Statistical Modelling

Antony Overstall
(Chapters 1-2 closely based on original notes by Anthony Davison, Jon Forster and Dave Woods)

(C)2018
Statistical Modelling 0

1. Model Selection 1
Overview 2
Basic Ideas 3
Why model? 4
Criteria for model selection 5
Motivation 6
Setting 9
Logistic regression 10
Nodal involvement 11
Log likelihood 14
Wrong model 15
Out-of-sample prediction 17
Information criteria 18
Nodal involvement. 20
Theoretical aspects 21
Properties of AIC, NIC, BIC 22
Linear Model 23
Variable selection 24
Stepwise methods 25
Nuclear power station data 26
Stepwise Methods: Comments 28
Prediction error 29
Example 31
Cross-validation 32
Other criteria 34
Experiment 35
Bayesian Inference 39
Thomas Bayes (1702-1761) 40
Bayesian inference 41
Encompassing model 43
Inference 44
Lindley's paradox 45
Model averaging 46
Cement data 47
DIC. 51
2. Beyond the Generalised Linear Model 52
Overview 53
Generalised Linear Models 54
GLM recap 55
GLM failure 56
Overdispersion 57
Example 1 58
Quasi-likelihood 62
Reasons 64
Direct models 66
Random effects 68
Dependence 70
Example 1 revisited 71
Reasons 72
Random effects 73
Marginal models 74
Clustered data 76
Example 2: Rat growth 77
Random Effects and Mixed Models 81
Linear mixed models 82
Discussion 85
LMM fitting 87
REML 88
Estimating random effects 89
Bayesian LMMs 90
Example 2 revisited 92
GLMMs 96
GLMM fitting 99
Bayesian GLMMS 103
Example 1 revisited 104
3. Nonlinear Models 106
Overview 107
Basic nonlinear models 108
Linear models 109
Nonlinear models 110
Example - Calcium Data 112
Nonlinear parameters 113
Advantages and disadvantages 114
Specifying $\eta(x, \beta)$ 115
Example - Calcium Data 116
Example - Calcium Data 117
Example - Calcium Data 118
Extending the nonlinear model 119
Introduction 120
Example - Theophylline 121
Example - Theophylline 123
Example - Theophylline 124
Example - Theophylline 125
Nonlinear mixed effects models 126
Non-linear mixed effects models 127
Special case of linear mixed models 128
Example - Theophyline 129
Example - Theophyline. 130
Extensions to nonnormal responses 131
Issues 132
Computationally expensive nonlinear models 133
Computationally expensive nonlinear models 134
Computer experiments and emulators 135
Computer experiments and emulators 136
Gaussian Process Emulators 137
Gaussian Process Emulators 138
Example 139
Model discrepancy 140
Model discrepancy 141
Model discrepancy 142
Example - Illustrative 143
Example - Illustrative 144
Example - Illustrative 145
Estimation 146
Example - Interpolation 147
Example - Extrapolation 148
Model discrepancy - discussion 149

Statistical Modelling

1. Model Selection
2. Beyond the Generalised Linear Model
3. Design of Experiments

APTS: Statistical Modelling
April 2018 - slide 0

Overview

1. Basic ideas
2. Linear model
3. Bayesian inference

Basic Ideas

Why model?

George E. P. Box (1919-2013):
All models are wrong, but some models are useful.
\square Some reasons we construct models:

- to simplify reality (efficient representation);
- to gain understanding;
- to compare scientific, economic, ... theories;
- to predict future events/data;
- to control a process.We (statisticians!) rarely believe in our models, but regard them as temporary constructs subject to improvement.
$\square \quad$ Often we have several and must decide which is preferable, if any.
APTS: Statistical Modelling
April 2018 - slide 4

Criteria for model selection

\square Substantive knowledge, from prior studies, theoretical arguments, dimensional or other general considerations (often qualitative)
$\square \quad$ Sensitivity to failure of assumptions (prefer models that are robustly valid)Quality of fit—residuals, graphical assessment (informal), or goodness-of-fit tests (formal)Prior knowledge in Bayesian sense (quantitative)
\square Generalisability of conclusions and/or predictions: same/similar models give good fit for many different datasets
$\square \quad$. . . but often we have just one dataset ...
APTS: Statistical Modelling
April 2018 - slide 5

Motivation

Even after applying these criteria (but also before!) we may compare many models:
\square linear regression with p covariates, there are 2^{p} possible combinations of covariates (each in/out), before allowing for transformations, etc.- if $p=20$ then we have a problem;
\square choice of bandwidth $h>0$ in smoothing problems
\square the number of different clusterings of n individuals is a Bell number (starting from $n=1$): 1, 2, $5,15,52,203,877,4140,21147,115975, \ldots$
\square we may want to assess which among 5×10^{5} SNPs on the genome may influence reaction to a new drug;
$\square \quad$...
For reasons of economy we seek 'simple' models.
APTS: Statistical Modelling
April 2018 - slide 6

Albert Einstein (1879-1955)

'Everything should be made as simple as possible, but no simpler.'
APTS: Statistical Modelling
April 2018 - slide 7

William of Occam (?1288-?1348)

Occam's razor: Entia non sunt multiplicanda sine necessitate: entities should not be multiplied beyond necessity.

Setting

To focus and simplify discussion we will consider parametric models, but the ideas generalise to semi-parametric and non-parametric settings
$\square \quad$ We shall take generalised linear models (GLMs) as example of moderately complex parametric models:

- Normal linear model has three key aspects:
\triangleright structure for covariates: linear predictor $\eta=x^{\mathrm{T}} \beta$;
\triangleright response distribution: $y \sim N\left(\mu, \sigma^{2}\right)$; and
\triangleright relation $\eta=\mu$ between $\mu=\mathrm{E}(y)$ and η.
- GLM extends last two to
$\triangleright \quad y$ has density

$$
f(y ; \theta, \phi)=\exp \left\{\frac{y \theta-b(\theta)}{\phi}+c(y ; \phi)\right\}
$$

where θ depends on η; dispersion parameter ϕ is often known; and
$\triangleright \quad \eta=g(\mu)$, where g is monotone link function.
APTS: Statistical Modelling
April 2018 - slide 9

Logistic regression

Commonest choice of link function for binary reponses:$$
\operatorname{Pr}(Y=1)=\pi=\frac{\exp \left(x^{\mathrm{T}} \beta\right)}{1+\exp \left(x^{\mathrm{T}} \beta\right)}, \quad \operatorname{Pr}(Y=0)=\frac{1}{1+\exp \left(x^{\mathrm{T}} \beta\right)}
$$

giving linear model for log odds of 'success',

$$
\log \left\{\frac{\operatorname{Pr}(Y=1)}{\operatorname{Pr}(Y=0)}\right\}=\log \left(\frac{\pi}{1-\pi}\right)=x^{\mathrm{T}} \beta
$$

Log likelihood for β based on independent responses y_{1}, \ldots, y_{n} with covariate vectors x_{1}, \ldots, x_{n} is

$$
\ell(\beta)=\sum_{j=1}^{n} y_{j} x_{j}^{\mathrm{T}} \beta-\sum_{j=1}^{n} \log \left\{1+\exp \left(x_{j}^{\mathrm{T}} \beta\right)\right\}
$$

Good fit gives small deviance $D=2\{\ell(\tilde{\beta})-\ell(\widehat{\beta})\}$, where $\widehat{\beta}$ is model fit MLE and $\tilde{\beta}$ is unrestricted MLE.

Nodal involvement data

Table 1: Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r), with five binary covariates age etc.

m	r	age	stage	grade	xray	acid
6	5	0	1	1	1	1
6	1	0	0	0	0	1
4	0	1	1	1	0	0
4	2	1	1	0	0	1
4	0	0	0	0	0	0
3	2	0	1	1	0	1
3	1	1	1	0	0	0
3	0	1	0	0	0	1
3	0	1	0	0	0	0
2	0	1	0	0	1	0
2	1	0	1	0	0	1
2	1	0	0	1	0	0
1	1	1	1	1	1	1
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	
1	1	0	0	1	0	1
1	0	0	0	0	1	1
1	0	0	0	0	1	0

APTS: Statistical Modelling
April 2018 - slide 11

Nodal involvement deviances

Deviances D for 32 logistic regression models for nodal involvement data. + denotes a term included in the model.

age	st	gr	xr	ac	df	D	age	st	gr	xr	ac	df	D
					52	40.71	+	+	+			49	29.76
+					51	39.32	+	$+$		$+$		49	23.67
	+				51	33.01	+	+			+	49	25.54
		+			51	35.13	+		+	+		49	27.50
			+		51	31.39	+		+		+	49	26.70
				+	51	33.17	+			+	+	49	24.92
+	$+$				50	30.90		+	$+$	$+$		49	23.98
+		+			50	34.54		$+$	+		+	49	23.62
+			+		50	30.48		+		+	+	49	19.64
+				$+$	50	32.67			+	$+$	+	49	21.28
	+	+			50	31.00	+	$+$	+	$+$		48	23.12
	+		+		50	24.92	+	+	+		$+$	48	23.38
	+			+	50	26.37	+	$+$		+	+	48	19.22
		+	+		50	27.91	+		+	+	+	48	21.27
		+		+	50	26.72		+	+	+	+	48	18.22
			+	+	50	25.25	+	+	+	+	+	47	18.07

Nodal involvement

Adding terms

- always increases the log likelihood $\widehat{\ell}$ and so reduces D,
- increases the number of parameters,
so taking the model with highest $\widehat{\ell}$ (lowest D) would give the full modelWe need to trade off quality of fit (measured by D) and model complexity (number of parameters)
APTS: Statistical Modelling
April 2018 - slide 13

Log likelihood

Given (unknown) true model $g(y)$, and candidate model $f(y ; \theta)$, Jensen's inequality implies that$$
\begin{equation*}
\int \log g(y) g(y) d y \geq \int \log f(y ; \theta) g(y) d y \tag{1}
\end{equation*}
$$

with equality if and only if $f(y ; \theta) \equiv g(y)$.If θ_{g} is the value of θ that maximizes the expected log likelihood on the right of (1), then it is natural to choose the candidate model that maximises

$$
\bar{\ell}(\widehat{\theta})=n^{-1} \sum_{j=1}^{n} \log f(y ; \widehat{\theta})
$$

which should be an estimate of $\int \log f(y ; \theta) g(y) d y$. However as $\bar{\ell}(\widehat{\theta}) \geq \bar{\ell}\left(\theta_{g}\right)$, by definition of $\widehat{\theta}$, this estimate is biased upwards.We need to correct for the bias, but in order to do so, need to understand the properties of likelihood estimators when the assumed model f is not the true model g.

