qx ,y = πy qy ,x .

Theorem
The irreducible Markov chain X satisfies detailed balance and the
solution {πx} can be normalized by

∑
x πx = 1 if and only if {πx}

is an equilibrium distribution for X and X started in equilibrium is
statistically the same whether run forwards or backwards in time.
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Markov chains and reversibility

Queuing for insight

M/M/1 queue

Here we have

I Arrivals: x → x + 1 at rate λ;

I Departures: x → x − 1 at rate µ if x > 0.

Hence, detailed balance: µπx = λπx−1 and therefore when λ < µ
(stability) the equilibrium distribution is πx = ρx (1− ρ) for
x = 0, 1, . . ., where ρ = λ

µ (the traffic intensity). ANIMATION

Reversibility/detailed balance is more than a computational device:
consider Burke’s theorem, if a stable M/M/1 queue is in
equilibrium then people leave according to a Poisson process of
rate λ.
Hence, if a stable M/M/1 queue feeds into another stable ·/M/1 queue then in
equilibrium the second queue on its own behaves as an M/M/1 queue in equilibrium.
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Markov chains and reversibility

A simple multidimensional example

Random chess (Aldous and Fill 2001, Ch1, Ch3§2)

Example (A mean knight’s tour)

Place a chess knight at the corner of a standard
8× 8 chessboard. Move it randomly, at each move
choosing uniformly from the available legal chess
moves independently of the past.

1. Is the resulting Markov chain periodic?
(What if you sub-sample at even times?)

2. What is the equilibrium distribution?
(Use detailed balance)

3. What is the mean time till the knight returns
to its starting point?
(Inverse of equilibrium probability)

ANIMATION
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Markov chains and reversibility

Ising model

Gibbs sampler for the Ising model
(I) Ising model

Pattern of spins Si = ±1 on (finite fragment of) lattice (here i is a
node of the lattice). Probability mass function:

P [Si = si all i ] ∝ exp
(

J
∑

i∼j

si sj

)

or, if there is an external field,

P [Si = si all i ] ∝ exp
(

J
∑

i∼j

si sj + H
∑

i

si s̃i

)
.
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Markov chains and reversibility

Ising model

Gibbs sampler for the Ising model
(II) Gibbs sampler (or heat-bath)

For a configuration s, let s(i) be the configuration obtained from s
by flipping spin i . Let S be a configuration distributed according
to the Ising measure.

Consider a Markov chain with states which are Ising configurations
on an n × n lattice, moving as follows.

I Suppose the current configuration is s.

I Choose a site i in the lattice uniformly at random.

I Flip the spin at i with probability P
[
S = s(i)

∣∣∣S ∈ {s, s(i)}
]
;

otherwise, leave it unchanged.
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Markov chains and reversibility

Ising model

Gibbs sampler for the Ising model
Noting that s

(i)
i = −si , careful calculation yields

P
[
S = s(i)

∣∣∣S ∈ {s, s(i)}
]

=
exp

(
−J
∑

j :j∼i si sj

)

exp
(

J
∑

j :j∼i si sj

)
+ exp

(
−J
∑

j :j∼i si sj

) .

We have transition probabilities

p(s, s(i)) =
1

n2
P
[
S = s(i)

∣∣∣S ∈ {s, s(i)}
]
, p(s, s) = 1−

∑

i

p(s, s(i))

and simple calculations then show that

∑

i

P
[
S = s(i)

]
p(s(i), s) + P [S = s] p(s, s) = P [S = s] ,

so the chain has the Ising model as its equilibrium distribution.
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Markov chains and reversibility

Ising model

Gibbs sampler for the Ising model
(III) Detailed balance

Detailed balance calculations provide a much easier justification:
merely check that

P [S = s] p(s, s(i)) = P
[
S = s(i)

]
p(s(i), s)

for all s.
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Markov chains and reversibility

Ising model

Gibbs sampler for the Ising model
(VI) Image reconstruction

Assume that the “true” colour of a given pixel depends only on its
four nearest neighbours. The joint distribution of the signal, S,
and the noisy version of it, S̃, is then assumed to be

P
[
S = s, S̃ = s̃

]
∝ exp

(
J
∑

i∼j si sj + H
∑

i si s̃i

)
, where J,H > 0.

H here measures the “noisiness”.

Bayesian interpretation: we observe the noisy signal S̃ and want to
make inference about the true signal. We obtain posterior

distribution P
[
S = s

∣∣∣S̃ = s̃
]
∝ exp

(
J
∑

i∼j si sj + H
∑

i si s̃i

)
from

which we would like to sample. In order to do this, we run the
Gibbs sampler to equilibrium (with s̃ fixed), starting from the noisy
image.
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Markov chains and reversibility

Ising model

Gibbs sampler for the Ising model

Here is an animation of a Gibbs sampler producing an Ising model
conditioned by a noisy image, produced by systematic scans:
128× 128, with 8 neighbours. The noisy image is to the left, a
draw from the Ising model is to the right.

ANIMATION
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Markov chains and reversibility

Metropolis-Hastings sampler

Metropolis-Hastings

An important alternative to the Gibbs sampler, even more closely
connected to detailed balance:

I Suppose that Xn = x .

I Pick y using a transition probability kernel q(x , y) (the
proposal kernel).

I Accept the proposed transition x → y with probability

α(x , y) = min

{
1,
π(y)q(y , x)

π(x)q(x , y)

}
.

I If the transition is accepted, set Xn+1 = y ;
otherwise set Xn+1 = x .

Since π satisfies detailed balance, π is an equilibrium distribution
(if the chain converges to a unique equilibrium!).
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Renewal processes and stationarity

Q: How many statisticians does it take to change a lightbulb?
A: This should be determined using a nonparametric procedure,

since statisticians are not normal.
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Renewal processes and stationarity

Stopping times

Stopping times
Let (Xn)n≥0 be a stochastic process and let us write Fn for the
collection of events “which can be determined from
X0,X1, . . . ,Xn.” For example,

{#{0 ≤ k ≤ n : Xk = 5} = 3} ∈ Fn

but
{#{k ≥ n : Xk = 5} = 3} /∈ Fn.

Definition
A random variable T taking values in {0, 1, 2, . . .} ∪ {∞} is said to
be a stopping time (for the process X ) if, for all n, {T ≤ n} is
determined by the information available at time n i.e.
{T ≤ n} ∈ Fn.

Note that the minimum of two stopping times is a stopping time!
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Renewal processes and stationarity

Random walk example

Random walk example

Let X be a random walk begun at 0.

I The random time T = inf{n > 0 : Xn ≥ 10} is a stopping
time.

I Indeed {T ≤ n} is clearly determined by the information
available at time n:

{T ≤ n} = {X1 ≥ 10} ∪ . . . ∪ {Xn ≥ 10} .

