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Basic Ideas slide 3

Why model?

George E. P. Box (1919–2013):

All models are wrong, but some models are useful.

� Some reasons we construct models:

– to simplify reality (efficient representation);

– to gain understanding;

– to compare scientific, economic, . . . theories;

– to predict future events/data;

– to control a process.

� We (statisticians!) rarely believe in our models, but regard them as temporary constructs subject
to improvement.

� Often we have several and must decide which is preferable, if any.

APTS: Statistical Modelling April 2018 – slide 4

Criteria for model selection

� Substantive knowledge, from prior studies, theoretical arguments, dimensional or other general
considerations (often qualitative)

� Sensitivity to failure of assumptions (prefer models that are robustly valid)

� Quality of fit—residuals, graphical assessment (informal), or goodness-of-fit tests (formal)

� Prior knowledge in Bayesian sense (quantitative)

� Generalisability of conclusions and/or predictions: same/similar models give good fit for many
different datasets

� . . . but often we have just one dataset . . .

APTS: Statistical Modelling April 2018 – slide 5
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Motivation

Even after applying these criteria (but also before!) we may compare many models:

� linear regression with p covariates, there are 2p possible combinations of covariates (each in/out),
before allowing for transformations, etc.— if p = 20 then we have a problem;

� choice of bandwidth h > 0 in smoothing problems

� the number of different clusterings of n individuals is a Bell number (starting from n = 1): 1, 2,
5, 15, 52, 203, 877, 4140, 21147, 115975, . . .

� we may want to assess which among 5× 105 SNPs on the genome may influence reaction to a
new drug;

� . . .

For reasons of economy we seek ‘simple’ models.

APTS: Statistical Modelling April 2018 – slide 6

Albert Einstein (1879–1955)

‘Everything should be made as simple as possible, but no simpler.’

APTS: Statistical Modelling April 2018 – slide 7

William of Occam (?1288–?1348)

Occam’s razor: Entia non sunt multiplicanda sine necessitate: entities should not be multiplied
beyond necessity.

APTS: Statistical Modelling April 2018 – slide 8
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Setting

� To focus and simplify discussion we will consider parametric models, but the ideas generalise to
semi-parametric and non-parametric settings

� We shall take generalised linear models (GLMs) as example of moderately complex parametric
models:

– Normal linear model has three key aspects:

⊲ structure for covariates: linear predictor η = xTβ;

⊲ response distribution: y ∼ N(µ, σ2); and

⊲ relation η = µ between µ = E(y) and η.

– GLM extends last two to

⊲ y has density

f(y; θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y;φ)

}
,

where θ depends on η; dispersion parameter φ is often known; and

⊲ η = g(µ), where g is monotone link function.

APTS: Statistical Modelling April 2018 – slide 9

Logistic regression

� Commonest choice of link function for binary reponses:

Pr(Y = 1) = π =
exp(xTβ)

1 + exp(xTβ)
, Pr(Y = 0) =

1

1 + exp(xTβ)
,

giving linear model for log odds of ‘success’,

log

{
Pr(Y = 1)

Pr(Y = 0)

}
= log

(
π

1− π

)
= xTβ.

� Log likelihood for β based on independent responses y1, . . . , yn with covariate vectors x1, . . . , xn is

ℓ(β) =
n∑

j=1

yjx
T

j β −
n∑

j=1

log
{
1 + exp(xT

j β)
}

� Good fit gives small deviance D = 2
{
ℓ(β̃)− ℓ(β̂)

}
, where β̂ is model fit MLE and β̃ is

unrestricted MLE.

APTS: Statistical Modelling April 2018 – slide 10
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Nodal involvement data

Table 1: Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r),
with five binary covariates age etc.

m r age stage grade xray acid

6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 0 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0

2 1 0 1 0 0 1
2 1 0 0 1 0 0
1 1 1 1 1 1 1
...

...
...

...
...

...
1 1 0 0 1 0 1
1 0 0 0 0 1 1
1 0 0 0 0 1 0

APTS: Statistical Modelling April 2018 – slide 11

Nodal involvement deviances

Deviances D for 32 logistic regression models for nodal involvement data. + denotes a term included
in the model.

age st gr xr ac df D age st gr xr ac df D

52 40.71 + + + 49 29.76
+ 51 39.32 + + + 49 23.67

+ 51 33.01 + + + 49 25.54
+ 51 35.13 + + + 49 27.50

+ 51 31.39 + + + 49 26.70
+ 51 33.17 + + + 49 24.92

+ + 50 30.90 + + + 49 23.98
+ + 50 34.54 + + + 49 23.62
+ + 50 30.48 + + + 49 19.64
+ + 50 32.67 + + + 49 21.28

+ + 50 31.00 + + + + 48 23.12
+ + 50 24.92 + + + + 48 23.38
+ + 50 26.37 + + + + 48 19.22

+ + 50 27.91 + + + + 48 21.27
+ + 50 26.72 + + + + 48 18.22

+ + 50 25.25 + + + + + 47 18.07
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� Adding terms

– always increases the log likelihood ℓ̂ and so reduces D,

– increases the number of parameters,

so taking the model with highest ℓ̂ (lowest D) would give the full model

� We need to trade off quality of fit (measured by D) and model complexity (number of parameters)
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Log likelihood

� Given (unknown) true model g(y), and candidate model f(y; θ), Jensen’s inequality implies
that

∫
log g(y)g(y) dy ≥

∫
log f(y; θ)g(y) dy, (1)

with equality if and only if f(y; θ) ≡ g(y).

� If θg is the value of θ that maximizes the expected log likelihood on the right of (1), then it is
natural to choose the candidate model that maximises

ℓ(θ̂) = n−1
n∑

j=1

log f(y; θ̂),

which should be an estimate of
∫
log f(y; θ)g(y) dy. However as ℓ(θ̂) ≥ ℓ(θg), by definition of θ̂,

this estimate is biased upwards.

� We need to correct for the bias, but in order to do so, need to understand the properties of
likelihood estimators when the assumed model f is not the true model g.
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Wrong model

Suppose the true model is g, that is, Y1, . . . , Yn
iid
∼ g, but we assume that Y1, . . . , Yn

iid
∼ f(y; θ). The

log likelihood ℓ(θ) will be maximised at θ̂, and

ℓ(θ̂) = n−1ℓ(θ̂)
a.s.
−→

∫
log f(y; θg)g(y) dy, n→ ∞,

where θg minimizes the Kullback–Leibler discrepancy

KL(fθ, g) =

∫
log

{
g(y)

f(y; θ)

}
g(y) dy.

θg gives the density f(y; θg) closest to g in this sense, and θ̂ is determined by the finite-sample version
of ∂KL(fθ, g)/∂θ, i.e.

0 = n−1
n∑

j=1

∂ log f(yj; θ̂)

∂θ
.

APTS: Statistical Modelling April 2018 – slide 15

Wrong model II

Theorem 1 Suppose the true model is g, that is, Y1, . . . , Yn
iid
∼ g, but we assume that

Y1, . . . , Yn
iid
∼ f(y; θ). Then under mild regularity conditions the maximum likelihood estimator θ̂

satisfies

θ̂
·
∼ Np

{
θg, I(θg)

−1K(θg)I(θg)
−1
}
, (2)

where fθg is the density minimising the Kullback–Leibler discrepancy between fθ and g, I is the Fisher
information for f , and K is the variance of the score statistic. The likelihood ratio statistic

W (θg) = 2
{
ℓ(θ̂)− ℓ(θg)

}
·
∼

p∑

r=1

λrVr,

where V1, . . . , Vp
iid
∼ χ2

1, and the λr are eigenvalues of K(θg)
1/2I(θg)

−1K(θg)
1/2. Thus

E{W (θg)} = tr{I(θg)
−1K(θg)}.

Under the correct model, θg is the ‘true’ value of θ, K(θ) = I(θ), λ1 = · · · = λp = 1, and we recover
the usual results.

APTS: Statistical Modelling April 2018 – slide 16
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Note: ‘Proof’ of Theorem 1

Expansion of the equation defining θ̂ about θg yields

θ̂
.
= θg +



−n−1

n∑

j=1

∂2 log f(yj; θg)

∂θ∂θT





−1
n

−1
n∑

j=1

∂ log f(yj; θg)

∂θ





and a modification of the usual derivation gives

θ̂
·
∼ Np

{
θg, I(θg)

−1K(θg)I(θg)
−1
}
,

where the information sandwich variance matrix depends on

K(θg) = n

∫
∂ log f(y; θ)

∂θ

∂ log f(y; θ)

∂θT
g(y) dy,

I(θg) = −n

∫
∂2 log f(y; θ)

∂θ∂θT
g(y) dy.

If g(y) = f(y; θ), so that the supposed density is correct, then θg is the true θ, then

K(θg) = I(θ),

and (2) reduces to the usual approximation.
In practice g(y) is of course unknown, and then K(θg) and I(θg) may be estimated by

K̂ =
n∑

j=1

∂ log f(yj; θ̂)

∂θ

∂ log f(yj; θ̂)

∂θT
, Ĵ = −

n∑

j=1

∂2 log f(yj; θ̂)

∂θ∂θT
;

the latter is just the observed information matrix. We may then construct confidence intervals for θg
using (2) with variance matrix Ĵ−1K̂Ĵ−1.
Similar expansions lead to the result for the likelihood ratio statistic.
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Out-of-sample prediction

� We need to fix two problems with using ℓ(θ̂) to choose the best candidate model:

– upward bias, as ℓ(θ̂) ≥ ℓ(θg) because θ̂ is based on Y1, . . . , Yn;

– no penalisation if the dimension of θ increases.