Wrong model

Suppose the true model is g, that is, $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} g$, but we assume that $Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} f(y ; \theta)$. The \log likelihood $\ell(\theta)$ will be maximised at $\widehat{\theta}$, and

$$
\bar{\ell}(\widehat{\theta})=n^{-1} \ell(\widehat{\theta}) \xrightarrow{\text { a.s. }} \int \log f\left(y ; \theta_{g}\right) g(y) d y, \quad n \rightarrow \infty,
$$

where θ_{g} minimizes the Kullback-Leibler discrepancy

$$
K L\left(f_{\theta}, g\right)=\int \log \left\{\frac{g(y)}{f(y ; \theta)}\right\} g(y) d y
$$

θ_{g} gives the density $f\left(y ; \theta_{g}\right)$ closest to g in this sense, and $\widehat{\theta}$ is determined by the finite-sample version of $\partial K L\left(f_{\theta}, g\right) / \partial \theta$, i.e.

$$
0=n^{-1} \sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta}
$$

Wrong model II

Theorem 1 Suppose the true model is g, that is, $Y_{1}, \ldots, Y_{n} \stackrel{i i d}{\sim} g$, but we assume that
$Y_{1}, \ldots, Y_{n} \stackrel{\text { iid }}{\sim} f(y ; \theta)$. Then under mild regularity conditions the maximum likelihood estimator $\widehat{\theta}$ satisfies

$$
\begin{equation*}
\widehat{\theta} \dot{\sim} N_{p}\left\{\theta_{g}, I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right) I\left(\theta_{g}\right)^{-1}\right\} \tag{2}
\end{equation*}
$$

where $f_{\theta_{g}}$ is the density minimising the Kullback-Leibler discrepancy between f_{θ} and g, I is the Fisher information for f, and K is the variance of the score statistic. The likelihood ratio statistic

$$
W\left(\theta_{g}\right)=2\left\{\ell(\widehat{\theta})-\ell\left(\theta_{g}\right)\right\} \dot{\sim} \sum_{r=1}^{p} \lambda_{r} V_{r}
$$

where $V_{1}, \ldots, V_{p} \stackrel{\text { iid }}{\sim} \chi_{1}^{2}$, and the λ_{r} are eigenvalues of $K\left(\theta_{g}\right)^{1 / 2} I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)^{1 / 2}$. Thus $\mathrm{E}\left\{W\left(\theta_{g}\right)\right\}=\operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}$.

Under the correct model, θ_{g} is the 'true' value of $\theta, K(\theta)=I(\theta), \lambda_{1}=\cdots=\lambda_{p}=1$, and we recover the usual results.

Note: 'Proof' of Theorem 1

Expansion of the equation defining $\widehat{\theta}$ about θ_{g} yields

$$
\widehat{\theta} \doteq \theta_{g}+\left\{-n^{-1} \sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \theta_{g}\right)}{\partial \theta \partial \theta^{\mathrm{T}}}\right\}^{-1}\left\{n^{-1} \sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \theta_{g}\right)}{\partial \theta}\right\}
$$

and a modification of the usual derivation gives

$$
\widehat{\theta} \dot{\sim} N_{p}\left\{\theta_{g}, I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right) I\left(\theta_{g}\right)^{-1}\right\},
$$

where the information sandwich variance matrix depends on

$$
\begin{aligned}
K\left(\theta_{g}\right) & =n \int \frac{\partial \log f(y ; \theta)}{\partial \theta} \frac{\partial \log f(y ; \theta)}{\partial \theta^{\mathrm{T}}} g(y) d y, \\
I\left(\theta_{g}\right) & =-n \int \frac{\partial^{2} \log f(y ; \theta)}{\partial \theta \partial \theta^{\mathrm{T}}} g(y) d y .
\end{aligned}
$$

If $g(y)=f(y ; \theta)$, so that the supposed density is correct, then θ_{g} is the true θ, then

$$
K\left(\theta_{g}\right)=I(\theta),
$$

and (2) reduces to the usual approximation.
In practice $g(y)$ is of course unknown, and then $K\left(\theta_{g}\right)$ and $I\left(\theta_{g}\right)$ may be estimated by

$$
\widehat{K}=\sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta^{\mathrm{T}}}, \quad \widehat{J}=-\sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta \partial \theta^{\mathrm{T}}} ;
$$

the latter is just the observed information matrix. We may then construct confidence intervals for θ_{g} using (2) with variance matrix $\widehat{J}^{-1} \widehat{K} \widehat{J}^{-1}$.
Similar expansions lead to the result for the likelihood ratio statistic.
APTS: Statistical Modelling
April 2018 - note 1 of slide 16

Out-of-sample prediction

We need to fix two problems with using $\bar{\ell}(\widehat{\theta})$ to choose the best candidate model:

- upward bias, as $\bar{\ell}(\widehat{\theta}) \geq \bar{\ell}\left(\theta_{g}\right)$ because $\widehat{\theta}$ is based on Y_{1}, \ldots, Y_{n};
- no penalisation if the dimension of θ increases.

If we had another independent sample $Y_{1}^{+}, \ldots, Y_{n}^{+} \stackrel{\text { iid }}{\sim} g$ and computed

$$
\bar{\ell}^{+}(\widehat{\theta})=n^{-1} \sum_{j=1}^{n} \log f\left(Y_{j}^{+} ; \widehat{\theta}\right),
$$

then both problems disappear, suggesting that we choose the candidate model that maximises

$$
\mathrm{E}_{g}\left[\mathrm{E}_{g}^{+}\left\{\bar{\ell}^{+}(\widehat{\theta})\right\}\right],
$$

where the inner expectation is over the distribution of the Y_{j}^{+}, and the outer expectation is over the distribution of $\widehat{\theta}$.

Information criteria

Previous results on wrong model give

$$
\mathrm{E}_{g}\left[\mathrm{E}_{g}^{+}\left\{\bar{\ell}^{+}(\widehat{\theta})\right\}\right] \doteq \int \log f\left(y ; \theta_{g}\right) g(y) d y-\frac{1}{2 n} \operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
$$

where the second term is a penalty that depends on the model dimension.
\square We want to estimate this based on Y_{1}, \ldots, Y_{n} only, and get

$$
\mathrm{E}_{g}\{\bar{\ell}(\widehat{\theta})\} \doteq \int \log f\left(y ; \theta_{g}\right) g(y) d y+\frac{1}{2 n} \operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
$$

To remove the bias, we aim to maximise

$$
\bar{\ell}(\widehat{\theta})-\frac{1}{n} \operatorname{tr}\left(\widehat{J}^{-1} \widehat{K}\right),
$$

where

$$
\widehat{K}=\sum_{j=1}^{n} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta} \frac{\partial \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta^{\mathrm{T}}}, \quad \widehat{J}=-\sum_{j=1}^{n} \frac{\partial^{2} \log f\left(y_{j} ; \widehat{\theta}\right)}{\partial \theta \partial \theta^{\mathrm{T}}}
$$

the latter is just the observed information matrix.
APTS: Statistical Modelling
April 2018 - slide 18

Note: Bias of log likelihood

To compute the bias in $\bar{\ell}(\widehat{\theta})$, we write

$$
\begin{aligned}
\mathrm{E}_{g}\{\bar{\ell}(\widehat{\theta})\} & =\mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\mathrm{E}\left\{\bar{\ell}(\widehat{\theta})-\bar{\ell}\left(\theta_{g}\right)\right\} \\
& =\mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\frac{1}{2 n} \mathrm{E}\left\{W\left(\theta_{g}\right)\right\} \\
& \doteq \mathrm{E}_{g}\left\{\bar{\ell}\left(\theta_{g}\right)\right\}+\frac{1}{2 n} \operatorname{tr}\left\{I\left(\theta_{g}\right)^{-1} K\left(\theta_{g}\right)\right\}
\end{aligned}
$$

where E_{g} denotes expectation over the data distribution g. The bias is positive because I and K are positive definite matrices.

APTS: Statistical Modelling

April 2018 - note 1 of slide 18

Information criteria

Let $p=\operatorname{dim}(\theta)$ be the number of parameters for a model, and $\widehat{\ell}$ the corresponding maximised log likelihood.
For historical reasons we choose models that minimise similar criteria

- $2(p-\widehat{\ell})$ (AIC—Akaike Information Criterion)
- $2\left\{\operatorname{tr}\left(\widehat{J}^{-1} \widehat{K}\right)-\widehat{\ell}\right\}$ (NIC—Network Information Criterion)
- $2\left(\frac{1}{2} p \log n-\widehat{\ell}\right)$ (BIC—Bayes Information Criterion)
- $\mathrm{AIC}_{\mathrm{c}}, \mathrm{AIC}_{\mathrm{u}}$, DIC, EIC, FIC, GIC, SIC, TIC, ...
- Mallows $C_{p}=R S S / s^{2}+2 p-n$ commonly used in regression problems, where $R S S$ is residual sum of squares for candidate model, and s^{2} is an estimate of the error variance σ^{2}.

Nodal involvement data

AIC and BIC for 2^{5} models for binary logistic regression model fitted to the nodal involvement data. Both criteria pick out the same model, with the three covariates st, xr, and ac, which has deviance $D=19.64$. Note the sharper increase of BIC after the minimum.