I On the other hand, the random time
S = sup{0 ≤ n ≤ 100 : Xn ≥ 10} is not a stopping time.
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Renewal processes and stationarity

Strong Markov property

Strong Markov property

Suppose that T is a stopping time for the Markov chain (Xn)n≥0.

Theorem
Conditionally on {T <∞} and XT = i , (XT +n)n≥0 has the same
distribution as (Xn)n≥0 started from X0 = i . Moreover, given
{T <∞}, (XT +n)n≥0 and (Xn)0≤n<T are conditionally
independent given XT .
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Renewal processes and stationarity

Hitting times and the Strong Markov property

Hitting times and the Strong Markov property

Consider an irreducible recurrent Markov chain on a discrete
state-space S . Fix i ∈ S and let

H
(i)
0 = inf{n ≥ 0 : Xn = i}.

For m ≥ 0, recursively let

H
(i)
m+1 = inf{n > H

(i)
m : Xn = i}.

It follows from the Strong Markov property that the random
variables

H
(i)
m+1 − H

(i)
m ,m ≥ 0

are independent and identically distributed and also

independent of H
(i)
0 .
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Renewal processes and stationarity

Hitting times and the Strong Markov property

Suppose we start our Markov chain from X0 = i . Then H
(i)
0 = 0.

Consider the number of visits to state i which have occurred by
time n (not including the starting point!) i.e.

N(i)(n) = #
{

k ≥ 1 : H
(i)
k ≤ n

}
.

This is an example of a renewal process.
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Renewal processes and stationarity

Renewal processes

Renewal processes

Definition
Let Z1,Z2, . . . be i.i.d. integer-valued random variables such that
P [Z1 > 0] = 1. Let T0 = 0 and, for k ≥ 1, let

Tk =
k∑

i=1

Zi

and, for n ≥ 0,

N(n) = #{k ≥ 1 : Tk ≤ n}.

Then (N(n))n≥0 is a (discrete) renewal process.
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Renewal processes and stationarity

Renewal processes

Example

Suppose that Z1,Z2, . . . are i.i.d. Geom(p) i.e.

P [Z1 = k] = (1− p)k−1p, k ≥ 1.

Then we can think of Z1 as the number of independent coin tosses
required to first see a head, if heads has probability p.

So N(n) has the same distribution as the number of heads in n
independent coin tosses i.e. N(n) ∼ Bin(n, p) and, moreover,

P [N(k + 1) = nk + 1|N(0) = n0,N(1) = n1, . . . ,N(k) = nk ]

= P [N(k + 1) = nk + 1|N(k) = nk ] = p.

So, in this case, (N(n))n≥0 is a Markov chain.
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Renewal processes

Renewal processes are not normally Markov...

The example on the previous slide is essentially the only example of
a discrete renewal process which is Markov.

Why? Because the geometric distribution has the memoryless
property:

P [Z1 − r = k |Z1 > r ] = (1− p)k−1p, k ≥ 1.

So, regardless of what I know about the process up until the
present time, the distribution of the remaining time until the next
renewal is again geometric. The geometric is the only discrete
distribution with this property.
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Renewal processes and stationarity

Renewal processes

Delayed renewal processes

Definition
Let Z0 be a non-negative integer-valued random variable and,
independently, let Z1,Z2, . . . be independent strictly positive and
identically distributed integer-valued random variables.
For k ≥ 0, let

Tk =
k∑

i=0

Zi

and, for n ≥ 0,

N(n) = #{k ≥ 0 : Tk ≤ n}.

Then (N(n))n≥0 is a (discrete) delayed renewal process, with
delay Z0.
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Renewal processes

Strong law of large numbers

Suppose that µ := E [Z1] <∞. Then the SLLN tells us that

Tk

k
=

1

k

k∑

i=0

Zi → µ a.s. as k →∞.

One can use this to show that

N(n)

n
→ 1

µ
a.s. as n→∞

which tells us that we see renewals at a long-run average rate of
1/µ.
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Renewal processes

Probability of a renewal

Think back to our motivating example of hitting times of state i
for a Markov chain. Suppose we want to think in terms of
convergence to equilibrium: we would like to know what is the
probability that at some large time n there is a renewal (i.e. a visit
to i). We have N(n) ≈ n/µ for large n so, as long as renewals are
evenly spread out, the probability of a renewal at a particular large
time should look like 1/µ.

This intuition turns out to be correct as long as every sufficiently
large integer time is a possible renewal time. In particular, let

d = gcd{n : P [Z1 = n] > 0}.

If d = 1 then this is fine; if we are interpreting renewals as returns
to i for our Markov chain, this says that the chain is aperiodic.
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Renewal processes

An auxiliary Markov chain

We saw that a delayed renewal process (N(n))n≥0 is not normally
itself Markov. But we can find an auxiliary process which is. For
n ≥ 0, let

Y (n) := TN(n−1) − n.

This is the time until the next renewal.

Y (n)

N(n)

Z0 Z1 Z2 Z3 Z4



APTS-ASP 41

Renewal processes and stationarity

Renewal processes

For n ≥ 0,
Y (n) := TN(n−1) − n.

(Y (n))n≥0 has very simple transition probabilities: if k ≥ 1 then

P [Y (n + 1) = k − 1|Y (n) = k] = 1

and

P [Y (n + 1) = i |Y (n) = 0] = P [Z1 = i + 1] for i ≥ 0.
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Renewal processes

A stationary version

Recall that µ = E [Z1]. Then the stationary distribution for this
auxiliary Markov chain is

νi =
1

µ
P [Z1 ≥ i + 1] , i ≥ 0.

If we start a delayed renewal process (N(n))n≥0 with Z0 ∼ ν then
the time until the next renewal is always distributed as ν. We call
such a delayed renewal process stationary.

Notice that the stationary probability of being at a renewal time is
ν0 = 1/µ.
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Renewal processes

Size-biasing and inter-renewal intervals

The stationary distribution

νi =
1

µ
P [Z1 ≥ i + 1] , i ≥ 0

has an interesting interpretation.

Let Z ∗ be a random variable with probability mass function

P [Z ∗ = i ] =
i P [Z1 = i ]

µ
, i ≥ 1.

We say that Z ∗ has the size-biased distribution associated with
the distribution of Z1.

Now, conditionally on Z ∗ = k, let L ∼ U{0, 1, . . . , k − 1}. Then
(unconditionally), L ∼ ν.
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Renewal processes

Interpretation

We are looking at a large time n and want to know how much time
there is until the next renewal. Intuitively, n has more chance to
fall in a longer interval. Indeed, it is i times more likely to fall in an
interval of length i than an interval of length 1. So the
inter-renewal time that n falls into is size-biased. Again
intuitively, it is equally likely to be at any position inside that
renewal interval, and so the time until the next renewal should be
uniform on {0, 1, . . . ,Z ∗ − 1} i.e. it should have the same
distribution as L.
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Renewal processes

Convergence to stationarity

Theorem (Blackwell’s renewal theorem)

Suppose that the distribution of Z1 in a delayed renewal process is
such that gcd{n : P [Z1 = n] > 0} = 1 and µ := E [Z1] <∞. Then

P [renewal at time n] = P [Y (n) = 0]→ 1

µ

as n→∞.
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Renewal processes

The coupling approach to the proof

Let Z0 have a general delay distribution and let Z̃0 ∼ ν
independently. Let N and Ñ be independent delayed renewal
processes with these delay distributions and inter-renewal times
Z1,Z2, . . . and Z̃1, Z̃2, . . . respectively, all i.i.d. random variables.
Let

I (n) = 1{N has a renewal at n},

Ĩ (n) = 1{Ñ has a renewal at n} .