� If we had another independent sample Y +
1 , . . . , Y

+
n

iid
∼ g and computed

ℓ
+
(θ̂) = n−1

n∑

j=1

log f(Y +
j ; θ̂),

then both problems disappear, suggesting that we choose the candidate model that maximises

Eg

[
E+
g

{
ℓ
+
(θ̂)
}]

,

where the inner expectation is over the distribution of the Y +
j , and the outer expectation is over

the distribution of θ̂.

APTS: Statistical Modelling April 2018 – slide 17
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Information criteria

� Previous results on wrong model give

Eg

[
E+
g

{
ℓ
+
(θ̂)
}]

.
=

∫
log f(y; θg)g(y) dy −

1

2n
tr{I(θg)

−1K(θg)},

where the second term is a penalty that depends on the model dimension.

� We want to estimate this based on Y1, . . . , Yn only, and get

Eg

{
ℓ(θ̂)

}
.
=

∫
log f(y; θg)g(y) dy +

1

2n
tr{I(θg)

−1K(θg)},

� To remove the bias, we aim to maximise

ℓ(θ̂)−
1

n
tr(Ĵ−1K̂),

where

K̂ =

n∑

j=1

∂ log f(yj; θ̂)

∂θ

∂ log f(yj; θ̂)

∂θT
, Ĵ = −

n∑

j=1

∂2 log f(yj; θ̂)

∂θ∂θT
;

the latter is just the observed information matrix.

APTS: Statistical Modelling April 2018 – slide 18

Note: Bias of log likelihood

To compute the bias in ℓ(θ̂), we write

Eg

{
ℓ(θ̂)

}
= Eg

{
ℓ(θg)

}
+ E

{
ℓ(θ̂)− ℓ(θg)

}

= Eg

{
ℓ(θg)

}
+

1

2n
E {W (θg)} ,

.
= Eg

{
ℓ(θg)

}
+

1

2n
tr{I(θg)

−1K(θg)},

where Eg denotes expectation over the data distribution g. The bias is positive because I and K are
positive definite matrices.

APTS: Statistical Modelling April 2018 – note 1 of slide 18

Information criteria

� Let p = dim(θ) be the number of parameters for a model, and ℓ̂ the corresponding maximised log
likelihood.

� For historical reasons we choose models that minimise similar criteria

– 2(p − ℓ̂) (AIC—Akaike Information Criterion)

– 2{tr(Ĵ−1K̂)− ℓ̂} (NIC—Network Information Criterion)

– 2(12p log n− ℓ̂) (BIC—Bayes Information Criterion)

– AICc, AICu, DIC, EIC, FIC, GIC, SIC, TIC, . . .

– Mallows Cp = RSS/s2 + 2p− n commonly used in regression problems, where RSS is
residual sum of squares for candidate model, and s2 is an estimate of the error variance σ2.

APTS: Statistical Modelling April 2018 – slide 19
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Nodal involvement data

AIC and BIC for 25 models for binary logistic regression model fitted to the nodal involvement data.
Both criteria pick out the same model, with the three covariates st, xr, and ac, which has deviance
D = 19.64. Note the sharper increase of BIC after the minimum.
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Theoretical aspects

� We may suppose that the true underlying model is of infinite dimension, and that by choosing
among our candidate models we hope to get as close as possible to this ideal model, using the
data available.

� If so, we need some measure of distance between a candidate and the true model, and we aim to
minimise this distance.

� A model selection procedure that selects the candidate closest to the truth for large n is called
asymptotically efficient.

� An alternative is to suppose that the true model is among the candidate models.

� If so, then a model selection procedure that selects the true model with probability tending to one
as n→ ∞ is called consistent.

APTS: Statistical Modelling April 2018 – slide 21
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Properties of AIC, NIC, BIC

� We seek to find the correct model by minimising IC = c(n, p)− 2ℓ̂, where the penalty c(n, p)
depends on sample size n and model dimension p

� Crucial aspect is behaviour of differences of IC.

� We obtain IC for the true model, and IC+ for a model with one more parameter. Then

Pr(IC+ < IC) = Pr
{
c(n, p + 1)− 2ℓ̂+ < c(n, p)− 2ℓ̂

}

= Pr
{
2(ℓ̂+ − ℓ̂) > c(n, p+ 1)− c(n, p)

}
.

and in large samples

for AIC, c(n, p+ 1)− c(n, p) = 2

for NIC, c(n, p+ 1)− c(n, p)
·
∼ 2

for BIC, c(n, p+ 1)− c(n, p) = log n

� In a regular case 2(ℓ̂+ − ℓ̂)
·
∼ χ2

1, so as n→ ∞,

Pr(IC+ < IC) →

{
0.16, AIC,NIC,

0, BIC.

Thus AIC and NIC have non-zero probability of over-fitting, even in very large samples, but BIC
does not.
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Linear Model slide 23

Variable selection

� Consider normal linear model

Yn×1 = X†
n×pβp×1 + εn×1, ε ∼ Nn(0, σ

2In),

where design matrix X† has full rank p < n and columns xr, for r ∈ X = {1, . . . , p}. Subsets S
of X correspond to subsets of columns.

� Terminology

– the true model corresponds to subset T = {r : βr 6= 0}, and |T | = q < p;

– a correct model contains T but has other columns also, corresponding subset S satisfies
T ⊂ S ⊂ X and T 6= S;

– a wrong model has subset S lacking some xr for which βr 6= 0, and so T 6⊂ S.

� Aim to identify T .

� If we choose a wrong model, have bias; if we choose a correct model, increase variance—seek to
balance these.

APTS: Statistical Modelling April 2018 – slide 24
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Stepwise methods

� Forward selection: starting from model with constant only,

1. add each remaining term separately to the current model;

2. if none of these terms is significant, stop; otherwise

3. update the current model to include the most significant new term; go to 1

� Backward elimination: starting from model with all terms,

1. if all terms are significant, stop; otherwise

2. update current model by dropping the term with the smallest F statistic; go to 1

� Stepwise: starting from an arbitary model,

1. consider 3 options—add a term, delete a term, swap a term in the model for one not in the
model;

2. if model unchanged, stop; otherwise go to 1

APTS: Statistical Modelling April 2018 – slide 25

Nuclear power station data

> nuclear

cost date t1 t2 cap pr ne ct bw cum.n pt

1 460.05 68.58 14 46 687 0 1 0 0 14 0

2 452.99 67.33 10 73 1065 0 0 1 0 1 0

3 443.22 67.33 10 85 1065 1 0 1 0 1 0

4 652.32 68.00 11 67 1065 0 1 1 0 12 0

5 642.23 68.00 11 78 1065 1 1 1 0 12 0

6 345.39 67.92 13 51 514 0 1 1 0 3 0

7 272.37 68.17 12 50 822 0 0 0 0 5 0

8 317.21 68.42 14 59 457 0 0 0 0 1 0

9 457.12 68.42 15 55 822 1 0 0 0 5 0

10 690.19 68.33 12 71 792 0 1 1 1 2 0

...

32 270.71 67.83 7 80 886 1 0 0 1 11 1
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Nuclear power station data

Full model Backward Forward
Est (SE) t Est (SE) t Est (SE) t

Constant −14.24 (4.229) −3.37 −13.26 (3.140) −4.22 −7.627 (2.875) −2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 4.91 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR −0.092 (0.077) −1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) −0.080 (0.046) −1.74 −0.088 (0.042) −2.11
PT −0.224 (0.123) −1.83 −0.226 (0.114) −1.99 −0.490 (0.103) −4.77

s (df) 0.164 (21) 0.159 (25) 0.195 (28)
Backward selection chooses a model with seven covariates also chosen by minimising AIC.
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Stepwise Methods: Comments

� Systematic search minimising AIC or similar over all possible models is preferable—not always
feasible.

� Stepwise methods can fit models to purely random data—main problem is no objective function.

� Sometimes used by replacing F significance points by (arbitrary!) numbers, e.g. F = 4

� Can be improved by comparing AIC for different models at each step—uses AIC as objective
function, but no systematic search.
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Prediction error

� To identify T , we fit candidate model

Y = Xβ + ε,

where columns of X are a subset S of those of X†.

� Fitted value is

Xβ̂ = X{(XTX)−1XTY } = HY = H(µ+ ε) = Hµ+Hε,

where H = X(XTX)−1XT is the hat matrix and Hµ = µ if the model is correct.

� Following reasoning for AIC, suppose we also have independent dataset Y+ from the true model,
so Y+ = µ+ ε+

� Apart from constants, previous measure of prediction error is

∆(X) = n−1E E+

{
(Y+ −Xβ̂)T(Y+ −Xβ̂)

}
,

with expectations over both Y+ and Y .

16
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Prediction error II

� Can show that

∆(X) =





n−1µT(I −H)µ+ (1 + p/n)σ2, wrong model,

(1 + q/n)σ2, true model,

(1 + p/n)σ2, correct model;

(3)

recall that q < p.

� Bias: n−1µT(I −H)µ > 0 unless model is correct, and is reduced by including useful terms

� Variance: (1 + p/n)σ2 increased by including useless terms

� Ideal would be to choose covariates X to minimise ∆(X): impossible—depends on unknowns
µ, σ.