APTS: Statistical Modelling
April 2018 - slide 20

Theoretical aspects

We may suppose that the true underlying model is of infinite dimension, and that by choosing among our candidate models we hope to get as close as possible to this ideal model, using the data available.If so, we need some measure of distance between a candidate and the true model, and we aim to minimise this distance.A model selection procedure that selects the candidate closest to the truth for large n is called asymptotically efficient.An alternative is to suppose that the true model is among the candidate models.If so, then a model selection procedure that selects the true model with probability tending to one as $n \rightarrow \infty$ is called consistent.
Properties of AIC, NIC, BIC

We seek to find the correct model by minimising IC $=c(n, p)-2 \widehat{\ell}$, where the penalty $c(n, p)$ depends on sample size n and model dimension $p$$\square$ Crucial aspect is behaviour of differences of IC.
\square We obtain IC for the true model, and IC+ for a model with one more parameter. Then

$$
\begin{aligned}
\operatorname{Pr}\left(\mathrm{IC}_{+}<\mathrm{IC}\right) & =\operatorname{Pr}\left\{c(n, p+1)-2 \widehat{\ell}_{+}<c(n, p)-2 \widehat{\ell}\right\} \\
& =\operatorname{Pr}\left\{2\left(\widehat{\ell}_{+}-\widehat{\ell}\right)>c(n, p+1)-c(n, p)\right\} .
\end{aligned}
$$

and in large samples

$$
\begin{aligned}
& \text { for AIC, } c(n, p+1)-c(n, p)=2 \\
& \text { for NIC, } c(n, p+1)-c(n, p) \quad \dot{\sim} 2 \\
& \text { for BIC, } c(n, p+1)-c(n, p)=\log n
\end{aligned}
$$

In a regular case $2\left(\widehat{\ell}_{+}-\widehat{\ell}\right) \dot{\sim} \chi_{1}^{2}$, so as $n \rightarrow \infty$,

$$
\operatorname{Pr}\left(\mathrm{IC}_{+}<\mathrm{IC}\right) \rightarrow \begin{cases}0.16, & \text { AIC, NIC } \\ 0, & \text { BIC. }\end{cases}
$$

Thus AIC and NIC have non-zero probability of over-fitting, even in very large samples, but BIC does not.

Variable selection

Consider normal linear model

$$
Y_{n \times 1}=X_{n \times p}^{\dagger} \beta_{p \times 1}+\varepsilon_{n \times 1}, \quad \varepsilon \sim \mathcal{N}_{n}\left(0, \sigma^{2} I_{n}\right),
$$

where design matrix X^{\dagger} has full rank $p<n$ and columns x_{r}, for $r \in \mathcal{X}=\{1, \ldots, p\}$. Subsets \mathcal{S} of \mathcal{X} correspond to subsets of columns.
\square Terminology

- the true model corresponds to subset $\mathcal{T}=\left\{r: \beta_{r} \neq 0\right\}$, and $|\mathcal{T}|=q<p$;
- a correct model contains \mathcal{T} but has other columns also, corresponding subset \mathcal{S} satisfies $\mathcal{T} \subset \mathcal{S} \subset \mathcal{X}$ and $\mathcal{T} \neq \mathcal{S}$;
- a wrong model has subset \mathcal{S} lacking some x_{r} for which $\beta_{r} \neq 0$, and so $\mathcal{T} \not \subset \mathcal{S}$.

Aim to identify \mathcal{T}.
\square If we choose a wrong model, have bias; if we choose a correct model, increase variance-seek to balance these.

Stepwise methods

Forward selection: starting from model with constant only,

1. add each remaining term separately to the current model;
2. if none of these terms is significant, stop; otherwise
3. update the current model to include the most significant new term; go to 1Backward elimination: starting from model with all terms,
4. if all terms are significant, stop; otherwise
5. update current model by dropping the term with the smallest F statistic; go to 1
\square Stepwise: starting from an arbitary model,
6. consider 3 options-add a term, delete a term, swap a term in the model for one not in the model;
7. if model unchanged, stop; otherwise go to 1

APTS: Statistical Modelling
April 2018 - slide 25

Nuclear power station data

Nuclear power station data

	Full model		Backward		Forward	
	Est (SE)	t	Est (SE)	t	Est (SE)	t
Constant	-14.24 (4.229)	-3.37	-13.26 (3.140)	-4.22	-7.627 (2.875)	-2.66
date	0.209 (0.065)	3.21	0.212 (0.043)	4.91	0.136 (0.040)	3.38
$\log (\mathrm{T} 1)$	0.092 (0.244)	0.38				
$\log (\mathrm{T} 2)$	0.290 (0.273)	1.05				
$\log ($ cap $)$	0.694 (0.136)	5.10	0.723 (0.119)	6.09	0.671 (0.141)	4.75
PR	-0.092 (0.077)	-1.20				
NE	0.258 (0.077)	3.35	0.249 (0.074)	3.36		
CT	0.120 (0.066)	1.82	0.140 (0.060)	2.32		
BW	0.033 (0.101)	0.33				
$\log (\mathrm{N})$	-0.080 (0.046)	-1.74	-0.088 (0.042)	-2.11		
PT	$-0.224(0.123)$	-1.83	$-0.226(0.114)$	-1.99	-0.490 (0.103)	-4.77
s (df)	0.164 (21)		0.159 (25)		0.195 (28)	

Backward selection chooses a model with seven covariates also chosen by minimising AIC.

APTS: Statistical Modelling
April 2018 - slide 27

Stepwise Methods: Comments

Systematic search minimising AIC or similar over all possible models is preferable-not always feasible.
\square Stepwise methods can fit models to purely random data—main problem is no objective function.
$\square \quad$ Sometimes used by replacing F significance points by (arbitrary!) numbers, e.g. $F=4$
\square Can be improved by comparing AIC for different models at each step-uses AIC as objective function, but no systematic search.

APTS: Statistical Modelling
April 2018 - slide 28

Prediction error

To identify \mathcal{T}, we fit candidate model

$$
Y=X \beta+\varepsilon
$$

where columns of X are a subset \mathcal{S} of those of X^{\dagger}.
$\square \quad$ Fitted value is

$$
X \widehat{\beta}=X\left\{\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}} Y\right\}=H Y=H(\mu+\varepsilon)=H \mu+H \varepsilon
$$

where $H=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is the hat matrix and $H \mu=\mu$ if the model is correct.
\square Following reasoning for AIC, suppose we also have independent dataset Y_{+}from the true model, so $Y_{+}=\mu+\varepsilon_{+}$
$\square \quad$ Apart from constants, previous measure of prediction error is

$$
\Delta(X)=n^{-1} \mathrm{E} \mathrm{E}_{+}\left\{\left(Y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(Y_{+}-X \widehat{\beta}\right)\right\}
$$

with expectations over both Y_{+}and Y.

Prediction error II

$\square \quad$ Can show that

$$
\Delta(X)= \begin{cases}n^{-1} \mu^{\mathrm{T}}(I-H) \mu+(1+p / n) \sigma^{2}, & \text { wrong model } \tag{3}\\ (1+q / n) \sigma^{2}, & \text { true model } \\ (1+p / n) \sigma^{2}, & \text { correct model }\end{cases}
$$

recall that $q<p$.Bias: $n^{-1} \mu^{\mathrm{T}}(I-H) \mu>0$ unless model is correct, and is reduced by including useful termsVariance: $(1+p / n) \sigma^{2}$ increased by including useless termsIdeal would be to choose covariates X to minimise $\Delta(X)$: impossible—depends on unknowns μ, σ.
Must estimate $\Delta(X)$
APTS: Statistical Modelling
April 2018 - slide 30

Note: Proof of (3)

Consider data $y=\mu+\varepsilon$ to which we fit the linear model $y=X \beta+\varepsilon$, obtaining fitted value

$$
X \widehat{\beta}=H y=H(\mu+\varepsilon)
$$

where the second term is zero if μ lies in the space spanned by the columns of X, and otherwise is not. We have a new data set $y_{+}=\mu+\varepsilon_{+}$, and we will compute the average error in predicting y_{+}using $X \widehat{\beta}$, which is

$$
\Delta=n^{-1} \mathrm{E}\left\{\left(y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(y_{+}-X \widehat{\beta}\right)\right\}
$$

Now

$$
y_{+}-X \widehat{\beta}=\mu+\varepsilon_{+}-(H \mu+H \varepsilon)=(I-H) \mu+\varepsilon_{+}-H \varepsilon
$$

Therefore

$$
\left(y_{+}-X \widehat{\beta}\right)^{\mathrm{T}}\left(y_{+}-X \widehat{\beta}\right)=\mu^{\mathrm{T}}(I-H) \mu+\varepsilon^{\mathrm{T}} H \varepsilon+\varepsilon_{+}^{\mathrm{T}} \varepsilon_{+}+A
$$

where $\mathrm{E}(A)=0$; this gives that

$$
\Delta(X)= \begin{cases}n^{-1} \mu^{\mathrm{T}}(I-H) \mu+(1+p / n) \sigma^{2}, & \text { wrong model } \\ (1+q / n) \sigma^{2}, & \text { true model } \\ (1+p / n) \sigma^{2}, & \text { correct model. }\end{cases}
$$

Example

$\Delta(X)$ as a function of the number of included variables p for data with $n=20, q=6, \sigma^{2}=1$. The minimum is at $p=q=6$:
\square there is a sharp decrease in bias as useful covariates are added;there is a slow increase with variance as the number of variables p increases.
APTS: Statistical Modelling
April 2018 - slide 31

Cross-validation

If n is large, can split data into two parts $\left(X^{\prime}, y^{\prime}\right)$ and (X^{*}, y^{*}), say, and use one part to estimate model, and the other to compute prediction error; then choose the model that minimises$$
\widehat{\Delta}=n^{\prime-1}\left(y^{\prime}-X^{\prime} \widehat{\beta}^{*}\right)^{\mathrm{T}}\left(y^{\prime}-X^{\prime} \widehat{\beta}^{*}\right)=n^{\prime-1} \sum_{j=1}^{n^{\prime}}\left(y_{j}^{\prime}-x_{j}^{\prime} \widehat{\beta}^{*}\right)^{2} .
$$Usually dataset is too small for this; use leave-one-out cross-validation sum of squares

$$
n \widehat{\Delta}_{\mathrm{CV}}=\mathrm{CV}=\sum_{j=1}^{n}\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}_{-j}\right)^{2},
$$

where $\widehat{\beta}_{-j}$ is estimate computed without $\left(x_{j}, y_{j}\right)$.Seems to require n fits of model, but in fact

$$
\mathrm{CV}=\sum_{j=1}^{n} \frac{\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}\right)^{2}}{\left(1-h_{j j}\right)^{2}},
$$

where $h_{11}, \ldots, h_{n n}$ are diagonal elements of H, and so can be obtained from one fit.