Finally, let
τ = inf{n ≥ 0 : I (n) = Ĩ (n) = 1}.
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Renewal processes and stationarity

Renewal processes

We have
τ = inf{n ≥ 0 : I (n) = Ĩ (n) = 1}.

τ

We argue that τ <∞ almost surely in the case where
{n : P [Z1 = n] > 0} 6⊆ a + mZ for any integers a ≥ 0, m ≥ 2.
(In the general case, it is necessary to adapt the definition of I (n)
appropriately).

APTS-ASP 48

Renewal processes and stationarity

Renewal processes

The coupling approach

τ TK
τ is certainly smaller than TK , where

K = inf{k ≥ 0 : Tk = T̃k} = inf{k ≥ 0 : Tk − T̃k = 0}.

But Tk − T̃k = Z0 − Z̃0 +
∑k

i=1(Zi − Z̃i ) and so (Tk − T̃k )k≥0 is a
random walk with zero-mean step-sizes (such that, for all m ∈ Z,

P
[
Tk − T̃k = m

]
> 0 for large enough k) started from

Z0 − Z̃0 <∞. In particular, it is recurrent and so K <∞, which
implies that TK <∞.
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Renewal processes

The coupling approach
Now let

I ∗(n) =

{
I (n) for n ≤ τ
Ĩ (n) for n > τ.

Then (I ∗(n))n≥0 has the same distribution as (I (n))n≥0. Moreover,

P [I ∗(n) = 1|τ < n] = P
[
Ĩ (n) = 1

]
= 1

µ and so

∣∣∣∣P [I (n) = 1]− 1

µ

∣∣∣∣ =

∣∣∣∣P [I ∗(n) = 1]− 1

µ

∣∣∣∣

=

∣∣∣∣P [I ∗(n) = 1|τ < n]P [τ < n] + P [I ∗(n) = 1|τ ≥ n]P [τ ≥ n]− 1

µ

∣∣∣∣

=

∣∣∣∣P [I ∗(n) = 1|τ ≥ n]− 1

µ

∣∣∣∣P [τ ≥ n]

≤ P [τ ≥ n]→ 0 as n→∞.
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Renewal processes

Convergence to stationarity

We have proved:

Theorem (Blackwell’s renewal theorem)

Suppose that the distribution of Z1 in a delayed renewal process is
such that gcd{n : P [Z1 = n] > 0} = 1 and µ := E [Z1] <∞. Then

P [renewal at time n]→ 1

µ

as n→∞.
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Renewal processes

Convergence to stationarity

We can straightforwardly deduce the usual convergence to
stationarity for a Markov chain.

Theorem
Let X be an irreducible, aperiodic, positive recurrent Markov chain

(i.e. µi = E
[
H

(i)
1 − H

(i)
0

]
<∞). Then, whatever the distribution

of X0,

P [Xn = i ]→ 1

µi

as n→∞.

Note the interpretation of the stationary probability of being in
state i as the inverse of the mean return time to i .
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Renewal processes

Decomposing a Markov chain

Consider an irreducible, aperiodic, positive recurrent Markov chain

X , fix a reference state α and let Hm = H
(α)
m for all m ≥ 0.

Recall that (Hm+1 − Hm,m ≥ 0) is a collection of i.i.d. random
variables, by the Strong Markov property.

More generally, it follows that the collection of pairs

(
Hm+1 − Hm, (XHm+n)0≤n≤Hm+1−Hm

)
,m ≥ 0,

(where the first element of the pair is the time between the mth
and (m + 1)st visits to α, and the second element is a path which
starts and ends at α and doesn’t touch α in between) are
independent and identically distributed.
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Renewal processes

Decomposing a Markov chain

Conditionally on Hm+1 − Hm = k , (XHm+n)0≤n≤k has the same
distribution as the Markov chain X started from α and conditioned
to first return to α at time k .

So we can split the path of a recurrent Markov chain into
independent chunks (“excursions”), between successive visits to α.
The renewal process of times when we visit α becomes stationary.
To get back the whole Markov chain, we just need to “paste in”
pieces of conditioned path.
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Renewal processes

Decomposing a Markov chain

α

0 H0 H1 H2H3 H4 H5

Essentially the same picture will hold true when we come to
consider general state-space Markov chains in the last three
lectures.
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Martingales

“One of these days . . . a guy is going to come up to you and show you a
nice brand-new deck of cards on which the seal is not yet broken, and this
guy is going to offer to bet you that he can make the Jack of Spades
jump out of the deck and squirt cider in your ear. But, son, do not bet
this man, for as sure as you are standing there, you are going to end up
with an earful of cider.”

Frank Loesser,
Guys and Dolls musical, 1950, script
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Simplest possible example

Martingales pervade modern probability

1. We say the random process X = (Xn : n ≥ 0) is a martingale
if it satisfies the martingale property:

E [Xn+1|Xn,Xn−1, . . .] =

E [Xn plus jump at time n + 1|Xn,Xn−1, . . .] = Xn .

2. Simplest possible example: simple symmetric random walk
X0 = 0, X1, X2, . . . . The martingale property follows from
independence and distributional symmetry of jumps.

3. For convenience and brevity, we often replace
E [. . . |Xn,Xn−1, . . .] by E [. . . |Fn] and think of “conditioning
on Fn” as “conditioning on all events
which can be determined to have happened by time n”.
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Thackeray’s martingale

Thackeray’s martingale
1. MARTINGALE:

I spar under the bowsprit of a sailboat;
I a harness strap that connects the nose piece to the girth;

prevents the horse from throwing back its head.

2. MARTINGALE in gambling:
The original sense is given in the OED: “a system in gambling which consists in

doubling the stake when losing in the hope of eventually recouping oneself.”

The oldest quotation is from 1815 but the nicest is from 1854: Thackeray in

The Newcomes I. 266 “You have not played as yet? Do not do so; above all

avoid a martingale if you do.”

3. Result of playing Thackeray’s martingale system and stopping
on first win: ANIMATION

set fortune at time n to be Mn.
If X1 = −1, . . . , Xn = −n then
Mn = −1− 2− . . .− 2n−1 = 1− 2n, otherwise Mn = 1.
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Populations

Martingales and populations

1. Consider a branching process Y : population at time n is Yn,
where Y0 = 1 (say) and Yn+1 is the sum
Zn+1,1 + . . .+ Zn+1,Yn of Yn independent copies of a
non-negative integer-valued family-size r.v. Z .