� Must estimate ∆(X)
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Note: Proof of (3)

Consider data y = µ+ ε to which we fit the linear model y = Xβ + ε, obtaining fitted value

Xβ̂ = Hy = H(µ + ε)

where the second term is zero if µ lies in the space spanned by the columns of X, and otherwise is not.
We have a new data set y+ = µ+ ε+, and we will compute the average error in predicting y+ using
Xβ̂, which is

∆ = n−1E
{
(y+ −Xβ̂)T(y+ −Xβ̂)

}
.

Now
y+ −Xβ̂ = µ+ ε+ − (Hµ +Hε) = (I −H)µ+ ε+ −Hε.

Therefore
(y+ −Xβ̂)T(y+ −Xβ̂) = µT(I −H)µ + εTHε+ εT+ε+ +A

where E(A) = 0; this gives that

∆(X) =





n−1µT(I −H)µ+ (1 + p/n)σ2, wrong model,

(1 + q/n)σ2, true model,

(1 + p/n)σ2, correct model.

APTS: Statistical Modelling April 2018 – note 1 of slide 30
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Example

5 10 15
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Number of parameters
∆

∆(X) as a function of the number of included variables p for data with n = 20, q = 6, σ2 = 1. The
minimum is at p = q = 6:

� there is a sharp decrease in bias as useful covariates are added;

� there is a slow increase with variance as the number of variables p increases.
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Cross-validation

� If n is large, can split data into two parts (X ′, y′) and (X∗, y∗), say, and use one part to estimate
model, and the other to compute prediction error; then choose the model that minimises

∆̂ = n
′−1(y′ −X ′β̂∗)T(y′ −X ′β̂∗) = n

′−1
n′∑

j=1

(y′j − x′j β̂
∗)2.

� Usually dataset is too small for this; use leave-one-out cross-validation sum of squares

n∆̂CV = CV =

n∑

j=1

(yj − xT

j β̂−j)
2,

where β̂−j is estimate computed without (xj , yj).

� Seems to require n fits of model, but in fact

CV =

n∑

j=1

(yj − xT

j β̂)
2

(1− hjj)2
,

where h11, . . . , hnn are diagonal elements of H, and so can be obtained from one fit.
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Cross-validation II

� Simpler (more stable?) version uses generalised cross-validation sum of squares

GCV =
n∑

j=1

(yj − xT

j β̂)
2

{1− tr(H)/n}2
.

� Can show that

E(GCV) = µT(I −H)µ/(1 − p/n)2 + nσ2/(1 − p/n) ≈ n∆(X) (4)

so try and minimise GCV or CV.

� Many variants of cross-validation exist. Typically find that model chosen based on CV is
somewhat unstable, and that GCV or k-fold cross-validation works better. Standard strategy is to
split data into 10 roughly equal parts, predict for each part based on the other nine-tenths of the
data, and find model that minimises this estimate of prediction error.
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Note: Derivation of (4)

We need the expectation of (y −Xβ̂)T(y −Xβ̂), where y −Xβ̂ = (I −H)y = (I −H)(µ+ ε), and
squaring up and noting that E(ε) = 0 gives

E
{
(y −Xβ̂)T(y −Xβ̂)

}
= µT(I −H)µ +E {εT(I −H)ε} = µT(I −H)µ+ (n− p)σ2.

Now note that tr(H) = p and divide by (1− p/n)2 to give (almost) the required result, for which we
need also (1− p/n)−1 ≈ 1 + p/n, for p≪ n.

APTS: Statistical Modelling April 2018 – note 1 of slide 33

Other selection criteria

� Corrected version of AIC for models with normal responses:

AICc ≡ n log σ̂2 + n
1 + p/n

1− (p + 2)/n
,

where σ̂2 = RSS/n. Related (unbiased) AICu replaces σ̂2 by S2 = RSS/(n − p).

� Mallows suggested

Cp =
SSp
s2

+ 2p− n,

where SSp is RSS for fitted model and s2 estimates σ2.

� Comments:

– AIC tends to choose models that are too complicated; AICc cures this somewhat

– BIC chooses true model with probability → 1 as n→ ∞, if the true model is fitted.

APTS: Statistical Modelling April 2018 – slide 34
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Simulation experiment

Number of times models were selected using various model selection criteria in 50 repetitions using
simulated normal data for each of 20 design matrices. The true model has p = 3.

n Number of covariates
1 2 3 4 5 6 7

10 Cp 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AICc 15 398 565 18 4

20 Cp 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 577 144 104 76 97
AICc 8 859 94 30 8 1

40 Cp 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AICc 786 105 52 41 16
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Simulation experiment

Twenty replicate traces of AIC, BIC, and AICc, for data simulated with n = 20, p = 1, . . . , 16, and
q = 6.
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Simulation experiment

Twenty replicate traces of AIC, BIC, and AICc, for data simulated with n = 40, p = 1, . . . , 16, and
q = 6.
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Simulation experiment

Twenty replicate traces of AIC, BIC, and AICc, for data simulated with n = 80, p = 1, . . . , 16, and
q = 6.
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As n increases, note how

� AIC and AICc still allow some over-fitting, but BIC does not, and

� AICc approaches AIC.
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Bayesian Inference slide 39

Thomas Bayes (1702–1761)

Bayes (1763/4) Essay towards solving a problem in the doctrine of chances. Philosophical
Transactions of the Royal Society of London.
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Bayesian inference

Parametric model for data y assumed to be realisation of Y ∼ f(y; θ), where θ ∈ Ωθ.
Frequentist viewpoint (cartoon version):

� there is a true value of θ that generated the data;

� this ‘true’ value of θ is to be treated as an unknown constant;

� probability statements concern randomness in hypothetical replications of the data (possibly
conditioned on an ancillary statistic).

Bayesian viewpoint (cartoon version):

� all ignorance may be expressed in terms of probability statements;

� a joint probability distribution for data and all unknowns can be constructed;

� Bayes’ theorem should be used to convert prior beliefs π(θ) about unknown θ into posterior
beliefs π(θ | y), conditioned on data;

� probability statements concern randomness of unknowns, conditioned on all known quantities.
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Mechanics

� Separate from data, we have prior information about parameter θ summarised in density π(θ)

� Data model f(y | θ) ≡ f(y; θ)

� Posterior density given by Bayes’ theorem:

π(θ | y) =
π(θ)f(y | θ)∫
π(θ)f(y | θ) dθ

.

� π(θ | y) contains all information about θ, conditional on observed data y

� If θ = (ψ, λ), then inference for ψ is based on marginal posterior density

π(ψ | y) =

∫
π(θ | y) dλ
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Encompassing model

� Suppose we have M alternative models for the data, with respective parameters
θ1 ∈ Ωθ1 , . . . , θm ∈ Ωθm . Typically dimensions of Ωθm are different.

� We enlarge the parameter space to give an encompassing model with parameter

θ = (m, θm) ∈ Ω =

M⋃

m=1

{m} × Ωθm .

� Thus need priors πm(θm | m) for the parameters of each model, plus a prior π(m) giving pre-data
probabilities for each of the models; overall

π(m, θm) = π(θm | m)π(m) = πm(θm)πm,

say.

� Inference about model choice is based on marginal posterior density

π(m | y) =

∫
f(y | θm)πm(θm)πm dθm∑M

m′=1

∫
f(y | θm′)πm′(θm′)πm′ dθm′

=
πmf(y | m)

∑M
m′=1 πm′f(y | m′)

.
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Inference

� Can write
π(m, θm | y) = π(θm | y,m)π(m | y),

so Bayesian updating corresponds to

π(θm | m)π(m) 7→ π(θm | y,m)π(m | y)

and for each model m = 1, . . . ,M we need

– posterior probability π(m | y), which involves the marginal likelihood
f(y | m) =

∫
f(y | θm,m)π(θm | m) dθm; and

– the posterior density f(θm | y,m).

� If there are just two models, can write

π(1 | y)

π(2 | y)
=
π1
π2

f(y | 1)

f(y | 2)
,

so the posterior odds on model 1 equal the prior odds on model 1 multiplied by the Bayes factor
B12 = f(y | 1)/f(y | 2).
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Sensitivity of the marginal likelihood

Suppose the prior for each θm is N (0, σ2Idm), where dm = dim(θm). Then, dropping the m subscript
for clarity,

f(y | m) = σ−d/2(2π)−d/2

∫
f(y | m, θ)

∏

r

exp
{
−θ2r/(2σ

2)
}
dθr

≈ σ−d/2(2π)−d/2

∫
f(y | m, θ)

∏

r

dθr,

for a highly diffuse prior distribution (large σ2). The Bayes factor for comparing the models is
approximately

f(y | 1)

f(y | 2)
≈ σ(d2−d1)/2g(y),

where g(y) depends on the two likelihoods but is independent of σ2. Hence, whatever the data tell us
about the relative merits of the two models, the Bayes factor in favour of the simpler model can be
made arbitrarily large by increasing σ.
This illustrates Lindley’s paradox, and implies that we must be careful when specifying prior
dispersion parameters to compare models.
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Model averaging

� If a quantity Z has the same interpretation for all models, it may be necessary to allow for model
uncertainty:

– in prediction, each model may be just a vehicle that provides a future value, not of interest
per se;

– physical parameters (means, variances, etc.) may be suitable for averaging, but care is needed.