Cross-validation II

Simpler (more stable?) version uses generalised cross-validation sum of squares

$$
\mathrm{GCV}=\sum_{j=1}^{n} \frac{\left(y_{j}-x_{j}^{\mathrm{T}} \widehat{\beta}\right)^{2}}{\{1-\operatorname{tr}(H) / n\}^{2}}
$$

\square Can show that

$$
\begin{equation*}
\mathrm{E}(\mathrm{GCV})=\mu^{\mathrm{T}}(I-H) \mu /(1-p / n)^{2}+n \sigma^{2} /(1-p / n) \approx n \Delta(X) \tag{4}
\end{equation*}
$$

so try and minimise GCV or CV.
\square Many variants of cross-validation exist. Typically find that model chosen based on CV is somewhat unstable, and that GCV or k-fold cross-validation works better. Standard strategy is to split data into 10 roughly equal parts, predict for each part based on the other nine-tenths of the data, and find model that minimises this estimate of prediction error.

APTS: Statistical Modelling

April 2018 - slide 33

Note: Derivation of (4)

We need the expectation of $(y-X \widehat{\beta})^{\mathrm{T}}(y-X \widehat{\beta})$, where $y-X \widehat{\beta}=(I-H) y=(I-H)(\mu+\varepsilon)$, and squaring up and noting that $\mathrm{E}(\varepsilon)=0$ gives

$$
\mathrm{E}\left\{(y-X \widehat{\beta})^{\mathrm{T}}(y-X \widehat{\beta})\right\}=\mu^{\mathrm{T}}(I-H) \mu+\mathrm{E}\left\{\varepsilon^{\mathrm{T}}(I-H) \varepsilon\right\}=\mu^{\mathrm{T}}(I-H) \mu+(n-p) \sigma^{2} .
$$

Now note that $\operatorname{tr}(H)=p$ and divide by $(1-p / n)^{2}$ to give (almost) the required result, for which we need also $(1-p / n)^{-1} \approx 1+p / n$, for $p \ll n$.

APTS: Statistical Modelling

April 2018 - note 1 of slide 33

Other selection criteria

Corrected version of AIC for models with normal responses:

$$
\mathrm{AIC}_{\mathrm{c}} \equiv n \log \widehat{\sigma}^{2}+n \frac{1+p / n}{1-(p+2) / n}
$$

where $\widehat{\sigma}^{2}=\mathrm{RSS} / n$. Related (unbiased) $\mathrm{AIC}_{\mathrm{u}}$ replaces $\widehat{\sigma}^{2}$ by $S^{2}=\mathrm{RSS} /(n-p)$.
\square Mallows suggested

$$
C_{p}=\frac{S S_{p}}{s^{2}}+2 p-n,
$$

where $S S_{p}$ is RSS for fitted model and s^{2} estimates σ^{2}.
\square Comments:

- AIC tends to choose models that are too complicated; $\mathrm{AIC}_{\mathrm{c}}$ cures this somewhat
- BIC chooses true model with probability $\rightarrow 1$ as $n \rightarrow \infty$, if the true model is fitted.

Simulation experiment

Number of times models were selected using various model selection criteria in 50 repetitions using simulated normal data for each of 20 design matrices. The true model has $p=3$.

n		Number of covariates						
		1	2	3	4	5	6	7
10	C_{p}		131	504	91	63	83	128
	BIC		72	373	97	83	109	266
	AIC		52	329	97	91	125	306
	$\mathrm{AIC}_{\mathrm{c}}$	15	398	565	18	4		
20	C_{p}		4	673	121	88	61	53
	BIC		6	781	104	52	30	27
	AIC		2	577	144	104	76	97
	$\mathrm{AIC}_{\mathrm{c}}$		8	859	94	30	8	1
40	C_{p}			712	107	73	66	42
	BIC			904	56	20	15	5
	AIC			673	114	90	69	54
	$\mathrm{AIC}_{\mathrm{c}}$			786	105	52	41	16

APTS: Statistical Modelling
April 2018 - slide 35

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=20, p=1, \ldots, 16$, and $q=6$.

APTS: Statistical Modelling
April 2018 - slide 36

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=40, p=1, \ldots, 16$, and $q=6$.

APTS: Statistical Modelling
April 2018 - slide 37

Simulation experiment

Twenty replicate traces of $\mathrm{AIC}, \mathrm{BIC}$, and $\mathrm{AIC}_{\mathrm{c}}$, for data simulated with $n=80, p=1, \ldots, 16$, and $q=6$.

As n increases, note how
$\square \quad \mathrm{AIC}$ and $\mathrm{AIC}_{\mathrm{c}}$ still allow some over-fitting, but BIC does not, and
$\square \quad \mathrm{AIC}_{\mathrm{c}}$ approaches AIC.

Thomas Bayes (1702-1761)

Bayes (1763/4) Essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society of London.

APTS: Statistical Modelling
April 2018 - slide 40

Bayesian inference

Parametric model for data y assumed to be realisation of $Y \sim f(y ; \theta)$, where $\theta \in \Omega_{\theta}$. Frequentist viewpoint (cartoon version):
\square there is a true value of θ that generated the data;this 'true' value of θ is to be treated as an unknown constant;probability statements concern randomness in hypothetical replications of the data (possibly conditioned on an ancillary statistic).
Bayesian viewpoint (cartoon version):
\square all ignorance may be expressed in terms of probability statements;a joint probability distribution for data and all unknowns can be constructed;Bayes' theorem should be used to convert prior beliefs $\pi(\theta)$ about unknown θ into posterior beliefs $\pi(\theta \mid y)$, conditioned on data;probability statements concern randomness of unknowns, conditioned on all known quantities.

Mechanics

Separate from data, we have prior information about parameter θ summarised in density $\pi(\theta)$Data model $f(y \mid \theta) \equiv f(y ; \theta)$
$\square \quad$ Posterior density given by Bayes' theorem:

$$
\pi(\theta \mid y)=\frac{\pi(\theta) f(y \mid \theta)}{\int \pi(\theta) f(y \mid \theta) d \theta}
$$$\pi(\theta \mid y)$ contains all information about θ, conditional on observed data yIf $\theta=(\psi, \lambda)$, then inference for ψ is based on marginal posterior density

$$
\pi(\psi \mid y)=\int \pi(\theta \mid y) d \lambda
$$

APTS: Statistical Modelling

Encompassing model

Suppose we have M alternative models for the data, with respective parameters $\theta_{1} \in \Omega_{\theta_{1}}, \ldots, \theta_{m} \in \Omega_{\theta_{m}}$. Typically dimensions of $\Omega_{\theta_{m}}$ are different.$\square \quad$ We enlarge the parameter space to give an encompassing model with parameter

$$
\theta=\left(m, \theta_{m}\right) \in \Omega=\bigcup_{m=1}^{M}\{m\} \times \Omega_{\theta_{m}}
$$Thus need priors $\pi_{m}\left(\theta_{m} \mid m\right)$ for the parameters of each model, plus a prior $\pi(m)$ giving pre-data probabilities for each of the models; overall

$$
\pi\left(m, \theta_{m}\right)=\pi\left(\theta_{m} \mid m\right) \pi(m)=\pi_{m}\left(\theta_{m}\right) \pi_{m}
$$

say.Inference about model choice is based on marginal posterior density

$$
\pi(m \mid y)=\frac{\int f\left(y \mid \theta_{m}\right) \pi_{m}\left(\theta_{m}\right) \pi_{m} d \theta_{m}}{\sum_{m^{\prime}=1}^{M} \int f\left(y \mid \theta_{m^{\prime}}\right) \pi_{m^{\prime}}\left(\theta_{m^{\prime}}\right) \pi_{m^{\prime}} d \theta_{m^{\prime}}}=\frac{\pi_{m} f(y \mid m)}{\sum_{m^{\prime}=1}^{M} \pi_{m^{\prime}} f\left(y \mid m^{\prime}\right)}
$$

Inference

Can write

$$
\pi\left(m, \theta_{m} \mid y\right)=\pi\left(\theta_{m} \mid y, m\right) \pi(m \mid y)
$$

so Bayesian updating corresponds to

$$
\pi\left(\theta_{m} \mid m\right) \pi(m) \mapsto \pi\left(\theta_{m} \mid y, m\right) \pi(m \mid y)
$$

and for each model $m=1, \ldots, M$ we need

- posterior probability $\pi(m \mid y)$, which involves the marginal likelihood $f(y \mid m)=\int f\left(y \mid \theta_{m}, m\right) \pi\left(\theta_{m} \mid m\right) d \theta_{m}$; and
- the posterior density $f\left(\theta_{m} \mid y, m\right)$.
\square If there are just two models, can write

$$
\frac{\pi(1 \mid y)}{\pi(2 \mid y)}=\frac{\pi_{1}}{\pi_{2}} \frac{f(y \mid 1)}{f(y \mid 2)},
$$

so the posterior odds on model 1 equal the prior odds on model 1 multiplied by the Bayes factor $B_{12}=f(y \mid 1) / f(y \mid 2)$.

Sensitivity of the marginal likelihood

Suppose the prior for each θ_{m} is $\mathcal{N}\left(0, \sigma^{2} I_{d_{m}}\right)$, where $d_{m}=\operatorname{dim}\left(\theta_{m}\right)$. Then, dropping the m subscript for clarity,

$$
\begin{aligned}
f(y \mid m) & =\sigma^{-d / 2}(2 \pi)^{-d / 2} \int f(y \mid m, \theta) \prod_{r} \exp \left\{-\theta_{r}^{2} /\left(2 \sigma^{2}\right)\right\} \mathrm{d} \theta_{r} \\
& \approx \sigma^{-d / 2}(2 \pi)^{-d / 2} \int f(y \mid m, \theta) \prod_{r} \mathrm{~d} \theta_{r},
\end{aligned}
$$

for a highly diffuse prior distribution (large σ^{2}). The Bayes factor for comparing the models is approximately

$$
\frac{f(y \mid 1)}{f(y \mid 2)} \approx \sigma^{\left(d_{2}-d_{1}\right) / 2} g(y)
$$

where $g(y)$ depends on the two likelihoods but is independent of σ^{2}. Hence, whatever the data tell us about the relative merits of the two models, the Bayes factor in favour of the simpler model can be made arbitrarily large by increasing σ.
This illustrates Lindley's paradox, and implies that we must be careful when specifying prior dispersion parameters to compare models.