2. Suppose E [Z ] = µ <∞. Then Xn = Yn/µ
n defines a

martingale.

3. Suppose E
[
sZ
]

= G (s). Let Hn = Y0 + . . .+ Yn be total of
all populations up to time n. Then sHn/(G (s)Hn−1) defines a
martingale.

4. If ζ is the smallest non-negative root of the equation
G (s) = s, then ζYn defines a martingale.

5. In all these examples we can use E [. . . |Fn], representing
conditioning by all Zm,i for m ≤ n.

APTS-ASP 59

Martingales

Definitions

Definition of a martingale

Formally:

Definition
X is a martingale if E [|Xn|] <∞ (for all n) and

Xn = E [Xn+1|Fn] .
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Definitions

Supermartingales and submartingales

Two associated definitions.

Definition
(Xn : n ≥ 0) is a supermartingale if E [|Xn|] <∞ for all n and

Xn ≥ E [Xn+1|Fn]

(and Xn forms part of conditioning expressed by Fn).

Definition
(Xn : n ≥ 0) is a submartingale if E [|Xn|] <∞ for all n and

Xn ≤ E [Xn+1|Fn]

(and Xn forms part of conditioning expressed by Fn).
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Definitions

Examples of supermartingales and submartingales

1. Consider asymmetric simple random walk: supermartingale if
jumps have negative expectation, submartingale if jumps have
positive expectation.

2. This holds even if the walk is stopped on its first return to 0.

3. Consider Thackeray’s martingale based on asymmetric random
walk. This is a supermartingale or a submartingale depending
on whether jumps have negative or positive expectation.

4. Consider the branching process (Yn) and think about Yn on
its own instead of Yn/µ

n. This is a supermartingale if µ < 1
(sub-critical case), a submartingale if µ > 1 (super-critical
case), and a martingale if µ = 1 (critical case).

5. By the conditional form of Jensen’s inequality, if X is a
martingale then |X | is a submartingale.
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More martingale examples

More martingale examples

1. Repeatedly toss a coin, with probability of heads equal to p:
each Head earns £1 and each Tail loses £1. Let Xn denote
your fortune at time n, with X0 = 0. Then

(
1− p

p

)Xn

defines a martingale.

2. A shuffled pack of cards contains b black and r red cards.
The pack is placed face down, and cards are turned over one
at a time. Let Bn denote the number of black cards left just
before the nth card is turned over:

Bn

r + b − (n − 1)
,

the proportion of black cards left just before the nth card
is revealed, defines a martingale.
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Finance example

An example of importance in finance

1. Suppose N1, N2, . . . are independent identically distributed
normal random variables of mean 0 and variance σ2, and put
Sn = N1 + . . .+ Nn.

2. Then the following is a martingale:

Yn = exp
(
Sn − n

2σ
2
)
.

ANIMATION

3. A modification exists for which the Ni have non-zero mean µ.
Hint: Sn → Sn − nµ.
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Martingales and likelihood

Martingales and likelihood

1. Suppose that a random variable X has a distribution which
depends on a parameter θ. Independent copies X1, X2, . . . of
X are observed at times 1, 2, . . . . The likelihood of θ at time
n is

L(θ; X1, . . . ,Xn) = p(X1, . . . ,Xn|θ) .

2. If θ0 is the “true” value then (computing expectation with
θ = θ0)

E

[
L(θ1; X1, . . . ,Xn+1)

L(θ0; X1, . . . ,Xn+1)

∣∣∣∣∣Fn

]
=

L(θ1; X1, . . . ,Xn)

L(θ0; X1, . . . ,Xn)
.
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Martingales for Markov chains
To connect to the first theme of the course, Markov chains provide
us with a large class of examples of martingales.

1. Let X be a Markov chain with countable state-space S and
transition probabilities px ,y . Let f : S → R be any bounded
function.

2. Take Fn to contain all the information about X0,X1, . . . ,Xn.

3. Then

M f
n = f (Xn)− f (X0)−

n−1∑

i=0


∑

y∈S

(f (y)− f (Xi ))pXi ,y




defines a martingale.

4. In fact, if M f is a martingale for all bounded functions f then
X is a Markov chain with transition probabilities px ,y .
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Martingales for Markov chains

Martingales for Markov chains: harmonic functions

Call a function f : S → R harmonic if

f (x) =
∑

y∈S

f (y)px ,y for all x ∈ S .

We defined

M f
n = f (Xn)− f (X0)−

n−1∑

i=0


∑

y∈S

(f (y)− f (Xi ))pXi ,y




and so we see that if f is harmonic then f (Xn) is itself a
martingale.
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Martingale convergence

“Hurry please it’s time.”
T. S. Eliot,
The Waste Land, 1922
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The martingale property at random times
The big idea

Martingales M stopped at “nice” times are still martingales. In
particular, for a “nice” random T ,

E [MT ] = E [M0] .

For a random time T to be “nice”, two things are required:

1. T must not “look ahead”;

2. T must not be “too big”. ANIMATION

3. Note that random times T turning up in practice often have
positive chance of being infinite.
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Stopping times
We have already seen what we mean by a random time “not
looking ahead”: such a time T is more properly called a stopping
time.

Example

Let Y be a branching process of mean-family-size µ (recall that
Xn = Yn/µ

n determines a martingale), with Y0 = 1.

I The random time T = inf{n : Yn = 0} = inf{n : Xn = 0} is a
stopping time.

I Indeed {T ≤ n} is clearly determined by the information
available at time n:

{T ≤ n} = {Yn = 0},

since Yn−1 = 0 implies Yn = 0 etc.
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Stopping times

Stopping times aren’t enough

However, even if T is a stopping time, we clearly need a stronger
condition in order to say that E [MT |F0] = M0.

e.g. let X be a random walk on Z, started at 0.

I T = inf{n > 0 : Xn ≥ 10} is a stopping time

I T is typically “too big”: so long as it is almost surely finite,
XT ≥ 10 and we deduce that 0 = E [X0] < E [XT ].
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Optional Stopping Theorem

Optional stopping theorem

Theorem
Suppose M is a martingale and T is a bounded stopping time.
Then

E [MT |F0] = M0 .

We can generalize to general stopping times either if M is bounded
or (more generally) if M is “uniformly integrable”.
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Application to gambling

Gambling: you shouldn’t expect to win

Suppose your fortune in a gambling game is X , a martingale begun
at 0 (for example, a simple symmetric random walk). If N is the
maximum time you can spend playing the game, and if T ≤ N is a
bounded stopping time, then

E [XT ] = 0 .