� The predictive distribution for Z may be written

f(z | y) =
M∑

m=1

f(z | y,m)Pr(m | y)

where

Pr(m | y) =
f(y | m)Pr(m)

∑M
m′=1 f(y | m′)Pr(m′)

APTS: Statistical Modelling April 2018 – slide 46

Example: Cement data

Percentage weights in clinkers of 4 four constitutents of cement (x1, . . . , x4) and heat evolved y in
calories, in n = 13 samples.
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Example: Cement data

> cement

x1 x2 x3 x4 y

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.8

12 11 66 9 12 113.3

13 10 68 8 12 109.4
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Example: Cement data

Bayesian model choice and prediction using model averaging for the cement data (n = 13, p = 4). For
each of the 16 possible subsets of covariates, the table shows the log Bayes factor in favour of that
subset compared to the model with no covariates and gives the posterior probability of each model.
The values of the posterior mean and scale parameters a and b are also shown for the six most
plausible models; (y+ − a)/b has a posterior t density. For comparison, the residual sums of squares
are also given.

Model RSS 2 logB10 Pr(M | y) a b

– – – – 2715.8 0.0 0.0000
1 – – – 1265.7 7.1 0.0000
– 2 – – 906.3 12.2 0.0000
– – 3 – 1939.4 0.6 0.0000
– – – 4 883.9 12.6 0.0000
1 2 – – 57.9 45.7 0.2027 93.77 2.31
1 – 3 – 1227.1 4.0 0.0000
1 – – 4 74.8 42.8 0.0480 99.05 2.58
– 2 3 – 415.4 19.3 0.0000
– 2 – 4 868.9 11.0 0.0000
– – 3 4 175.7 31.3 0.0002
1 2 3 – 48.11 43.6 0.0716 95.96 2.80
1 2 – 4 47.97 47.2 0.4344 95.88 2.45
1 – 3 4 50.84 44.2 0.0986 94.66 2.89
– 2 3 4 73.81 33.2 0.0004
1 2 3 4 47.86 45.0 0.1441 95.20 2.97
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Example: Cement data

Posterior predictive densities for cement data. Predictive densities for a future observation y+ with
covariate values x+ based on individual models are given as dotted curves. The heavy curve is the
average density from all 16 models.
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DIC

� How to compare complex models (e.g. hierarchical models, mixed models, Bayesian settings), in
which the ‘number of parameters’ may:

– outnumber the number of observations?

– be unclear because of the regularisation provided by a prior density?

� Suppose model has ‘Bayesian deviance’

D(θ) = −2 log f(y | θ) + 2 log f(y)

for some normalising function f(y), and suppose that samples from the posterior density of θ are
available and give θ = E(θ | y).

� One possibility is the deviance information criterion (DIC)

D(θ) + 2pD,

where the number of associated parameters is

pD = D(θ)−D(θ).

� This involves only (MCMC) samples from the posterior, no analytical computations, and
reproduces AIC for some classes of models.
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2. Beyond the Generalised Linear Model slide 52

Overview

1. Generalised linear models

2. Overdispersion

3. Correlation

4. Random effects models
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Generalised Linear Models slide 54

GLM recap

y1, . . . , yn are observations of response variables Y1, . . . , Yn assumed to be independently generated by
a distribution of the same exponential family form, with means µi ≡ E(Yi) linked to explanatory
variables X1,X2, . . . ,Xp through

g(µi) = ηi ≡ β0 +

p∑

r=1

βrxir ≡ xT

i β

GLMs have proved remarkably effective at modelling real world variation in a wide range of
application areas.
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GLM failure

However, situations frequently arise where GLMs do not adequately describe observed data.
This can be due to a number of reasons including:

� The mean model cannot be appropriately specified as there is dependence on an unobserved (or
unobservable) explanatory variable.

� There is excess variability between experimental units beyond that implied by the mean/variance
relationship of the chosen response distribution.

� The assumption of independence is not appropriate.

� Complex multivariate structure in the data requires a more flexible model class
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Overdispersion slide 57

Example 1: toxoplasmosis

The table below gives data on the relationship between rainfall (x) and the proportions of people with
toxoplasmosis (y/m) for 34 cities in El Salvador.

City y x City y x City y x

1 5/18 1620 12 3/5 1800 23 3/10 1973
2 15/30 1650 13 8/10 1800 24 1/6 1976
3 0/1 1650 14 0/1 1830 25 1/5 2000
4 2/4 1735 15 53/75 1834 26 0/1 2000
5 2/2 1750 16 7/16 1871 27 7/24 2050
6 2/8 1750 17 24/51 1890 28 46/82 2063
7 2/12 1756 18 3/10 1900 29 7/19 2077
8 6/11 1770 19 23/43 1918 30 9/13 2100
9 33/54 1770 20 3/6 1920 31 4/22 2200
10 8/13 1780 21 0/1 1920 32 4/9 2240
11 41/77 1796 22 3/10 1936 33 8/11 2250

34 23/37 2292
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Example
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Example

Fitting various binomial logistic regression models relating toxoplasmosis incidence to rainfall:

Model df deviance

Constant 33 74.21
Linear 32 74.09
Quadratic 31 74.09
Cubic 30 62.62

So evidence in favour of the cubic over other models, but a poor fit (X2 = 58.21 on 30df).

This is an example of overdispersion where residual variability is greater than would be predicted by
the specified mean/variance relationship

var(Y ) =
µ(1− µ)

m
.

APTS: Statistical Modelling April 2018 – slide 60

Example
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Quasi-likelihood

A quasi-likelihood approach to accounting for overdispersion models the mean and variance, but stops
short of a full probability model for Y .

For a model specified by the mean relationship g(µi) = ηi = xT

i β, and variance
var(Yi) = σ2V (µi)/mi, the quasi-likelihood equations are

n∑

i=1

xi
yi − µi

σ2V (µi)g′(µi)/mi
= 0

If V (µi)/mi represents var(Yi) for a standard distribution from the exponential family, then these
equations can be solved for β using standard GLM software.

Provided the mean and variance functions are correctly specified, asymptotic normality for β̂ still holds.
The dispersion parameter σ2 can be estimated using

σ̂2 ≡
1

n− p− 1

n∑

i=1

mi(yi − µ̂i)
2

V (µ̂i)
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Quasi-likelihood for toxoplasmosis data

Assuming the same mean model as before, but var(Yi) = σ2µi(1− µi)/mi, we obtain σ̂2 = 1.94 with
β̂ (and corresponded fitted mean curves) as before.

Comparing cubic with constant model, one now obtains

F =
(74.21 − 62.62)/3

1.94
= 1.99

which provides much less compelling evidence in favour of an effect of rainfall on toxoplasmosis
incidence.
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Reasons

To construct a full probability model in the presence of overdispersion, it is necessary to consider why
overdispersion might be present.

Possible reasons include:

� There may be an important explanatory variable, other than rainfall, which we haven’t observed.

� Or there may be many other features of the cities, possibly unobservable, all having a small
individual effect on incidence, but a larger effect in combination. Such effects may be individually
undetectable – sometimes described as natural excess variability between units.
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Reasons: unobserved heterogeneity

When part of the linear predictor is ‘missing’ from the model,

ηtruei = ηmodel
i + ηdiffi

We can compensate for this, in modelling, by assuming that the missing ηdiffi ∼ F in the population.
Hence, given ηmodel

i

µi ≡ g−1(ηmodel
i + ηdiffi ) ∼ G

where G is the distribution induced by F . Then

E(Yi) = EG[E(Yi | µi)] = EG(µi)

var(Yi) = EG(V (µi)/mi) + varG(µi)
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Direct models

One approach is to model the Yi directly, by specifying an appropriate form for G.

For example, for the toxoplasmosis data, we might specify a beta-binomial model, where

µi ∼ Beta(kµ∗i , k[1 − µ∗i ])

leading to

E(Yi) = µ∗i , var(Yi) =
µ∗i (1− µ∗i )

mi

(
1 +

mi − 1

k + 1

)

with (mi − 1)/(k + 1) representing an overdispersion factor.
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Direct models: fitting

Models which explicitly account for overdispersion can, in principle, be fitted using your preferred
approach, e.g. the beta-binomial model has likelihood

f(y | µ∗, k) ∝
n∏

i=1

Γ(kµ∗i +miyi)Γ{k(1 − µ∗i ) +mi(1− yi)}Γ(k)

Γ(kµ∗i )Γ{k(1 − µ∗i )}Γ(k +mi)
.

Similarly the corresponding model for count data specifies a gamma distribution for the Poisson mean,
leading to a negative binomial marginal distribution for Yi.

However, these models have limited flexibility and can be difficult to fit, so an alternative approach is
usually preferred.
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A random effects model for overdispersion

A more flexible, and extensible approach models the excess variability by including an extra term in
the linear predictor

ηi = xT

i β + ui (5)

where the ui can be thought of as representing the ‘extra’ variability between units, and are called
random effects.

The model is completed by specifying a distribution F for ui in the population – almost always, we use

ui ∼ N(0, σ2)

for some unknown σ2.
We set E(ui) = 0, as an unknown mean for ui would be unidentifiable in the presence of the intercept
parameter β0.
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Random effects: likelihood

The parameters of this random effects model are usually considered to be (β, σ2) and therefore the
likelihood is given by

f(y | β, σ2) =

∫
f(y | β, u, σ2)f(u | β, σ2)du

=

∫
f(y | β, u)f(u | σ2)du

=

∫ n∏

i=1

f(yi | β, ui)f(ui | σ
2)dui (6)

where f(yi | β, ui) arises from our chosen exponential family, with linear predictor (5) and f(ui | σ
2)

is a univariate normal p.d.f.