Model averaging

If a quantity Z has the same interpretation for all models, it may be necessary to allow for model uncertainty:

- in prediction, each model may be just a vehicle that provides a future value, not of interest per se;
- physical parameters (means, variances, etc.) may be suitable for averaging, but care is needed.

The predictive distribution for Z may be written

$$
f(z \mid y)=\sum_{m=1}^{M} f(z \mid y, m) \operatorname{Pr}(m \mid y)
$$

where

$$
\operatorname{Pr}(m \mid y)=\frac{f(y \mid m) \operatorname{Pr}(m)}{\sum_{m^{\prime}=1}^{M} f\left(y \mid m^{\prime}\right) \operatorname{Pr}\left(m^{\prime}\right)}
$$

APTS: Statistical Modelling
April 2018 - slide 46

Example: Cement data

Percentage weights in clinkers of 4 four constitutents of cement $\left(x_{1}, \ldots, x_{4}\right)$ and heat evolved y in calories, in $n=13$ samples.

APTS: Statistical Modelling

Example: Cement data

cement					
	x1	x2	x3	x4	y
1	7	26	6	60	78.5
2	1	29	15	52	74.3
3	11	56	8	20	104.3
4	11	31	8	47	87.6
5	7	52	6	33	95.9
6	11	55	9	22	109.2
7	3	71	17	6	102.7
8	1	31	22	44	72.5
9	2	54	18	22	93.1
10	21	47	4	26	115.9
11	1	40	23	34	83.8
12	11	66	9	12	113.3
13	10	68	8	12	109.4

APTS: Statistical Modelling
April 2018 - slide 48

Example: Cement data

Bayesian model choice and prediction using model averaging for the cement data ($n=13, p=4$). For each of the 16 possible subsets of covariates, the table shows the log Bayes factor in favour of that subset compared to the model with no covariates and gives the posterior probability of each model. The values of the posterior mean and scale parameters a and b are also shown for the six most plausible models; $\left(y_{+}-a\right) / b$ has a posterior t density. For comparison, the residual sums of squares are also given.

Model	RSS	$2 \log B_{10}$	$\operatorname{Pr}(M \mid y)$	a	b
----	2715.8	0.0	0.0000		
$1---$	1265.7	7.1	0.0000		
$-2--$	906.3	12.2	0.0000		
$--3-$	1939.4	0.6	0.0000		
---4	883.9	12.6	0.0000		
$12--$	57.9	45.7	0.2027	93.77	2.31
$1-3-$	1227.1	4.0	0.0000		
$1--4$	74.8	42.8	0.0480	99.05	2.58
$-23-$	415.4	19.3	0.0000		
$-2-4$	868.9	11.0	0.0000		
--34	175.7	31.3	0.0002		
$123-$	48.11	43.6	0.0716	95.96	2.80
$12-4$	47.97	47.2	0.4344	95.88	2.45
$1-34$	50.84	44.2	0.0986	94.66	2.89
-234	73.81	33.2	0.0004		
1234	47.86	45.0	0.1441	95.20	2.97

Example: Cement data

Posterior predictive densities for cement data. Predictive densities for a future observation y_{+}with covariate values x_{+}based on individual models are given as dotted curves. The heavy curve is the average density from all 16 models.

APTS: Statistical Modelling
April 2018 - slide 50

DIC

How to compare complex models (e.g. hierarchical models, mixed models, Bayesian settings), in which the 'number of parameters' may:

- outnumber the number of observations?
- be unclear because of the regularisation provided by a prior density?Suppose model has 'Bayesian deviance'

$$
D(\theta)=-2 \log f(y \mid \theta)+2 \log f(y)
$$

for some normalising function $f(y)$, and suppose that samples from the posterior density of θ are available and give $\bar{\theta}=\mathrm{E}(\theta \mid y)$.
\square One possibility is the deviance information criterion (DIC)

$$
D(\bar{\theta})+2 p_{D},
$$

where the number of associated parameters is

$$
p_{D}=\overline{D(\theta)}-D(\bar{\theta})
$$

This involves only (MCMC) samples from the posterior, no analytical computations, and reproduces AIC for some classes of models.

2. Beyond the Generalised Linear Model

Overview

1. Generalised linear models
2. Overdispersion
3. Correlation
4. Random effects models

APTS: Statistical Modelling
April 2018 - slide 53

Generalised Linear Models slide 54

GLM recap

y_{1}, \ldots, y_{n} are observations of response variables Y_{1}, \ldots, Y_{n} assumed to be independently generated by a distribution of the same exponential family form, with means $\mu_{i} \equiv \mathrm{E}\left(Y_{i}\right)$ linked to explanatory variables $X_{1}, X_{2}, \ldots, X_{p}$ through

$$
g\left(\mu_{i}\right)=\eta_{i} \equiv \beta_{0}+\sum_{r=1}^{p} \beta_{r} x_{i r} \equiv x_{i}^{\mathrm{T}} \beta
$$

GLMs have proved remarkably effective at modelling real world variation in a wide range of application areas.

APTS: Statistical Modelling
April 2018 - slide 55

GLM failure

However, situations frequently arise where GLMs do not adequately describe observed data.
This can be due to a number of reasons including:
\square The mean model cannot be appropriately specified as there is dependence on an unobserved (or unobservable) explanatory variable.
\square There is excess variability between experimental units beyond that implied by the mean/variance relationship of the chosen response distribution.The assumption of independence is not appropriate.
\square Complex multivariate structure in the data requires a more flexible model class

Overdispersion

Example 1: toxoplasmosis

The table below gives data on the relationship between rainfall (x) and the proportions of people with toxoplasmosis (y / m) for 34 cities in El Salvador.

City	y	x	City	y	x	City	y	x
1	$5 / 18$	1620	12	$3 / 5$	1800	23	$3 / 10$	1973
2	$15 / 30$	1650	13	$8 / 10$	1800	24	$1 / 6$	1976
3	$0 / 1$	1650	14	$0 / 1$	1830	25	$1 / 5$	2000
4	$2 / 4$	1735	15	$53 / 75$	1834	26	$0 / 1$	2000
5	$2 / 2$	1750	16	$7 / 16$	1871	27	$7 / 24$	2050
6	$2 / 8$	1750	17	$24 / 51$	1890	28	$46 / 82$	2063
7	$2 / 12$	1756	18	$3 / 10$	1900	29	$7 / 19$	2077
8	$6 / 11$	1770	19	$23 / 43$	1918	30	$9 / 13$	2100
9	$33 / 54$	1770	20	$3 / 6$	1920	31	$4 / 22$	2200
10	$8 / 13$	1780	21	$0 / 1$	1920	32	$4 / 9$	2240
11	$41 / 77$	1796	22	$3 / 10$	1936	33	$8 / 11$	2250
						34	$23 / 37$	2292

APTS: Statistical Modelling
April 2018 - slide 58

Example

Toxoplasmosis data and fitted models

Example

Fitting various binomial logistic regression models relating toxoplasmosis incidence to rainfall:

Model	df	deviance
Constant	33	74.21
Linear	32	74.09
Quadratic	31	74.09
Cubic	30	62.62

So evidence in favour of the cubic over other models, but a poor fit ($X^{2}=58.21$ on 30df).
This is an example of overdispersion where residual variability is greater than would be predicted by the specified mean/variance relationship

$$
\operatorname{var}(Y)=\frac{\mu(1-\mu)}{m} .
$$

APTS: Statistical Modelling
April 2018 - slide 60

Example

Toxoplasmosis residual plot

Quasi-likelihood

A quasi-likelihood approach to accounting for overdispersion models the mean and variance, but stops short of a full probability model for Y.

For a model specified by the mean relationship $g\left(\mu_{i}\right)=\eta_{i}=x_{i}^{\mathrm{T}} \beta$, and variance
$\operatorname{var}\left(Y_{i}\right)=\sigma^{2} V\left(\mu_{i}\right) / m_{i}$, the quasi-likelihood equations are

$$
\sum_{i=1}^{n} x_{i} \frac{y_{i}-\mu_{i}}{\sigma^{2} V\left(\mu_{i}\right) g^{\prime}\left(\mu_{i}\right) / m_{i}}=0
$$

If $V\left(\mu_{i}\right) / m_{i}$ represents $\operatorname{var}\left(Y_{i}\right)$ for a standard distribution from the exponential family, then these equations can be solved for β using standard GLM software.
Provided the mean and variance functions are correctly specified, asymptotic normality for $\widehat{\beta}$ still holds.
The dispersion parameter σ^{2} can be estimated using

$$
\widehat{\sigma}^{2} \equiv \frac{1}{n-p-1} \sum_{i=1}^{n} \frac{m_{i}\left(y_{i}-\widehat{\mu}_{i}\right)^{2}}{V\left(\widehat{\mu}_{i}\right)}
$$

Quasi-likelihood for toxoplasmosis data

Assuming the same mean model as before, but $\operatorname{var}\left(Y_{i}\right)=\sigma^{2} \mu_{i}\left(1-\mu_{i}\right) / m_{i}$, we obtain $\widehat{\sigma}^{2}=1.94$ with $\widehat{\beta}$ (and corresponded fitted mean curves) as before.

Comparing cubic with constant model, one now obtains

$$
F=\frac{(74.21-62.62) / 3}{1.94}=1.99
$$

which provides much less compelling evidence in favour of an effect of rainfall on toxoplasmosis incidence.

APTS: Statistical Modelling
April 2018 - slide 63

Reasons

To construct a full probability model in the presence of overdispersion, it is necessary to consider why overdispersion might be present.