ANIMATION

Contrast Fleming (1953):

“Then the Englishman, Mister Bond, increased his winnings to exactly
three million over the two days. He was playing a progressive system on
red at table five. . . . It seems that he is persevering and plays in
maximums. He has luck.”
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Hitting times

Exit from an interval
Here’s an elegant application of the optional stopping theorem.

I Suppose that X is a simple symmetric random walk started
from 0. Then X is a martingale.

I Let T = inf{n : Xn = a or Xn = −b}. (T is almost surely
finite.) Suppose we want to find
P [X hits a before −b] = P [XT = a].

I On the (random) time interval [0,T ], X is bounded, and so
we can apply the optional stopping theorem to see that

E [XT ] = E [X0] = 0.

I But then

0 = E [XT ] = aP [XT = a]− b P [XT = −b]

= aP [XT = a]− b(1− P [XT = a]).

Solving gives P [X hits a before −b] = b
a+b .
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Hitting times

Martingales and hitting times

Suppose that X1, X2, . . . are i.i.d. N(−µ, 1) random variables,
where µ > 0. Let Sn = X1 + . . .+ Xn and let T be the time when
S first exceeds level ` > 0.

Then exp
(
α(Sn + µn)− α2

2 n
)

determines a martingale (for any

α ≥ 0), and the optional stopping theorem can be applied to show

E [exp (−pT )] ∼ e−(µ+
√
µ2+2p)`, p > 0.

This can be improved to an equality, at the expense of using more
advanced theory, if we replace the Gaussian random walk S by
Brownian motion.
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Martingale convergence

Martingale convergence

Theorem
Suppose X is a non-negative supermartingale. Then there exists a
random variable Z such that Xn → Z a.s. and, moreover,
E [Z |Fn] ≤ Xn.

ANIMATION

Theorem
Suppose X is a bounded martingale (or, more generally, uniformly
integrable). Then Z = limn→∞ Xn exists a.s. and, moreover,
E [Z |Fn] = Xn.

Theorem
Suppose X is a martingale and E

[
X 2

n

]
≤ K for some fixed

constant K . Then one can prove directly that Z = limn→∞ Xn

exists a.s. and, moreover, E [Z |Fn] = Xn.
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Martingale convergence

Birth-death process revisited

Suppose Y is a discrete-time birth-and-death process started at
y > 0 and absorbed at zero:

pk,k+1 =
λ

λ+ µ
, pk,k−1 =

µ

λ+ µ
, for k > 0, with 0 < λ < µ.

Y is a non-negative supermartingale and so limn→∞ Yn exists.
Y is a biased random walk with a single absorbing state at 0. Let
T = inf{n : Yn = 0}; then T <∞ a.s. and so the only possible
limit for Y is 0.
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Martingale convergence

Birth-death process revisited

Now let

Xn = Yn∧T +

(
µ− λ
µ+ λ

)
(n ∧ T ).

This is a non-negative martingale converging to Z = µ−λ
µ+λT .

Thus, recalling that Y0 = X0 = y and using the martingale
convergence theorem,

E [T ] ≤
(
µ+ λ

µ− λ

)
y .
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Likelihood revisited

Suppose i.i.d. random variables X1, X2, . . . are observed at times 1,
2, . . . , and suppose the common density is f (θ; x). Suppose also
that E [| log(f (θ; X1))|] <∞. Recall that, if the “true” value of θ
is θ0, then

Mn =
L(θ1; X1, . . . ,Xn)

L(θ0; X1, . . . ,Xn)

is a martingale, with E [Mn] = 1 for all n ≥ 1.

The SLLN and Jensen’s inequality show that

1

n
log Mn → −c as n→∞ ,

moreover if f (θ0; ·) and f (θ1; ·) differ as densities then c > 0, and
so Mn → 0.
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Martingale convergence

Sequential hypothesis testing

In the setting above, suppose that we want to satisfy

P [reject H0|H0] ≤ α and P [reject H1|H1] ≤ β .

How large a sample size do we need?
Let

T = inf{n : Mn ≥ α−1 or Mn ≤ β}
and consider observing X1, . . . ,XT and then rejecting H0 iff
MT ≥ α−1.

APTS-ASP 80

Martingale convergence

Martingale convergence

Sequential hypothesis testing continued

On the (random) time interval [0,T ], M is a bounded martingale,
and so

E [MT ] = E [M0] = 1

(where we are computing the expectation using θ = θ0). So

1 = E [MT ] ≥ α−1 P
[
MT ≥ α−1 | θ0

]
= α−1 P [reject H0|H0] .

Interchanging the roles of H0 and H1 we also obtain
P [reject H1|H1] ≤ β.

The attraction here is that on average, fewer observations are
needed than for a fixed-sample-size test.
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Recurrence

“A bad penny always turns up”
Old English proverb.
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Motivation from MCMC

Given a probability density p(x) of interest, for example a Bayesian
posterior, we could address the question of drawing from p(x) by
using, for example, Gaussian random-walk Metropolis-Hastings:

I Proposals are normal, with mean given by the current location
x , and fixed variance-covariance matrix.

I We use the Hastings ratio to accept/reject proposals.

I We end up with a Markov chain X which has a transition
mechanism which mixes a density with staying at the starting
point.

Evidently, the chain almost surely never visits specified points other
than its starting point. Thus, it can never be irreducible in the
classical sense, and the discrete state-space theory cannot apply.
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Recurrence

We already know that if X is a Markov chain on a discrete
state-space then its transition probabilities converge to a unique
limiting equilibrium distribution if:

1. X is irreducible;

2. X is aperiodic;

3. X is positive-recurrent.

In this case, we call the chain ergodic.

What can we say quantitatively, in general, about the speed at
which convergence to equilibrium occurs? And what if the
state-space is not discrete?
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Speed of convergence

Measuring speed of convergence to equilibrium (I)

I The speed of convergence of a Markov chain X to equilibrium
can be measured as discrepancy between two probability
measures: L (Xn|X0 = x) (the distribution of Xn) and π (the
equilibrium distribution).

I Simple possibility: total variation distance. Let X be the
state-space. For A ⊆ X , find the maximum discrepancy
between L (Xn|X0 = x) (A) = P [Xn ∈ A|X0 = x ] and π(A):

distTV(L (Xn|X0 = x) , π) = sup
A⊆X
{P [Xn ∈ A|X0 = x ]−π(A)} .

I Alternative expression in the case of a discrete state-space:

distTV(L (Xn|X0 = x) , π) = 1
2

∑

y∈X
|P [Xn = y |X0 = x ]− πy | .

(There are many other possible measures of distance . . . )
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Speed of convergence

Measuring speed of convergence to equilibrium (II)

Definition
The Markov chain X is uniformly ergodic if its distribution
converges to equilibrium in total variation uniformly in the starting
point X0 = x : for some fixed C > 0 and for fixed γ ∈ (0, 1),

sup
x∈X

distTV(L (Xn|X0 = x) , π) ≤ Cγn .