Often no further simplification of (6) is possible, so computation needs careful consideration – we will
come back to this later.
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Dependence slide 70

Toxoplasmosis example revisited

We can think of the toxoplasmosis proportions Yi in each city (i) as arising from the sum of binary
variables, Yij, representing the toxoplasmosis status of individuals (j), so miYi =

∑mi

j=1 Yij.
Then

var(Yi) =
1

m2
i

mi∑

j=1

var(Yij) +
1

m2
i

∑

j 6=k

cov(Yij , Yik)

=
µi(1− µi)

mi
+

1

m2
i

∑

j 6=k

cov(Yij , Yik)

So any positive correlation between individuals induces overdispersion in the counts.
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Dependence: reasons

There may be a number of plausible reasons why the responses corresponding to units within a given
cluster are dependent (in the toxoplasmosis example, cluster = city)

One compelling reason is the unobserved heterogeneity discussed previously.
In the ‘correct’ model (corresponding to ηtruei ), the toxoplasmosis status of individuals, Yij , are
independent, so

Yij ⊥⊥ Yik | ηtruei ⇔ Yij ⊥⊥ Yik | ηmodel
i , ηdiffi

However, in the absence of knowledge of ηdiffi

Yij ⊥⊥/ Yik | ηmodel
i

Hence conditional (given ηdiffi ) independence between units in a common cluster i becomes marginal
dependence, when marginalised over the population distribution F of unobserved ηdiffi .
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Random effects and dependence

The correspondence between positive intra-cluster correlation and unobserved heterogeneity suggests
that intra-cluster dependence might be modelled using random effects, For example, for the
individual-level toxoplasmosis data

Yij
ind
∼ Bernoulli(µij), log

µij
1− µij

= xT

ijβ + ui, ui ∼ N(0, σ2)

which implies
Yij ⊥⊥/ Yik | β, σ2

Intra-cluster dependence arises in many applications, and random effects provide an effective way of
modelling it.
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Marginal models

Random effects modelling is not the only way of accounting for intra-cluster dependence.

A marginal model models µij ≡ E(Yij) as a function of explanatory variables, through
g(µij) = xT

ijβ, and also specifies a variance relationship var(Yij) = σ2V (µij)/mij and a model for
corr(Yij , Yik), as a function of µ and possibly additional parameters.

It is important to note that the parameters β in a marginal model have a different interpretation from
those in a random effects model, because for the latter

E(Yij) = E(g−1[xT

ijβ + ui]) 6= g−1(xT

ijβ) (unless g is linear).

� A random effects model describes the mean response at the subject level (‘subject specific’)

� A marginal model describes the mean response across the population (‘population averaged’)
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GEEs

As with the quasi-likelihood approach above, marginal models do not generally provide a full
probability model for Y . Nevertheless, β can be estimated using generalised estimating equations
(GEEs).

The GEE for estimating β in a marginal model is of the form

∑

i

(
∂µi
∂β

)
T

var(Yi)
−1(Yi − µi) = 0

where Yi = (Yij) and µi = (µij)

Consistent covariance estimates are available for GEE estimators.

Furthermore, the approach is generally robust to mis-specification of the correlation structure.

For the rest of this module, we focus on fully specified probability models.
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Clustered data

Examples where data are collected in clusters include:

� Studies in biometry where repeated measures are made on experimental units. Such studies can
effectively mitigate the effect of between-unit variability on important inferences.

� Agricultural field trials, or similar studies, for example in engineering, where experimental units are
arranged within blocks

� Sample surveys where collecting data within clusters or small areas can save costs

Of course, other forms of dependence exist, for example spatial or serial dependence induced by
arrangement in space or time of units of observation.
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Example 2: Rat growth

The table below is extracted from a data set giving the weekly weights of 30 young rats.

Week
Rat 1 2 3 4 5

1 151 199 246 283 320
2 145 199 249 293 354
3 147 214 263 312 328
4 155 200 237 272 297
5 135 188 230 280 323
6 159 210 252 298 331
7 141 189 231 275 305
8 159 201 248 297 338
· · · · · · · · · · · · · · · · · ·
30 153 200 244 286 324
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Example
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A simple model

Letting Y represent weight, and X represent week, we can fit the simple linear regression

yij = β0 + β1xij + ǫij

with resulting estimates β̂0 = 156.1 (2.25) and β̂1 = 43.3 (0.92)
Residuals show clear evidence of an unexplained difference between rats
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Model elaboration

Naively adding a (fixed) effect for animal gives

yij = β0 + β1xij + ui + ǫij.

Residuals show evidence of a further unexplained difference between rats in terms of dependence on x.
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More complex cluster dependence required.
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Random Effects and Mixed Models slide 81

Linear mixed models

A linear mixed model (LMM) for observations y = (y1, . . . , yn) has the general form

Y ∼ N(µ,Σ), µ = Xβ + Zb, b ∼ N(0,Σb), (7)

where X and Z are matrices containing values of explanatory variables. Usually, Σ = σ2In.
A typical example for clustered data might be

Yij
ind
∼ N(µij , σ

2), µij = xT

ijβ + zT

ijbi, bi
ind
∼ N(0,Σ∗

b), (8)

where xij contain the explanatory data for cluster i, observation j and (normally) zij contains that
sub-vector of xij which is allowed to exhibit extra between cluster variation in its relationship with Y .
In the simplest (random intercept) case, zij = (1), as in equation (5).
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LMM example

A plausible LMM for k clusters with n1, . . . , nk observations per cluster, and a single explanatory
variable x (e.g. the rat growth data) is

yij = β0 + b0i + (β1 + b1i)xij + ǫij , (b0i, b1i)
T ind

∼ N(0,Σ∗
b).

This fits into the general LMM framework (7) with Σ = σ2In and

X =




1 x11
...

...
1 xknk


 , Z =




Z1 0 0

0
. . . 0

0 0 Zk


 , Zi =




1 xi1
...

...
1 xini


 ,

β =

(
β0
β1

)
, b =




b1
...
bk


 , bi =

(
b0i
b1i

)
, Σb =




Σ∗
b 0 0

0
. . . 0

0 0 Σ∗
b




where Σ∗
b is an unspecified 2× 2 positive definite matrix.
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Variance components

The term mixed model refers to the fact that the linear predictor Xβ + Zb contains both fixed
effects β and random effects b.
Under an LMM, we can write the marginal distribution of Y directly as

Y ∼ N(Xβ,Σ + ZΣbZ
T) (9)

where X and Z are matrices containing values of explanatory variables.
Hence var(Y ) is comprised of two variance components.

Other ways of describing LMMs for clustered data, such as (8) (and their generalised linear model
counterparts) are as hierarchical models or multilevel models. This reflects the two-stage structure
of the model, a conditional model for Yij | bi, followed by a marginal model for the random effects bi.

Sometimes the hierarchy can have further levels, corresponding to clusters nested within clusters, for
example, patients within wards within hospitals, or pupils within classes within schools.
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Discussion: Why random effects?

It would be perfectly possible to take a model such as (8) and ignore the final component, leading to
fixed cluster effects (as we did for the rat growth data).

The main issue with such an approach is that inferences, particularly predictive inferences can then
only be made about those clusters present in the observed data.
Random effects models, on the other hand, allow inferences to be extended to a wider population (at
the expense of a further modelling assumption).

It also can be the case, as in (5) with only one observation per ‘cluster’, that fixed effects are not
identifiable, whereas random effects can still be estimated. Similarly, some treatment variables must
be applied at the cluster level, so fixed treatment and cluster effects are aliased.

Finally, random effects allow ‘borrowing strength’ across clusters by shrinking fixed effects towards a
common mean.
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Discussion: A Bayesian perspective

A Bayesian LMM supplements (7) with prior distributions for β, Σ and Σb.

In one sense the distinction between fixed and random effects is much less significant, as in the full
Bayesian probability specification, both β and b, as unknowns have probability distributions, f(β) and
f(b) =

∫
f(b | Σb)f(Σb)dΣb

Indeed, prior distributions for ‘fixed’ effects are sometimes constructed in a hierarchical fashion, for
convenience (for example, heavy-tailed priors are often constructed this way).

The main difference is the possibility that random effects for which we have no relevant data (for
example cluster effects for unobserved clusters) might need to be predicted.

APTS: Statistical Modelling April 2018 – slide 86

39



LMM fitting

The likelihood for (β,Σ,Σb) is available directly from (9) as

f(y | β,Σ,Σb) ∝ |V |−1/2 exp
(
−1

2(y −Xβ)TV −1(y −Xβ)
)

(10)

where V = Σ+ ZΣbZ
T. This likelihood can be maximised directly (usually numerically).

However, mles for variance parameters of LMMs can have large downward bias (particularly in cluster
models with a small number of observed clusters).
Hence estimation by REML – REstricted (or REsidual) Maximum Likelihood is usually preferred.

REML proceeds by estimating the variance parameters (Σ,Σb) using a marginal likelihood based on
the residuals from a (generalised) least squares fit of the model E(Y ) = Xβ.
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REML

In effect, REML maximizes the likelihood of any linearly independent sub-vector of (In −H)y where
H = X(XTX)−1XT is the usual hat matrix. As

(In −H)y ∼ N(0, (In −H)V (In −H))

this likelihood will be free of β. It can be written in terms of the full likelihood (10) as

f(r | Σ,Σb) ∝ f(y | β̂,Σ,Σb)|X
TV X|1/2 (11)

where

β̂ = (XTV −1X)−1XTV −1y (12)

is the usual generalised least squares estimator given known V .
Having first obtained (Σ̂, Σ̂b) by maximising (11), β̂ is obtained by plugging the resulting V̂ into (12).