Possible reasons include:
\square There may be an important explanatory variable, other than rainfall, which we haven't observed.
\square Or there may be many other features of the cities, possibly unobservable, all having a small individual effect on incidence, but a larger effect in combination. Such effects may be individually undetectable - sometimes described as natural excess variability between units.

APTS: Statistical Modelling
April 2018 - slide 64

Reasons: unobserved heterogeneity

When part of the linear predictor is 'missing' from the model,

$$
\eta_{i}^{\text {true }}=\eta_{i}^{\text {model }}+\eta_{i}^{\text {diff }}
$$

We can compensate for this, in modelling, by assuming that the missing $\eta_{i}^{\text {diff }} \sim F$ in the population. Hence, given $\eta_{i}^{\text {model }}$

$$
\mu_{i} \equiv g^{-1}\left(\eta_{i}^{\text {model }}+\eta_{i}^{\mathrm{diff}}\right) \sim G
$$

where G is the distribution induced by F. Then

$$
\begin{aligned}
\mathrm{E}\left(Y_{i}\right) & =\mathrm{E}_{G}\left[\mathrm{E}\left(Y_{i} \mid \mu_{i}\right)\right]=\mathrm{E}_{G}\left(\mu_{i}\right) \\
\operatorname{var}\left(Y_{i}\right) & =\mathrm{E}_{G}\left(V\left(\mu_{i}\right) / m_{i}\right)+\operatorname{var}_{G}\left(\mu_{i}\right)
\end{aligned}
$$

APTS: Statistical Modelling

April 2018 - slide 65

Direct models

One approach is to model the Y_{i} directly, by specifying an appropriate form for G.
For example, for the toxoplasmosis data, we might specify a beta-binomial model, where

$$
\mu_{i} \sim \operatorname{Beta}\left(k \mu_{i}^{*}, k\left[1-\mu_{i}^{*}\right]\right)
$$

leading to

$$
\mathrm{E}\left(Y_{i}\right)=\mu_{i}^{*}, \quad \operatorname{var}\left(Y_{i}\right)=\frac{\mu_{i}^{*}\left(1-\mu_{i}^{*}\right)}{m_{i}}\left(1+\frac{m_{i}-1}{k+1}\right)
$$

with $\left(m_{i}-1\right) /(k+1)$ representing an overdispersion factor.

APTS: Statistical Modelling

April 2018 - slide 66

Direct models: fitting

Models which explicitly account for overdispersion can, in principle, be fitted using your preferred approach, e.g. the beta-binomial model has likelihood

$$
f\left(y \mid \mu^{*}, k\right) \propto \prod_{i=1}^{n} \frac{\Gamma\left(k \mu_{i}^{*}+m_{i} y_{i}\right) \Gamma\left\{k\left(1-\mu_{i}^{*}\right)+m_{i}\left(1-y_{i}\right)\right\} \Gamma(k)}{\Gamma\left(k \mu_{i}^{*}\right) \Gamma\left\{k\left(1-\mu_{i}^{*}\right)\right\} \Gamma\left(k+m_{i}\right)}
$$

Similarly the corresponding model for count data specifies a gamma distribution for the Poisson mean, leading to a negative binomial marginal distribution for Y_{i}.

However, these models have limited flexibility and can be difficult to fit, so an alternative approach is usually preferred.

APTS: Statistical Modelling
April 2018 - slide 67

A random effects model for overdispersion

A more flexible, and extensible approach models the excess variability by including an extra term in the linear predictor

$$
\begin{equation*}
\eta_{i}=x_{i}^{\mathrm{T}} \beta+u_{i} \tag{5}
\end{equation*}
$$

where the u_{i} can be thought of as representing the 'extra' variability between units, and are called random effects.

The model is completed by specifying a distribution F for u_{i} in the population - almost always, we use

$$
u_{i} \sim N\left(0, \sigma^{2}\right)
$$

for some unknown σ^{2}.
We set $\mathrm{E}\left(u_{i}\right)=0$, as an unknown mean for u_{i} would be unidentifiable in the presence of the intercept parameter β_{0}.

APTS: Statistical Modelling
April 2018 - slide 68

Random effects: likelihood

The parameters of this random effects model are usually considered to be (β, σ^{2}) and therefore the likelihood is given by

$$
\begin{align*}
f\left(y \mid \beta, \sigma^{2}\right) & =\int f\left(y \mid \beta, u, \sigma^{2}\right) f\left(u \mid \beta, \sigma^{2}\right) \mathrm{d} u \\
& =\int f(y \mid \beta, u) f\left(u \mid \sigma^{2}\right) \mathrm{d} u \\
& =\int \prod_{i=1}^{n} f\left(y_{i} \mid \beta, u_{i}\right) f\left(u_{i} \mid \sigma^{2}\right) \mathrm{d} u_{i} \tag{6}
\end{align*}
$$

where $f\left(y_{i} \mid \beta, u_{i}\right)$ arises from our chosen exponential family, with linear predictor (5) and $f\left(u_{i} \mid \sigma^{2}\right)$ is a univariate normal p.d.f.

Often no further simplification of (6) is possible, so computation needs careful consideration - we will come back to this later.

Toxoplasmosis example revisited

We can think of the toxoplasmosis proportions Y_{i} in each city (i) as arising from the sum of binary variables, $Y_{i j}$, representing the toxoplasmosis status of individuals (j), so $m_{i} Y_{i}=\sum_{j=1}^{m_{i}} Y_{i j}$.
Then

$$
\begin{aligned}
\operatorname{var}\left(Y_{i}\right) & =\frac{1}{m_{i}^{2}} \sum_{j=1}^{m_{i}} \operatorname{var}\left(Y_{i j}\right)+\frac{1}{m_{i}^{2}} \sum_{j \neq k} \operatorname{cov}\left(Y_{i j}, Y_{i k}\right) \\
& =\frac{\mu_{i}\left(1-\mu_{i}\right)}{m_{i}}+\frac{1}{m_{i}^{2}} \sum_{j \neq k} \operatorname{cov}\left(Y_{i j}, Y_{i k}\right)
\end{aligned}
$$

So any positive correlation between individuals induces overdispersion in the counts.

APTS: Statistical Modelling

April 2018 - slide 71

Dependence: reasons

There may be a number of plausible reasons why the responses corresponding to units within a given cluster are dependent (in the toxoplasmosis example, cluster = city)

One compelling reason is the unobserved heterogeneity discussed previously.
In the 'correct' model (corresponding to $\eta_{i}^{\text {true }}$), the toxoplasmosis status of individuals, $Y_{i j}$, are
independent, so

$$
Y_{i j} \Perp Y_{i k}\left|\eta_{i}^{\text {true }} \quad \Leftrightarrow \quad Y_{i j} \Perp Y_{i k}\right| \eta_{i}^{\text {model }}, \eta_{i}^{\text {diff }}
$$

However, in the absence of knowledge of $\eta_{i}^{\text {diff }}$

$$
Y_{i j} \not \Perp Y_{i k} \mid \eta_{i}^{\text {model }}
$$

Hence conditional (given $\eta_{i}^{\text {diff }}$) independence between units in a common cluster i becomes marginal dependence, when marginalised over the population distribution F of unobserved $\eta_{i}^{\text {diff }}$.

APTS: Statistical Modelling
April 2018 - slide 72

Random effects and dependence

The correspondence between positive intra-cluster correlation and unobserved heterogeneity suggests that intra-cluster dependence might be modelled using random effects, For example, for the
individual-level toxoplasmosis data

$$
Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i j}\right), \quad \log \frac{\mu_{i j}}{1-\mu_{i j}}=x_{i j}^{\mathrm{T}} \beta+u_{i}, \quad u_{i} \sim N\left(0, \sigma^{2}\right)
$$

which implies

$$
Y_{i j} \not \Perp Y_{i k} \mid \beta, \sigma^{2}
$$

Intra-cluster dependence arises in many applications, and random effects provide an effective way of modelling it.

Marginal models

Random effects modelling is not the only way of accounting for intra-cluster dependence.
A marginal model models $\mu_{i j} \equiv \mathrm{E}\left(Y_{i j}\right)$ as a function of explanatory variables, through $g\left(\mu_{i j}\right)=x_{i j}^{\mathrm{T}} \beta$, and also specifies a variance relationship $\operatorname{var}\left(Y_{i j}\right)=\sigma^{2} V\left(\mu_{i j}\right) / m_{i j}$ and a model for $\operatorname{corr}\left(Y_{i j}, Y_{i k}\right)$, as a function of μ and possibly additional parameters.
It is important to note that the parameters β in a marginal model have a different interpretation from those in a random effects model, because for the latter

$$
\mathrm{E}\left(Y_{i j}\right)=\mathrm{E}\left(g^{-1}\left[x_{i j}^{\mathrm{T}} \beta+u_{i}\right]\right) \neq g^{-1}\left(x_{i j}^{\mathrm{T}} \beta\right) \quad \text { (unless } g \text { is linear). }
$$

\square A random effects model describes the mean response at the subject level ('subject specific')
\square A marginal model describes the mean response across the population ('population averaged')
APTS: Statistical Modelling
April 2018 - slide 74

GEEs

As with the quasi-likelihood approach above, marginal models do not generally provide a full probability model for Y. Nevertheless, β can be estimated using generalised estimating equations (GEEs).
The GEE for estimating β in a marginal model is of the form

$$
\sum_{i}\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\mathrm{T}} \operatorname{var}\left(Y_{i}\right)^{-1}\left(Y_{i}-\mu_{i}\right)=0
$$

where $Y_{i}=\left(Y_{i j}\right)$ and $\mu_{i}=\left(\mu_{i j}\right)$
Consistent covariance estimates are available for GEE estimators.
Furthermore, the approach is generally robust to mis-specification of the correlation structure.
For the rest of this module, we focus on fully specified probability models.
APTS: Statistical Modelling
April 2018 - slide 75

Clustered data

Examples where data are collected in clusters include:
\square Studies in biometry where repeated measures are made on experimental units. Such studies can effectively mitigate the effect of between-unit variability on important inferences.
$\square \quad$ Agricultural field trials, or similar studies, for example in engineering, where experimental units are arranged within blocks
\square Sample surveys where collecting data within clusters or small areas can save costs
Of course, other forms of dependence exist, for example spatial or serial dependence induced by arrangement in space or time of units of observation.