In theoretical terms, for example when carrying out MCMC, this is
a very satisfactory property. No account need be taken of the
starting point, and accuracy improves in proportion to the length
of the simulation.
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Speed of convergence

Measuring speed of convergence to equilibrium (III)

Definition
The Markov chain X is geometrically ergodic if its distribution
converges to equilibrium in total variation for some C (x) > 0
depending on the starting point x and for fixed γ ∈ (0, 1),

distTV(L (Xn|X0 = x) , π) ≤ C (x)γn .

Here, account does need to be taken of the starting point, but still
accuracy improves in proportion to the length of the simulation.
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Irreducibility for general chains

φ-irreducibility (I)

We make two observations about Markov chain irreducibility:

1. The discrete theory fails to apply directly even to well-behaved
chains on non-discrete state-spaces.

2. Suppose φ is a measure on the state-space: then we could ask
for the chain to be irreducible on sets of positive φ-measure.

Definition
The Markov chain X is φ-irreducible if for any state x and for any
subset B of the state-space which is such that φ(B) > 0, we find
that X has positive chance of reaching B if begun at x .

(That is, if TB = inf{n ≥ 1 : Xn ∈ B} then if φ(B) > 0 we have
P [TB <∞|X0 = x ] > 0 for all x .)
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Irreducibility for general chains

φ-irreducibility (II)

1. We call φ an irreducibility measure. It is possible to modify
φ to construct a maximal irreducibility measure ψ; one
such that any set B of positive measure under some
irreducibility measure for X is of positive measure for ψ.

2. Irreducible chains on countable state-space are c-irreducible
where c is counting measure (c(A) = |A|).

3. If a chain has unique equilibrium measure π then π will serve
as a maximal irreducibility measure.
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Regeneration and small sets

Regeneration and small sets (I)

The discrete-state-space theory works because (a) the Markov
chain regenerates each time it visits individual states, and (b) it
has a positive chance of visiting specified individual states.

In effect, this reduces the theory of convergence to a question
about renewal processes, with renewals occurring each time the
chain visits a specified state.

We want to extend this idea by thinking in terms of renewals when
visiting sets instead.
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Regeneration and small sets

Regeneration and small sets (II)

Definition
A set E of positive φ-measure is a small set of lag k for X if
there is α ∈ (0, 1) and a probability measure ν such that for all
x ∈ E the following minorisation condition is satisfied

P [Xk ∈ A|X0 = x ] ≥ αν(A) for all A .
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Regeneration and small sets

Regeneration and small sets (III)

Why is this useful? Consider a small set E of lag 1, so that for
x ∈ E ,

p(x ,A) = P [X1 ∈ A|X0 = x ] ≥ αν(A) for all A.

This means that, given X0 = x , we can think of sampling X1 as a
two-step procedure. With probability α, sample X1 from ν. With
probability 1− α, sample X1 from the probability distribution
p(x ,·)−αν(·)

1−α .

For a small set of lag k, we can interpret this as follows: if we
sub-sample X every k time-steps then, every time it visits E , there
is probability α that X forgets its entire past and starts again,
using probability measure ν.

APTS-ASP 92

Recurrence

Regeneration and small sets

Regeneration and small sets (IV)
Consider the Gaussian random walk described above. Any bounded
set is small of lag 1. For example, consider the set E = [−2, 2].

-4 -2 2 4

0.1

0.2

0.3

0.4

The green region represents the overlap of all the Gaussian
densities centred at all points in E . Let α be the area of the green
region and let f be its upper boundary. Then f (x)/α is a
probability density and, for any x ∈ E ,

P [X1 ∈ A|X0 = x ] ≥ α
∫

A

f (x)

α
dx = αν(A).
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Regeneration and small sets

Regeneration and small sets (V)
Let X be a RW with transition density p(x , d y) = 1

2 1{|x−y |<1}.
Consider the set [0, 1]: this is small of lag 1, with α = 1/2 and ν
the uniform distribution on [0, 1].
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The set [0, 2] is not small of lag 1, but is small of lag 2.
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ANIMATION
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Regeneration and small sets

Regeneration and small sets (VI)

Small sets would not be very interesting except that:

1. All φ-irreducible Markov chains X possess small sets;

2. Consider chains X with continuous transition density kernels.
They possess many small sets of lag 1;

3. Consider chains X with measurable transition density kernels.
They need possess no small sets of lag 1, but will possess
many sets of lag 2;

4. Given just one small set, X can be represented using a chain
which has a single recurrent atom.

In a word, small sets discretize Markov chains.
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Regeneration and small sets

Animated example: a random walk on [0, 1]

ANIMATION

Transition density p(x , y) = 2 min{ y
x ,

1−y
1−x }.

Detailed balance equations (in terms of densities):

π(x)p(x , y) = π(y)p(y , x)

Spot an invariant probability density: π(x) = 6x(1− x).
For any A ⊂ [0, 1] and all x ∈ [0, 1],

P [X1 ∈ A|X0 = x ] ≥ 1

2
ν(A),

where ν(A) = 2
∫

A min{x , 1− x} d x . Hence, the whole state-space
is small.
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Regeneration and small sets (VII)

Here is an indication of how we can use the discretization provided
by small sets.

Theorem
Suppose that π is a stationary distribution for X . Suppose that the
whole state-space X is a small set of lag 1 i.e. there exists a
probability measure ν and α ∈ (0, 1) such that

P [X1 ∈ A|X0 = x ] ≥ αν(A) for all x ∈ X .

Then
sup
x∈X

distTV(L(Xn|X0 = x), π) ≤ (1− α)n

and so X is uniformly ergodic.

ANIMATION
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Harris-recurrence

This motivates what we should mean by recurrence for
non-discrete state spaces. Suppose X is φ-irreducible and φ is a
maximal irreducibility measure.

Definition
X is (φ-)recurrent if, for φ-almost all starting points x and any
subset B with φ(B) > 0, when started at x the chain X hits B
eventually with probability 1.

Definition
X is Harris-recurrent if we can drop “φ-almost” in the above.

APTS-ASP 98

Recurrence

Small sets and φ-recurrence

Small sets and φ-recurrence
Small sets help us to identify when a chain is φ-recurrent:

Theorem
Suppose that X is φ-irreducible (and aperiodic). If there exists a
small set C such that for all x ∈ C

P [TC <∞|X0 = x ] = 1 ,

then X is φ-recurrent.

Example

I Random walk on [0,∞) given by Xn+1 = max{Xn + Zn+1, 0},
where increments Z have negative mean.

I The Metropolis-Hastings algorithm on R with N(0, σ2)
proposals.
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Foster-Lyapunov criteria

“Even for the physicist the description in plain language will be the
criterion of the degree of understanding that has been reached.”

Werner Heisenberg,
Physics and philosophy:

The revolution in modern science, 1958
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From this morning

Let X be a Markov chain and let TB = inf{n ≥ 1 : Xn ∈ B}. Let φ
be a measure on the state-space.