Note that REML maximised likelihoods cannot be used to compare different fixed effects
specifications, due to the dependence of ‘data’ r in f(r | Σ,Σb) on X.
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Estimating random effects

A natural predictor b̃ of the random effect vector b is obtained by minimising the mean squared
prediction error E[(b̃− b)T(b̃− b)] where the expectation is over both b and y.
This is achieved by

b̃ = E(b | y) = (ZTΣ−1Z +Σ−1
b )−1ZTΣ−1(y −Xβ) (13)

giving the Best Linear Unbiased Predictor (BLUP) for b, with corresponding variance

var(b | y) = (ZTΣ−1Z +Σ−1
b )−1

The estimates are obtained by plugging in (β̂, Σ̂, Σ̂b), and are shrunk towards 0, in comparison with
equivalent fixed effects estimators.

Any component, bk of b with no relevant data (for example a cluster effect for an as yet unobserved
cluster) corresponds to a null column of Z, and then b̃k = 0 and var(bk | y) = [Σb]kk, which may be
estimated if, as is usual, bk shares a variance with other random effects.
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Bayesian estimation: the Gibbs sampler

Bayesian estimation in LMMs (and their generalised linear model counterparts) generally proceeds
using Markov Chain Monte Carlo (MCMC) methods, in particular approaches based on the Gibbs
sampler. Such methods have proved very effective.

MCMC computation provides posterior summaries, by generating a dependent sample from the
posterior distribution of interest. Then, any posterior expectation can be estimated by the
corresponding Monte Carlo sample mean, densities can be estimated from samples etc.

MCMC will be covered in detail in APTS: Computer Intensive Statistics. Here we simply describe the
(most basic) Gibbs sampler.

To generate from f(y1, . . . , yn), (where the component yis are allowed to be multivarate) the Gibbs
sampler starts from an arbitrary value of y and updates components (sequentially or otherwise) by
generating from the conditional distributions f(yi | y\i) where y\i are all the variables other than yi,
set at their currently generated values.

Hence, to apply the Gibbs sampler, we require conditional distributions which are available for
sampling.
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Bayesian estimation for LMMs

For the LMM

Y ∼ N(µ,Σ), µ = Xβ + Zb, b ∼ N(0,Σb)

with corresponding prior densities f(β), f(Σ), f(Σb), we obtain the conditional posterior distributions

f(β | y, rest) ∝ φ(y − Zb;Xβ, V )f(β)

f(b | y, rest) ∝ φ(y −Xβ;Zb, V )φ(b; 0,Σb)

f(Σ | y, rest) ∝ φ(y −Xβ − Zb; 0, V )f(Σ)

f(Σb | y, rest) ∝ φ(b; 0,Σb)f(Σb)

where φ(y;µ,Σ) is a N(µ,Σ) p.d.f. evaluated at y.

We can exploit conditional conjugacy in the choices of f(β), f(Σ), f(Σb) making the conditionals
above of known form and hence straightforward to sample from. The conditional independence
(β,Σ) ⊥⊥ Σb | b is also helpful.

See Practical 3 for further details.
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Example: Rat growth revisited

Here, we consider the model

yij = β0 + b0i + (β1 + b1i)xij + ǫij , (b0i, b1i)
T ind

∼ N(0,Σb)

where ǫij
iid
∼ N (0, σ2) and Σb is an unspecified covariance matrix. This model allows for random

(cluster specific) slope and intercept.

Estimates obtained by REML (ML in brackets) are

Parameter Estimate Standard error

β0 156.05 2.16 (2.13)
β1 43.27 0.73 (0.72)

Σ
1/2
00 = s.d.(b0) 10.93 (10.71)

Σ
1/2
11 = s.d.(b1) 3.53 (3.46)
Corr(b0, b1) 0.18 (0.19)

σ 5.82 (5.82)

As expected ML variances are smaller, but not by much.
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Example: Fixed v. random effect estimates

The shrinkage of random effect estimates towards a common mean is clearly illustrated.
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Random effects estimates ‘borrow strength’ across clusters, due to the Σ−1
b term in (13). Extent of

this is determined by cluster similarity. This is usually considered to be a desirable behaviour.
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Random effect shrinkage

The following simple example illustrates (from a Bayesian perspective) why and how random effects
are shrunk to a common value.
Suppose that y1, . . . , yn satisfy

yj | θj
ind
∼ N(θj , vj), θ1, . . . , θn | µ

iid
∼ N(µ, σ2), µ ∼ N(µ0, τ

2),

where v1, . . . , vn, σ
2, µ0 and τ2 are assumed known here. Then, the usual posterior calculations give

us

E(µ | y) =
µ0/τ

2 +
∑
yj/(σ

2 + vj)

1/τ2 +
∑

1/(σ2 + vj)
, var(µ | y) =

1

1/τ2 +
∑

1/(σ2 + vj)
,

and
E(θj | y) = (1− w)E(µ | y) + wyj ,

where

w =
σ2

σ2 + vj
.
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Example: Diagnostics

Normal Q-Q plots of intercept (panel 1) and slope (panel 2) random effects and residuals v. week
(panel 3)
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Evidence of a common quadratic effect, confirmed by AIC (1036 v. 1099) and BIC (1054 v. 1114)
based on full ML fits. AIC would also include a cluster quadratic effect (BIC equivocal).
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Generalised linear mixed models

Generalised linear mixed models (GLMMs) generalise LMMs to non-normal data, in the obvious way:

Yi
ind
∼ F (· | µi, σ

2), g(µ) ≡




g(µ1)
...

g(µn)


 = Xβ + Zb, b ∼ N(0,Σb) (14)

where F (· | µi, σ
2) is an exponential family distribution with E(Y ) = µ and var(Y ) = σ2V (µ)/m for

known m. Commonly (e.g. Binomial, Poisson) σ2 = 1, and we shall assume this from here on.

It is not necessary that the distribution for the random effects b is normal, but this usually fits. It is
possible (but beyond the scope of this module) to relax this.
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GLMM example

A plausible GLMM for binary data in k clusters with n1, . . . , nk observations per cluster, and a single
explanatory variable x (e.g. the toxoplasmosis data at individual level) is

Yij
ind
∼ Bernoulli(µi), log

µi
1− µi

= β0 + b0i + β1xij, b0i
ind
∼ N(0, σ2b ) (15)

[note: no random slope here]. This fits into the general GLMM framework (14) with

X =




1 x11
...

...
1 xknk


 , Z =




Z1 0 0

0
. . . 0

0 0 Zk


 , Zi =




1
...
1


 ,

β = (β0, β1)
T, b = (b01, . . . , b0k)

T, Σb = σ2b Ik

[or equivalent binomial representation for city data, with clusters of size 1.]
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GLMM likelihood

The marginal distribution for the observed Y in a GLMM does not usually have a convenient
closed-form representation.

f(y | β,Σb) =

∫
f(y | β, b,Σb)f(b | β,Σb)db

=

∫
f(y | β, b)f(b | Σb)db

=

∫ n∏

i=1

f
(
yi | g

−1([Xβ + Zb]i)
)
f(b | Σb)db. (16)

For nested random effects structures, some simplification is possible. For example, for (15)

f(y | β, σ2b ) ∝
n∏

i=1

∫
exp(

∑
j yij(β0+b0i+β1xij))

{1+exp(
∑

j yij(β0+b0i+β1xij))}
nk φ(b0i; 0, σ

2
b )db0i

a product of one-dimensional integrals.
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GLMM fitting: quadrature

Fitting a GLMM by likelihood methods requires some method for approximating the integrals
involved.

The most reliable when the integrals are of low dimension is to use Gaussian quadrature (see APTS:
Statistical computing). For example, for a one-dimensional cluster-level random intercept bi we might
use

∫ ∏

j

f
(
yij | g

−1(xT

i β + bi)
)
φ(bi | 0, σ

2
b )dbi

≈

Q∑

q=1

wq

∏

j

f
(
yij | g

−1(xT

i β + biq)
)

for suitably chosen weights (wq, q = 1, . . . , Q) and quadrature points (biq, q = 1, . . . , Q)

Effective quadrature approaches use information about the mode and dispersion of the integrand (can
be done adaptively).

For multi-dimensional bi, quadrature rules can be applied recursively, but performance (in fixed time)
diminishes rapidly with dimension.
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GLMM fitting: Penalised quasi-likelihood

An alternative approach to fitting a GLMM uses penalised quasi-likelihood (PQL).

The most straightforward way of thinking about PQL is to consider the adjusted dependent variable v
constructed when computing mles for a GLM using Fisher scoring

vi = (yi − µi)g
′(µi) + ηi

Now, for a GLMM,
E(v | b) = η = Xβ + Zb

and
var(v | b) =W−1 = diag

(
var(yi)g

′(µi)
2
)
,

where W is the weight matrix used in Fisher scoring.
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GLMM fitting: PQL continued

Hence, approximating the conditional distribution of v by a normal distribution, we have

v ∼ N(Xβ + Zb,W−1), b ∼ N(0,Σb) (17)

where v and W also depend on β and b.