Example 2: Rat growth

The table below is extracted from a data set giving the weekly weights of 30 young rats.

	Week				
Rat	1	2	3	4	5
1	151	199	246	283	320
2	145	199	249	293	354
3	147	214	263	312	328
4	155	200	237	272	297
5	135	188	230	280	323
6	159	210	252	298	331
7	141	189	231	275	305
8	159	201	248	297	338
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
30	153	200	244	286	324

APTS: Statistical Modelling
Example

A simple model

Letting Y represent weight, and X represent week, we can fit the simple linear regression

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i j}+\epsilon_{i j}
$$

with resulting estimates $\widehat{\beta}_{0}=156.1(2.25)$ and $\widehat{\beta}_{1}=43.3$ (0.92)
Residuals show clear evidence of an unexplained difference between rats

APTS: Statistical Modelling
April 2018 - slide 79

Model elaboration

Naively adding a (fixed) effect for animal gives

$$
y_{i j}=\beta_{0}+\beta_{1} x_{i j}+u_{i}+\epsilon_{i j} .
$$

Residuals show evidence of a further unexplained difference between rats in terms of dependence on x.

More complex cluster dependence required.

Linear mixed models

A linear mixed model (LMM) for observations $y=\left(y_{1}, \ldots, y_{n}\right)$ has the general form

$$
\begin{equation*}
Y \sim N(\mu, \Sigma), \quad \mu=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right) \tag{7}
\end{equation*}
$$

where X and Z are matrices containing values of explanatory variables. Usually, $\Sigma=\sigma^{2} I_{n}$.
A typical example for clustered data might be

$$
\begin{equation*}
Y_{i j} \stackrel{\operatorname{ind}}{\sim} N\left(\mu_{i j}, \sigma^{2}\right), \quad \mu_{i j}=x_{i j}^{\mathrm{T}} \beta+z_{i j}^{\mathrm{T}} b_{i}, \quad b_{i} \stackrel{\text { ind }}{\sim} N\left(0, \Sigma_{b}^{*}\right) \tag{8}
\end{equation*}
$$

where $x_{i j}$ contain the explanatory data for cluster i, observation j and (normally) $z_{i j}$ contains that sub-vector of $x_{i j}$ which is allowed to exhibit extra between cluster variation in its relationship with Y. In the simplest (random intercept) case, $z_{i j}=(1)$, as in equation (5).

APTS: Statistical Modelling
April 2018 - slide 82

LMM example

A plausible LMM for k clusters with n_{1}, \ldots, n_{k} observations per cluster, and a single explanatory variable x (e.g. the rat growth data) is

$$
y_{i j}=\beta_{0}+b_{0 i}+\left(\beta_{1}+b_{1 i}\right) x_{i j}+\epsilon_{i j}, \quad\left(b_{0 i}, b_{1 i}\right)^{\mathrm{T}} \stackrel{\text { ind }}{\sim} N\left(0, \Sigma_{b}^{*}\right)
$$

This fits into the general LMM framework (7) with $\Sigma=\sigma^{2} I_{n}$ and

$$
\begin{aligned}
& X=\left(\begin{array}{cc}
1 & x_{11} \\
\vdots & \vdots \\
1 & x_{k n_{k}}
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
Z_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & Z_{k}
\end{array}\right), \quad Z_{i}=\left(\begin{array}{cc}
1 & x_{i 1} \\
\vdots & \vdots \\
1 & x_{i n_{i}}
\end{array}\right), \\
& \beta=\binom{\beta_{0}}{\beta_{1}}, \quad b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{k}
\end{array}\right), \quad b_{i}=\binom{b_{0 i}}{b_{1 i}}, \quad \Sigma_{b}=\left(\begin{array}{ccc}
\Sigma_{b}^{*} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \Sigma_{b}^{*}
\end{array}\right)
\end{aligned}
$$

where Σ_{b}^{*} is an unspecified 2×2 positive definite matrix.

Variance components

The term mixed model refers to the fact that the linear predictor $X \beta+Z b$ contains both fixed effects β and random effects b.
Under an LMM, we can write the marginal distribution of Y directly as

$$
\begin{equation*}
Y \sim N\left(X \beta, \Sigma+Z \Sigma_{b} Z^{\mathrm{T}}\right) \tag{9}
\end{equation*}
$$

where X and Z are matrices containing values of explanatory variables.
Hence $\operatorname{var}(Y)$ is comprised of two variance components.
Other ways of describing LMMs for clustered data, such as (8) (and their generalised linear model counterparts) are as hierarchical models or multilevel models. This reflects the two-stage structure of the model, a conditional model for $Y_{i j} \mid b_{i}$, followed by a marginal model for the random effects b_{i}.

Sometimes the hierarchy can have further levels, corresponding to clusters nested within clusters, for example, patients within wards within hospitals, or pupils within classes within schools.

APTS: Statistical Modelling
April 2018 - slide 84

Discussion: Why random effects?

It would be perfectly possible to take a model such as (8) and ignore the final component, leading to fixed cluster effects (as we did for the rat growth data).

The main issue with such an approach is that inferences, particularly predictive inferences can then only be made about those clusters present in the observed data.
Random effects models, on the other hand, allow inferences to be extended to a wider population (at the expense of a further modelling assumption).

It also can be the case, as in (5) with only one observation per 'cluster', that fixed effects are not identifiable, whereas random effects can still be estimated. Similarly, some treatment variables must be applied at the cluster level, so fixed treatment and cluster effects are aliased.

Finally, random effects allow 'borrowing strength' across clusters by shrinking fixed effects towards a common mean.

APTS: Statistical Modelling
April 2018 - slide 85

Discussion: A Bayesian perspective

A Bayesian LMM supplements (7) with prior distributions for β, Σ and Σ_{b}.
In one sense the distinction between fixed and random effects is much less significant, as in the full Bayesian probability specification, both β and b, as unknowns have probability distributions, $f(\beta)$ and $f(b)=\int f\left(b \mid \Sigma_{b}\right) f\left(\Sigma_{b}\right) \mathrm{d} \Sigma_{b}$

Indeed, prior distributions for 'fixed' effects are sometimes constructed in a hierarchical fashion, for convenience (for example, heavy-tailed priors are often constructed this way).

The main difference is the possibility that random effects for which we have no relevant data (for example cluster effects for unobserved clusters) might need to be predicted.

LMM fitting

The likelihood for $\left(\beta, \Sigma, \Sigma_{b}\right)$ is available directly from (9) as

$$
\begin{equation*}
f\left(y \mid \beta, \Sigma, \Sigma_{b}\right) \propto|V|^{-1 / 2} \exp \left(-\frac{1}{2}(y-X \beta)^{\mathrm{T}} V^{-1}(y-X \beta)\right) \tag{10}
\end{equation*}
$$

where $V=\Sigma+Z \Sigma_{b} Z^{\mathrm{T}}$. This likelihood can be maximised directly (usually numerically).
However, mles for variance parameters of LMMs can have large downward bias (particularly in cluster models with a small number of observed clusters).
Hence estimation by REML - REstricted (or REsidual) Maximum Likelihood is usually preferred.
REML proceeds by estimating the variance parameters $\left(\Sigma, \Sigma_{b}\right)$ using a marginal likelihood based on the residuals from a (generalised) least squares fit of the model $\mathrm{E}(Y)=X \beta$.

APTS: Statistical Modelling
April 2018 - slide 87

REML

In effect, REML maximizes the likelihood of any linearly independent sub-vector of $\left(I_{n}-H\right) y$ where $H=X\left(X^{\mathrm{T}} X\right)^{-1} X^{\mathrm{T}}$ is the usual hat matrix. As

$$
\left(I_{n}-H\right) y \sim N\left(0,\left(I_{n}-H\right) V\left(I_{n}-H\right)\right)
$$

this likelihood will be free of β. It can be written in terms of the full likelihood (10) as

$$
\begin{equation*}
f\left(r \mid \Sigma, \Sigma_{b}\right) \propto f\left(y \mid \widehat{\beta}, \Sigma, \Sigma_{b}\right)\left|X^{\mathrm{T}} V X\right|^{1 / 2} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{\beta}=\left(X^{\mathrm{T}} V^{-1} X\right)^{-1} X^{\mathrm{T}} V^{-1} y \tag{12}
\end{equation*}
$$

is the usual generalised least squares estimator given known V.
Having first obtained ($\widehat{\Sigma}, \widehat{\Sigma}_{b}$) by maximising (11), $\widehat{\beta}$ is obtained by plugging the resulting \widehat{V} into (12).
Note that REML maximised likelihoods cannot be used to compare different fixed effects specifications, due to the dependence of 'data' r in $f\left(r \mid \Sigma, \Sigma_{b}\right)$ on X.

Estimating random effects

A natural predictor \tilde{b} of the random effect vector b is obtained by minimising the mean squared prediction error $\mathrm{E}\left[(\tilde{b}-b)^{\mathrm{T}}(\tilde{b}-b)\right]$ where the expectation is over both b and y.
This is achieved by

$$
\begin{equation*}
\tilde{b}=\mathrm{E}(b \mid y)=\left(Z^{\mathrm{T}} \Sigma^{-1} Z+\Sigma_{b}^{-1}\right)^{-1} Z^{\mathrm{T}} \Sigma^{-1}(y-X \beta) \tag{13}
\end{equation*}
$$

giving the Best Linear Unbiased Predictor (BLUP) for b, with corresponding variance

$$
\operatorname{var}(b \mid y)=\left(Z^{\mathrm{T}} \Sigma^{-1} Z+\Sigma_{b}^{-1}\right)^{-1}
$$

The estimates are obtained by plugging in ($\widehat{\beta}, \widehat{\Sigma}, \widehat{\Sigma}_{b}$), and are shrunk towards 0 , in comparison with equivalent fixed effects estimators.