I X is φ-irreducible if P [TB <∞|X0 = x ] > 0 for all x
whenever φ(B) > 0.

I A set E of positive φ-measure is a small set of lag k for X if
there is α ∈ (0, 1) and a probability measure ν such that for
all x ∈ E ,

P [Xk ∈ A|X0 = x ] ≥ αν(A) for all A .

I All φ-irreducible Markov chains possess small sets.

I X is φ-recurrent if, for φ-almost all starting points x ,
P [TB <∞|X0 = x ] = 1 whenever φ(B) > 0.
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Renewal and regeneration

Renewal and regeneration
Suppose C is a small set for φ-recurrent X , with lag 1: for x ∈ C ,

P [X1 ∈ A|X0 = x ] ≥ αν(A) .

Identify regeneration events: X regenerates at x ∈ C with
probability α and then makes a transition with distribution ν;
otherwise it makes a transition with distribution p(x ,·)−αν(·)

1−α .

The regeneration events occur as a renewal sequence. Set

pk = P [next regeneration at time k | regeneration at time 0] .

If the renewal sequence is non-defective (i.e.
∑

k pk = 1) and
positive-recurrent (i.e.

∑
k kpk <∞) then there exists a

stationary version. This is the key to equilibrium theory whether
for discrete or continuous state-space.

ANIMATION
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Positive recurrence

Here is the Foster-Lyapunov criterion for positive recurrence
of a φ-irreducible Markov chain X on a state-space X .

Theorem
Suppose that there exist a function Λ : X → [0,∞), positive
constants a, b, c, and a small set C = {x : Λ(x) ≤ c} ⊆ X such
that

E [Λ(Xn+1)|Fn] ≤ Λ(Xn)− a + b 1{Xn∈C} .

Then E [TA|X0 = x ] <∞ for any A such that
φ(A) > 0 and, moreover, X has an equilibrium
distribution.
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Positive recurrence

Sketch of proof

1. Suppose X0 /∈ C . Then Yn = Λ(Xn) + an is non-negative
supermartingale up to time TC = inf{m ≥ 1 : Xm ∈ C}: if
TC > n then

E [Yn+1|Fn] ≤ (Λ(Xn)− a) + a(n + 1) = Yn .

Hence, Ymin{n,TC} converges.

2. So P [TC <∞] = 1 (otherwise Λ(Xn) > c , Yn > c + an and
so Yn →∞). Moreover, E [YTC

|X0] ≤ Λ(X0) (martingale
convergence theorem) so aE [TC |X0] ≤ Λ(X0).

3. Now use the finiteness of b to show that E [T ∗|X0] <∞,
where T ∗ is the time of the first regeneration in C .

4. φ-irreducibility: X has a positive chance of hitting A between
regenerations in C . Hence, E [TA|X0] <∞.
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Positive recurrence

A converse

Suppose, on the other hand, that E [TC |X0 = x ] <∞ for all
starting points x , where C is some small set. The
Foster-Lyapunov criterion for positive recurrence follows for
Λ(x) = E [TC |X0 = x ] as long as E [TC |X0 = x ] is bounded for
x ∈ C .
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Positive recurrence

Example: general reflected random walk

Let
Xn+1 = max{Xn + Zn+1, 0} ,

for Z1,Z2, . . . i.i.d. with continuous density f (z), E [Z1] < 0 and
P [Z1 > 0] > 0. Then

(a) X is Lebesgue-irreducible on [0,∞);

(b) Foster-Lyapunov criterion for positive recurrence applies.

Similar considerations often apply to Metropolis-Hastings Markov
chains based on random walks.
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Geometric ergodicity

Here is the Foster-Lyapunov criterion for geometric ergodicity
of a φ-irreducible Markov chain X on a state-space X .

Theorem
Suppose that there exist a function Λ : X → [1,∞), positive
constants γ ∈ (0, 1), b, c ≥ 1, and a small set
C = {x : Λ(x) ≤ c} ⊆ X with

E [Λ(Xn+1)|Fn] ≤ γΛ(Xn) + b 1{Xn∈C} .

Then E
[
γ−TA |X0 = x

]
<∞ for any A such that φ(A) > 0 and,

moreover (under suitable periodicity conditions), X is geometrically
ergodic.
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Geometric ergodicity

Sketch of proof

1. Suppose X0 /∈ C . Then Yn = Λ(Xn)/γn defines non-negative
supermartingale up to time TC : if TC > n then

E [Yn+1|Fn] ≤ γ × Λ(Xn)/γn+1 = Yn .

Hence, Ymin{n,TC} converges.

2. So P [TC <∞] = 1 (otherwise Λ(X ) > c and so Yn > c/γn

does not converge). Moreover, E
[
γ−TC |X0

]
≤ Λ(X0).

3. Finiteness of b shows that E
[
γ−T∗ |X0

]
<∞, where T ∗ is the

time of the first regeneration in C .

4. From φ-irreducibility there is a positive chance of hitting A
between regenerations in C . Hence, E

[
γ−TA |X0

]
<∞.

APTS-ASP 108

Foster-Lyapunov criteria

Geometric ergodicity

Two converses

Suppose, on the other hand, that E
[
γ−TC |X0

]
<∞ for all starting

points X0 (and fixed γ ∈ (0, 1)), where C is some small set and TC

is the first time for X to return to C . The Foster-Lyapunov
criterion for geometric ergodicity then follows for
Λ(x) = E

[
γ−TC |X0 = x

]
as long as E

[
γ−TC |X0 = x

]
is bounded

for x ∈ C .

But more is true! Strikingly, for Harris-recurrent Markov chains the
existence of a geometric Foster-Lyapunov condition is equivalent to
the property of geometric ergodicity.

Uniform ergodicity follows if the function Λ is bounded above.
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Geometric ergodicity

Example: reflected simple asymmetric random walk

Let
Xn+1 = max{Xn + Zn+1, 0} ,

for Z1,Z2, . . . i.i.d. such that
P [Z1 = −1] = q = 1− p = 1− P [Z1 = +1] > 1

2 .

(a) X is (counting-measure-) irreducible on non-negative integers;

(b) Foster-Lyapunov criterion for positive recurrence applies, using
Λ(x) = x and C = {0}:

E [Λ(X1)|X0 = x0] =

{
Λ(x0)− (q − p) if x0 6∈ C ,

0 + p if x0 ∈ C .

(c) Foster-Lyapunov criterion for geometric ergodicity applies,
using Λ(x) = eax and C = {0} = Λ−1({1}).
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“I have this theory of convergence, that good things always happen with
bad things.”

Cameron Crowe, Say Anything film, 1989
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Convergence: cutoff or geometric decay?

What we have so far said about convergence to equilibrium will
have left the misleading impression that the distance from
equilibrium for a Markov chain is characterized by a gentle and
rather geometric decay.