PQL proceeds by iteratively estimating β, b and Σb for the linear mixed model (17) for v, updating v
and W at each stage, based on the current estimates of β and b.

An alternative justification for PQL is as using a Laplace-type approximation to the integral in the
GLMM likelihood.

A full Laplace approximation (expanding the complete log-integrand, and evaluating the Hessian
matrix at the mode) is an alternative, equivalent to one-point Gaussian quadrature.
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GLMM fitting: discussion

Using PQL, estimates of random effects b come ‘for free’. With Gaussian quadrature, some extra
effort is required to compute E(b | y) – further quadrature is an obvious possibility.

There are drawbacks with PQL, and the best advice is to use it with caution.

� It can fail badly when the normal approximation that justifies it is invalid (for example for binary
observations)

� As it does not use a full likelihood, model comparison should not be performed using PQL
maximised ‘likelihoods’

Likelihood inference for GLMMs remains an area of active research and vigorous debate. Recent
approaches include HGLMs (hierarchical GLMs) where inference is based on the h-likelihood
f(y | β, b)f(b | Σ).
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Bayesian estimation for GLMMs

Bayesian estimation in GLMMs, as in LMMs, is generally based on the Gibbs sampler. For the GLMM

Yi
ind
∼ F (· | µ), g(µ) = Xβ + Zb, b ∼ N(0,Σb)

with corresponding prior densities f(β) and f(Σb), we obtain the conditional posterior distributions

f(β | y, rest) ∝ f(β)
∏

i

f(yi | g
−1(Xβ + Zb))

f(b | y, rest) ∝ φ(b; 0,Σb)
∏

i

f(yi | g
−1(Xβ + Zb))

f(Σb | y, rest) ∝ φ(b; 0,Σb)f(Σb)

For a conditionally conjugate choice of f(Σb), f(Σb | y, rest) is straightforward to sample from. The
conditionals for β and b are not generally available for direct sampling, but there are a number of ways
of modifying the basic approach to account for this.
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Toxoplasmosis revisited

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the individual-level
model

Yij
ind
∼ Bernoulli(µi), log

µi
1− µi

= β0 + b0i + β1xij, b0i
ind
∼ N(0, σ2b )

Parameter Estimate (s.e.)
ML Laplace PQL

β0 −0.1384 (1.452) −0.1343 (1.440) −0.115 (1.445)
β1 (×106) 7.215 (752) 5.930 (745.7) 0.57 (749.2)

σb 0.5209 0.5132 0.4946
AIC 65.75 65.96 —
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Toxoplasmosis continued

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the extended model

log
µi

1− µi
= β0 + b0i + β1xij + β1x

2
ij + β1x

3
ij.

Parameter Estimate (s.e.)
ML Laplace PQL

β0 −335.5 (137.3) −335.1 (136.3) −330.8 (143.4)
β1 0.5238 (0.2128) 0.5231 (0.2112) 0.5166 (0.222)

β2 (×104) −2.710 (1.094) −2.706 (1.086) −3 (1.1)
β3 (×108) 4.643 (1.866) 4.636 (1.852) 0 (0)

σb 0.4232 0.4171 0.4315
AIC 63.84 63.97 —

So for this example, a good agreement between the different computational methods.
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3. Nonlinear Models slide 106

Overview

1. Basic nonlinear models

2. Extending the nonlinear model

3. Computationally expensive nonlinear models

4. Model discrepancy
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Basic nonlinear models slide 108

Linear models

� So far we have only considered models where the link function of the mean response is equal to
the linear predictor, i.e. in the most general case of the generalised linear mixed model (GLMM)

µij = E(yij)

g(µij) = ηij = xT

ijβ + zT

ijbi,

and where the response distribution for y is from the exponential family of distributions

� The key point is that the linear predictor is a linear function of the parameters.

� The GLMM has the following special cases

– linear models;

– generalised linear models (GLMs);

– linear mixed models (LMMs).

� These “linear” models form the basis of most applied statistical analyses.

� Usually, there is no scientific reason to believe these “linear” models are “true” for a given
application. However, they might be “useful”.
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Nonlinear models

� Begin by assuming that y has a normal distribution and the link function, g, is the identity link
and zij = 0, i.e.

yi = xTi β + ǫi, (18)

where ǫi ∼ N(0, σ2), independently, where β are the p regression parameters.

� Consider extending this model so that instead of the mean response being the linear predictor
xTi β, it is a nonlinear function of parameters, i.e.

yi = η(xi, β) + ǫi, (19)

where ǫi ∼ N(0, σ2), independently, where β are the p nonlinear parameters.

� Obviously, the model specified by (19) has the linear model (18) as a special case when
η(x, β) = xTβ.

� Note that, sometimes the term nonlinear model is used to describe any model which is not a
linear model (18), which would include GLMs and GLMMs.
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Example - Calcium Data

The response, y, is the uptake of calcium (in nmoles per mg) at time x (in minutes) by n = 27 cells
in “hot” suspension.

> calcium

x y

1 0.45 0.34170

2 1.30 1.77967

3 2.40 1.75136

4 4.00 3.12273

5 6.10 3.17881

6 8.05 3.05959

7 11.15 4.80735

8 13.15 5.13825

9 15.00 3.60407

10 0.45 -0.00438

11 1.30 0.95384

12 2.40 1.27497

13 4.00 2.60958
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Example - Calcium Data

Plot of calcium uptake against time.
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Nonlinear parameters

Nonlinear parameters can be of two different types:

� Physical parameters have meaning within the science underlying the model, η(x, β). Estimating
the value of physical parameters contributes to scientific understanding.

� Tuning parameters do not have physical meaning. Their presence is often as a simplification of
a more complex underlying system. Their estimation is to make the model fit best to reality.

In most cases, in a linear model, the regression parameters are tuning parameters.
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Advantages and disadvantages

Advantages

� Can incorporate prior scientific knowledge through the function η(x, β).

� Can fit simpler models, i.e. less parameters, to adequately describe observed data than by using
linear models.

� Can provide extrapolated predictions (typically discouraged for linear models).

� Can directly contribute to scientific understanding through the estimation of physical parameters.

Disadvantages

� Need to specify the function η(x, β).

� There are computational problems associated with these models.

� All models are wrong.
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Specifying η(x, β)

How might the function η(x, β) be specified?

� Mechanistically – prior scientific knowledge is incorporated into building a mathematical model
for the mean response. This can often be complex and η(x, β) may not be available in closed
form.

� Phenomenologically (empirically) – a function η(x, β) may be posited that appears to capture
the non-linear nature of the mean response.
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Example - Calcium Data

� Here the calcium uptake “grows” with time.

� There is a large class of phenomenological models for growth curves.

� Consider the non-linear model with

η(x, β) = β0 (1− exp (−x/β1)) . (20)

� This is derived by assuming that the rate of growth is proportional to the calcium remaining, i.e.

dη
dx = (β0 − η)/β1.

� The solution to this differential equation is (20).

� Interpretation of parameters:

– β0 - final size of population;

– β1 - (inversely) controls growth rate.
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Example - Calcium Data

� Plot of calcium uptake against time.

� Includes fitted lines for three different models

0 5 10 15

0
1

2
3

4
5

Time (x in mins)

C
a
lc

iu
m

 u
p
ta

k
e
 (

y
 i
n
 n

m
o
le

s
/m

g
)

Linear model (slope)
Linear model (quadratic)
Non−linear model

APTS: Statistical Modelling April 2018 – slide 117

51



Example - Calcium Data

� A comparison of the goodness-of-fit for the three models:

Model Parameters (p) l(θ̂) AIC

Linear model (slope) 2 -28.70 63.40
Linear model (quadratic) 3 -20.95 49.91
Non-linear model 2 -20.95 47.91

� The goodness-of-fit for the quadratic and nonlinear models is identical (to 2 decimal places).

� Since the nonlinear model is simpler (less parameters), it is the preferred model.
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Extending the nonlinear model slide 119

Introduction

� Nonlinear models can be extended to

1. non-normal responses;

2. clustered responses;

in the same way as linear models.

� Here, we consider clustered responses and briefly discuss the nonlinear mixed model.
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Example - Theophylline

� Theophylline is an anti-asthmatic drug.

� An experiment was performed on n = 12 individuals to investigate the way in which the drug
leaves the body.

� The study of drug concentrations inside organisms is called pharmacokinetics.

� An oral dose, Di, was given to the ith individual at time t = 0, for i = 1, . . . , n.

� The concentration of theophylline in the blood was then measured at 11 time points in the next
25 hours.

� Let yij be the theophylline concentration (mg/L) for individual i at time tij .
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Example - Theophylline

> Theoph

Grouped Data: conc ~ Time | Subject

Subject Wt Dose Time conc

1 1 79.6 4.02 0.00 0.74

2 1 79.6 4.02 0.25 2.84

3 1 79.6 4.02 0.57 6.57

4 1 79.6 4.02 1.12 10.50

5 1 79.6 4.02 2.02 9.66

6 1 79.6 4.02 3.82 8.58

7 1 79.6 4.02 5.10 8.36

8 1 79.6 4.02 7.03 7.47

9 1 79.6 4.02 9.05 6.89

10 1 79.6 4.02 12.12 5.94

11 1 79.6 4.02 24.37 3.28

12 2 72.4 4.40 0.00 0.00

13 2 72.4 4.40 0.27 1.72
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Example - Theophylline

Plot of concentration of theophylline against time for each of the individuals.
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There is a sharp increase in concentration followed by a steady decrease.
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Example - Theophylline

� Compartmental models are a common class of model used in pharmacokinetics studies.