It is true that this is typically the case after an extremely long
time, and it can be the case over all time. However, it is entirely
possible for “most” of the convergence to happen quite suddenly
at a specific threshold.

The theory for this is developing fast, but many questions remain
open. In this section we describe a a few interesting results, and
look in detail at a specific easy example.
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Cutoff: first example
Consider repeatedly shuffling a pack of n cards using a riffle
shuffle.

Animation

Write Pt
n for the distribution of the cards at time t.

This shuffle can be viewed as a random walk on Sn with uniform
equilibrium distribution πn.
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Cutoff: first example

With n = 52, the total variation distance distTV(Pt
n, πn) of Pt

n

from equilibrium decreases like this:

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0
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Riffle shuffle: sharp result (Bayer and Diaconis 1992)
Let

τn(θ) =
3

2
log2 n + θ .

Then

distTV(P
τn(θ)
n , πn) = 1− 2Φ

(−2−θ

4
√

3

)
+ O(n−1/4) .

As a function of θ this looks something like:

-8 -6 -4 -2 2

0.2

0.4

0.6

0.8

1.0

So as n gets large, convergence to uniform happens quickly
after about (3/2) log2 n shuffles (≈ 7 when n = 52).
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Cutoff: the general picture

Scaling the x-axis by the cutoff time, we see that the total
variation distance drops more and more rapidly towards zero as n
becomes larger: the curves in the graph below tend to a step
function as n→∞.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Moral: effective convergence can be much faster than one realizes,
and occur over a fairly well-defined period of time.
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Cutoff: more examples

There are many examples of this type of behaviour:

Xn Chain τn

Sn Riffle shuffle 3
2 log2 n

Sn Top-to random ??

Sn Random transpositions ??

Zn
2 Symmetric random walk 1

4 n log n

I Methods of proving cutoff include coupling theory,
eigenvalue-analysis and group representation theory . . .
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An example in more detail: the top-to-random shuffle

Let us show how to prove cutoff in a very simple case: the
top-to-random shuffle. This is another random walk X on the
symmetric group Sn: each ‘shuffle’ consists of removing the top
card and replacing it into the pack uniformly at random.

Hopefully it’s not too hard to believe that the equilibrium
distribution of X is again the uniform distribution πn on Sn (i.e.
πn(σ) = 1/n! for all permutations σ ∈ Sn).

Theorem (Aldous & Diaconis (1986))

Let τn(θ) = n log n + θn. Then

1. distTV(P
τn(θ)
n , πn) ≤ e−θ for θ ≥ 0 and n ≥ 2;

2. distTV(P
τn(θ)
n , πn)→ 1 as n→∞, for θ = θ(n)→ −∞.
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Strong uniform times

Recall from lecture 2 that a stopping time is a non-negative
integer-valued random variable T , with {T ≤ k} ∈ Fk for all k .
Let X be a random walk on a group G , with uniform equilibrium
distribution π.

Definition
A strong uniform time T is a stopping time such that for each
k <∞ and σ ∈ G ,

P [Xk = σ |T = k] = π(σ) = 1/|G | .

Strong uniform times (SUT’s) are useful for the following reason. . .

APTS-ASP 119

Cutoff

Top-to-random shuffle

Lemma (Aldous & Diaconis (1986))

Let X be a random walk on a group G , with uniform stationary
distribution π, and let T be a SUT for X . Then for all k ≥ 0,

distTV(Pk , π) ≤ P [T > k] .

Proof.
For any set A ⊆ G ,

P [Xk ∈ A] =
∑

j≤k

P [Xk ∈ A,T = j ] + P [Xk ∈ A,T > k]

=
∑

j≤k

π(A)P [T = j ] + P [Xk ∈ A |T > k]P [T > k]

= π(A) + (P [Xk ∈ A |T > k]− π(A))P [T > k] .

So |Pk (A)− π(A)| ≤ P [T > k].
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Back to shuffling: the upper bound

Consider the card originally at the bottom of the deck (suppose for
convenience that it’s Q♥). Let

I T1 = time until the 1st card is placed below Q♥;

I T2 = time until a 2nd card is placed below Q♥;

I . . .

I Tn−1 = time until Q♥ reaches the top of the pack.

Then note that:

I at time T2, the 2 cards below Q♥ are equally likely to be in
either order;

I at time T3, the 3 cards below Q♥ are equally likely to be in
any order;

I . . .
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... so at time Tn−1, the n − 1 cards below Q♥ are uniformly
distributed.

Hence, at time T = Tn−1 + 1, Q♥ is inserted uniformly at
random, and now the cards are all uniformly distributed!

Since T is a SUT, we can use it in our Lemma to upper bound the
total variation distance between πn and the distribution of the
pack at time k.

Note first of all that

T = T1 + (T2 − T1) + · · ·+ (Tn−1 − Tn−2) + (T − Tn−1) ,

and that

Ti+1 − Ti
ind∼ Geom

(
i + 1

n

)
.
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We can find the distribution of T by turning to the coupon
collector’s problem. Consider a bag with n distinct balls - keep
sampling (with replacement) until each ball has been seen at least
once.

Let Wi = number of draws needed until i distinct balls have been
seen. Then

Wn = (Wn −Wn−1) + (Wn−1 −Wn−2) + · · ·+ (W2 −W1) + W1 ,

where

Wi+1 −Wi
ind∼ Geom

(
n − i

n

)
.

Thus, T
d
= Wn.
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Now let Ad be the event that ball d has not been seen in the first
k draws.

P [Wn > k] = P [∪n
d=1Ad ] ≤

n∑

d=1

P [Ad ]

= n

(
1− 1

n

)k

≤ ne−k/n.

Plugging in k = τn(θ) = n log n + θn, we get

P [Wn > τn(θ)] ≤ e−θ.

Now use the fact that T and Wn have the same distribution, the
important information that T is a SUT for the chain, and the
Lemma above to deduce part 1 of our cutoff theorem.
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The lower bound
To prove lower bounds of cutoffs, a frequent trick is to find a set B

such that |Pτn(θ)
n (B)− πn(B)| is large, where τn(θ) is now equal to

n log n + θ(n)n, with θ(n)→ −∞.
So let

Bi = {σ : bottom i original cards remain in original relative order}.

This satisfies πn(Bi ) = 1/i !. Furthermore, we can argue that, for
any fixed i , with θ = θ(n)→ −∞,

P
τn(θ)
n (Bi )→ 1 as n→∞.

Therefore,

distTV(P
τn(θ)
n , πn) ≥ max

i

(
P
τn(θ)
n (Bi )− πn(Bi )

)
→ 1 .
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Final comments...

So how does this shuffle compare to others?

Xn Chain τn

Sn Top-to random n log n

Sn Riffle shuffle 3
2 log2 n

Sn Random transpositions

1
2 n log n

Sn Overhand shuffle

Θ(n2 log n)

I So shuffling using random transpositions, or even the
top-to-random shuffle, is much faster than the commonly used
overhand shuffle!
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