� If the initial dosage is D, then a two-compartment open pharmacokinetic model is

η(β,D, t) = Dβ1β2

β3(β2−β1)
(exp (−β1t)− exp (−β2t)) ,

where the (positive) nonlinear parameters are

– β1 is the elimination rate and controls the rate at which the drug leaves the organism;

– β2 is the absorption rate and controls the rate at which the drug enters the blood;

– β3 is the clearance and controls the volume of blood for which a drug is completely removed
per time unit.
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Example - Theophylline

� Initially ignore the dependence induced from repeated measurements on individuals and assume
the following basic nonlinear model

yij = η(β,Di, tij) + ǫij,

where ǫij ∼ N(0, σ2).

� Residuals show evidence of an unexplained difference between individuals.
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Nonlinear mixed effects models

� A nonlinear mixed model is
yij = η(β + bi, xij) + ǫij,

where

ǫij ∼ N(0, σ2),

bi ∼ N(0,Σb),

and Σb is a q × q covariance matrix.

� This model specifies that βi = β + bi are the nonlinear parameters for the ith cluster, i.e. the
cluster-specific nonlinear parameters.

� In the case of the Theophylline example, each individual would have unique elimination rate,
absorption rate and clearance.

� Obviously, βi ∼ N(β,Σb). The mean, β, of the cluster-specific nonlinear parameters across all
individuals are the population nonlinear parameters.
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Non-linear mixed effects models

� We might like to specify the model in a way such that only a subset of the nonlinear parameters
can be different for each individual, and the remainder fixed for all individuals.

� Suppose q ≤ p nonlinear parameters are can be different for each individual, then a more general
way of writing the nonlinear mixed model is

yij = η(β +Abi, x) + ǫij,

where

ǫij ∼ N(0, σ2)

bi ∼ N(0,Σb),

where Σb is a q × q covariance matrix and A is a p× q binary matrix.

� A allows the specification of the fixed and varying nonlinear parameters.
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Special case of linear mixed models

� The linear mixed model is a special case of the nonlinear mixed model where

η(β, x) = xTβ.

� Then

η(β +Abx) = xT (β +Ab)

= xTβ + xTAb,

so z = ATx.

� For a random intercept model, where q = 1, A = (1, 0, . . . , 0).
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Example - Theophyline

� Returning to the Theophyline example, we fit the nonlinear mixed model, allowing all of the
nonlinear parameters to vary across individuals, i.e. A = I3.

� Estimates:
β̂1 = 0.0864 Σ̂b11 = 0.0166

β̂2 = 1.6067 Σ̂b22 = 0.9349

β̂3 = 0.0399 Σ̂b33 = 0.0491

� AIC = 372.6
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Example - Theophyline

� The estimated value of Σb11 is “small”so we fit the nonlinear mixed model, allowing absorption
rate and clearance to vary across individuals, i.e.

A =




0 0
1 0
0 1


 .

� Estimates:
β̂1 = 0.0859

β̂2 = 1.6032 Σ̂b22 = 0.6147

β̂3 = 0.0397 Σ̂b33 = 0.0284

� AIC = 368.6

� No further model simplifications reduce the AIC.
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Extensions to nonnormal responses

� Nonlinear models can be extended to nonnormal responses in the same way as linear models.

� The most general model is the generalised nonlinear mixed model (GNLMM).

� yij is from exponential family.

� E(yij) = µij .

� g(µij) = η(β +Abi, xij).

� This model has the following special cases:

linear model nonlinear model
linear mixed model nonlinear mixed model
generalised linear model generalised nonlinear model
generalised linear mixed model
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Issues

There are various technical and practical issues related to fitting nonlinear models (some of these are
common to GLMs and GLMMs).

� Approximation of likelihood function (random effects are integrated out)

� Convergence of optimisation routines to find estimates

� Existence of estimates

� Reliability of asymptotic inference

� Computational expense of evaluating η(β, x).

� All models are wrong.

These are all areas of current research.
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Computationally expensive nonlinear models

� It typically requires many evaluations of η(β, x) to fit a nonlinear model, either to find the
estimate of β or to generate an MCMC sample.

� What happens if the non-linear model η(β, x) is computationally expensive?

� For example, η(β, x) could be the numerical solution to a system of differential equations where
the exact solution is not available in closed form.

� The numerical solution to η(β, x), implemented in computer code, is computationally expensive
to evaluate.

� This can render model fitting to be infeasible.
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Computer experiments and emulators

� One approach is to develop an approximation, η̂(β, x), to the non-linear model η(β, x).

� Evaluation of η̂(β, x) replaces evaluation of η(β, x) in all model fitting procedures.

� The approximation is typically called an emulator or surrogate.

� How is such an emulator constructed?

� Answer: via a computer experiment. This topic is briefly discussed here and will be covered in
much more detail on the APTS Week 4 module: Design of Experiments and Studies
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Computer experiments and emulators

� Let z = (β, x) be the inputs to the nonlinear model such that η(β, x) = η(z). Let d be the
dimension of z.

� The nonlinear model is evaluated at a “small” number, m, of inputs

ζ =
{
z1, . . . , zm

}
,

where zi = (βi, xi), for i = 1, . . . ,m.

� Finally, let ηi = η(zi), for i = 1, . . . ,m and η =
(
η1, . . . , ηm

)
.
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Gaussian Process Emulators

� The most commonly-used emulator is a Gaussian Process (GP) emulator.

� Here any finite collection of evaluations of η(z) is assumed to have a multivariate normal
distribution.

� Suppose η0 = η(z0) = η(β0, x0) is the value of the nonlinear model we wish to predict.

� Assumption:
(

η
η0

)
∼ N







θ
...
θ


 , τ2

(
C cT

c 1

)

 ,

i.e. a multivariate normal with (marginally) common mean θ and variance τ2.

� Note that

Cij − correlation between η(zi) and η(zj)

ci − correlation between η(zi) and η(z0)
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Gaussian Process Emulators

� By the properties of the multivariate normal

η0|η ∼ N
(
θ + cTC−1(η − θ1m), τ2

(
1− cTC−1c

))
,

where 1m is a vector of m ones.

� Structure is imposed on the elements of C and c as follows

Cij = κ(zi, zj ; ρ)

cij = κ(zi, z0; ρ)

where κ(·, ·; ρ) is a correlation function depending on ρ.

� A commonly-used correlation function is the squared exponential:

κ(zi, zj ; ρ) = exp

(
−

d∑

k=1

ρi

(
zik − zjk

)2
)
.

� θ, τ2 and ρ can be estimated via maximum likelihood or a Bayesian approach taken.
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Example
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Model discrepancy

� Under the basic nonlinear model we are assuming

y = η(β, x) + ǫ,

i.e. the observed responses are given by the nonlinear model plus some random error.

� However, all models are wrong.

� In Chapter 1, we accounted for this by considering more complex models.

� If η(β, x) is a mechanistic model, there is not really scope to make it more complex.
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Model discrepancy

� Let µ(x) be true system depending on x.

� We observe
y = µ(x) + ǫ.

� η(β, x) is our model and is our best guess at µ(x) where β are the true value of the parameters.

� Assume
µ(x) = η(β, x) + δ(x),

where δ(x) is the difference between reality and our model, i.e. the model discrepancy.

� Therefore
y = η(β, x) + δ(x) + ǫ.

� The model discrepancy is an unknown function.

� Taking a Bayesian approach, a prior is placed on this function. In particular, the Kennedy &
O’Hagan (2001) framework places a Gaussian process prior on this function.

� Therefore, we are explicitly modelling the model discrepancy.
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Example - Illustrative

� This example is adapted from Brynjarsdottir & O’Hagan (2014).

� Suppose reality is such that
µ(x) = βx

1+x/20 ,

where β = 0.65 is the true value of nonlinear parameter.

� Our model is such that
η(β, x) = βx.

� The model discrepancy is then
δ(x) = x

20+x .
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Example - Illustrative
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Example - Illustrative

� Consider an experiment to achieve the three aims of

1. Interpolation prediction, i.e. predict value of y for x = 2;

2. Extrapolation prediction, i.e. predict value of y for x = 6;

3. Estimate value of β.

� We observe the response y at n values of x ∈ [0, 4].

� We take two different approaches:

1. Ignore mode discrepancy - just fit basic nonlinear model;

2. Use Kennedy & O’Hagan framework with nonlinear model with model discrepancy.
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Estimation

Posterior density of β under basic nonlinear model (left) and nonlinear model with model discrepancy
(right).
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Example - Interpolation

Posterior density of µ(x0) (with x0 = 2) under basic nonlinear model (left) and nonlinear model with
model discrepancy (right).
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Example - Extrapolation

Posterior density of µ(x0) (with x0 = 6) under basic nonlinear model (left) and nonlinear model with
model discrepancy (right).
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Model discrepancy - discussion

� Modelling the model discrepancy with a Gaussian process alleviated the problem with
interpolation prediction but not for extrapolation prediction or parameter estimation.

� Brynjarsdottir & O’Hagan (2014) considered using a constrained Gaussian process to incorporate
prior information on the model discrepancy (e.g. value at x = 0 and monotoncity) and this eased
the problem for parameter estimation but not for extrapolation prediction.

� How to account for model discrepancy remains an open research problem.
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