Any component, b_{k} of b with no relevant data (for example a cluster effect for an as yet unobserved cluster) corresponds to a null column of Z, and then $\tilde{b}_{k}=0$ and $\operatorname{var}\left(b_{k} \mid y\right)=\left[\Sigma_{b}\right]_{k k}$, which may be estimated if, as is usual, b_{k} shares a variance with other random effects.

APTS: Statistical Modelling
April 2018 - slide 89

Bayesian estimation: the Gibbs sampler

Bayesian estimation in LMMs (and their generalised linear model counterparts) generally proceeds using Markov Chain Monte Carlo (MCMC) methods, in particular approaches based on the Gibbs sampler. Such methods have proved very effective.

MCMC computation provides posterior summaries, by generating a dependent sample from the posterior distribution of interest. Then, any posterior expectation can be estimated by the corresponding Monte Carlo sample mean, densities can be estimated from samples etc.
MCMC will be covered in detail in APTS: Computer Intensive Statistics. Here we simply describe the (most basic) Gibbs sampler.
To generate from $f\left(y_{1}, \ldots, y_{n}\right)$, (where the component $y_{i} s$ are allowed to be multivarate) the Gibbs sampler starts from an arbitrary value of y and updates components (sequentially or otherwise) by generating from the conditional distributions $f\left(y_{i} \mid y_{\backslash i}\right)$ where $y_{\backslash i}$ are all the variables other than y_{i}, set at their currently generated values.

Hence, to apply the Gibbs sampler, we require conditional distributions which are available for sampling.

Bayesian estimation for LMMs

For the LMM

$$
Y \sim N(\mu, \Sigma), \quad \mu=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

with corresponding prior densities $f(\beta), f(\Sigma), f\left(\Sigma_{b}\right)$, we obtain the conditional posterior distributions

$$
\begin{aligned}
f(\beta \mid y, \text { rest }) & \propto \phi(y-Z b ; X \beta, V) f(\beta) \\
f(b \mid y, \text { rest }) & \propto \phi(y-X \beta ; Z b, V) \phi\left(b ; 0, \Sigma_{b}\right) \\
f(\Sigma \mid y, \text { rest }) & \propto \phi(y-X \beta-Z b ; 0, V) f(\Sigma) \\
f\left(\Sigma_{b} \mid y, \text { rest }\right) & \propto \phi\left(b ; 0, \Sigma_{b}\right) f\left(\Sigma_{b}\right)
\end{aligned}
$$

where $\phi(y ; \mu, \Sigma)$ is a $N(\mu, \Sigma)$ p.d.f. evaluated at y.
We can exploit conditional conjugacy in the choices of $f(\beta), f(\Sigma), f\left(\Sigma_{b}\right)$ making the conditionals above of known form and hence straightforward to sample from. The conditional independence $(\beta, \Sigma) \Perp \Sigma_{b} \mid b$ is also helpful.
See Practical 3 for further details.

APTS: Statistical Modelling

April 2018 - slide 91

Example: Rat growth revisited

Here, we consider the model

$$
y_{i j}=\beta_{0}+b_{0 i}+\left(\beta_{1}+b_{1 i}\right) x_{i j}+\epsilon_{i j}, \quad\left(b_{0 i}, b_{1 i}\right)^{\mathrm{T}} \stackrel{\text { ind }}{\sim} N\left(0, \Sigma_{b}\right)
$$

where $\epsilon_{i j} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ and Σ_{b} is an unspecified covariance matrix. This model allows for random (cluster specific) slope and intercept.

Estimates obtained by REML (ML in brackets) are

Parameter	Estimate	Standard error
β_{0}	156.05	$2.16(2.13)$
β_{1}	43.27	$0.73(0.72)$
$\Sigma_{00}^{1 / 2}=$ s.d. $\left(b_{0}\right)$	$10.93(10.71)$	
$\Sigma_{11}^{1 / 2}=$ s.d. $\left(b_{1}\right)$	$3.53(3.46)$	
$\operatorname{Corr}\left(b_{0}, b_{1}\right)$	$0.18(0.19)$	
σ	$5.82(5.82)$	

As expected ML variances are smaller, but not by much.

Example: Fixed v. random effect estimates

The shrinkage of random effect estimates towards a common mean is clearly illustrated.

Random effects estimates 'borrow strength' across clusters, due to the Σ_{b}^{-1} term in (13). Extent of this is determined by cluster similarity. This is usually considered to be a desirable behaviour.

Random effect shrinkage

The following simple example illustrates (from a Bayesian perspective) why and how random effects are shrunk to a common value.
Suppose that y_{1}, \ldots, y_{n} satisfy

$$
y_{j}\left|\theta_{j} \stackrel{\text { ind }}{\sim} N\left(\theta_{j}, v_{j}\right), \quad \theta_{1}, \ldots, \theta_{n}\right| \mu \stackrel{\text { iid }}{\sim} N\left(\mu, \sigma^{2}\right), \quad \mu \sim N\left(\mu_{0}, \tau^{2}\right)
$$

where $v_{1}, \ldots, v_{n}, \sigma^{2}, \mu_{0}$ and τ^{2} are assumed known here. Then, the usual posterior calculations give us

$$
\mathrm{E}(\mu \mid y)=\frac{\mu_{0} / \tau^{2}+\sum y_{j} /\left(\sigma^{2}+v_{j}\right)}{1 / \tau^{2}+\sum 1 /\left(\sigma^{2}+v_{j}\right)}, \quad \operatorname{var}(\mu \mid y)=\frac{1}{1 / \tau^{2}+\sum 1 /\left(\sigma^{2}+v_{j}\right)},
$$

and

$$
\mathrm{E}\left(\theta_{j} \mid y\right)=(1-w) \mathrm{E}(\mu \mid y)+w y_{j},
$$

where

$$
w=\frac{\sigma^{2}}{\sigma^{2}+v_{j}}
$$

Example: Diagnostics

Normal Q-Q plots of intercept (panel 1) and slope (panel 2) random effects and residuals v. week (panel 3)

Evidence of a common quadratic effect, confirmed by AIC (1036 v. 1099) and BIC (1054 v. 1114) based on full ML fits. AIC would also include a cluster quadratic effect (BIC equivocal).

Generalised linear mixed models

Generalised linear mixed models (GLMMs) generalise LMMs to non-normal data, in the obvious way:

$$
Y_{i} \stackrel{\text { ind }}{\sim} F\left(\cdot \mid \mu_{i}, \sigma^{2}\right), \quad g(\mu) \equiv\left(\begin{array}{c}
g\left(\mu_{1}\right) \tag{14}\\
\vdots \\
g\left(\mu_{n}\right)
\end{array}\right)=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

where $F\left(\cdot \mid \mu_{i}, \sigma^{2}\right)$ is an exponential family distribution with $\mathrm{E}(Y)=\mu$ and $\operatorname{var}(Y)=\sigma^{2} V(\mu) / m$ for known m. Commonly (e.g. Binomial, Poisson) $\sigma^{2}=1$, and we shall assume this from here on.
It is not necessary that the distribution for the random effects b is normal, but this usually fits. It is possible (but beyond the scope of this module) to relax this.

APTS: Statistical Modelling
April 2018 - slide 96

GLMM example

A plausible GLMM for binary data in k clusters with n_{1}, \ldots, n_{k} observations per cluster, and a single explanatory variable x (e.g. the toxoplasmosis data at individual level) is

$$
\begin{equation*}
Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i}\right), \quad \log \frac{\mu_{i}}{1-\mu_{i}}=\beta_{0}+b_{0 i}+\beta_{1} x_{i j}, \quad b_{0 i} \stackrel{\text { ind }}{\sim} N\left(0, \sigma_{b}^{2}\right) \tag{15}
\end{equation*}
$$

[note: no random slope here]. This fits into the general GLMM framework (14) with

$$
\begin{gathered}
X=\left(\begin{array}{cc}
1 & x_{11} \\
\vdots & \vdots \\
1 & x_{k n_{k}}
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
Z_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & Z_{k}
\end{array}\right), \quad Z_{i}=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right), \\
\beta=\left(\beta_{0}, \beta_{1}\right)^{\mathrm{T}}, \quad b=\left(b_{01}, \ldots, b_{0 k}\right)^{\mathrm{T}}, \quad \Sigma_{b}=\sigma_{b}^{2} I_{k}
\end{gathered}
$$

[or equivalent binomial representation for city data, with clusters of size 1.]

GLMM likelihood

The marginal distribution for the observed Y in a GLMM does not usually have a convenient closed-form representation.

$$
\begin{align*}
f\left(y \mid \beta, \Sigma_{b}\right) & =\int f\left(y \mid \beta, b, \Sigma_{b}\right) f\left(b \mid \beta, \Sigma_{b}\right) \mathrm{d} b \\
& =\int f(y \mid \beta, b) f\left(b \mid \Sigma_{b}\right) \mathrm{d} b \\
& =\int \prod_{i=1}^{n} f\left(y_{i} \mid g^{-1}\left([X \beta+Z b]_{i}\right)\right) f\left(b \mid \Sigma_{b}\right) \mathrm{d} b . \tag{16}
\end{align*}
$$

For nested random effects structures, some simplification is possible. For example, for (15)

$$
f\left(y \mid \beta, \sigma_{b}^{2}\right) \propto \prod_{i=1}^{n} \int \frac{\exp \left(\sum_{j} y_{i j}\left(\beta_{0}+b_{0 i}+\beta_{1} x_{i j}\right)\right)}{\left\{1+\exp \left(\sum_{j} y_{i j}\left(\beta_{0}+b_{0 i}+\beta_{1} x_{i j}\right)\right)\right\}^{n k}} \phi\left(b_{0 i} ; 0, \sigma_{b}^{2}\right) \mathrm{d} b_{0 i}
$$

a product of one-dimensional integrals.
APTS: Statistical Modelling
April 2018 - slide 98

GLMM fitting: quadrature

Fitting a GLMM by likelihood methods requires some method for approximating the integrals involved.

The most reliable when the integrals are of low dimension is to use Gaussian quadrature (see APTS: Statistical computing). For example, for a one-dimensional cluster-level random intercept b_{i} we might use

$$
\begin{aligned}
& \int \prod_{j} f\left(y_{i j} \mid g^{-1}\left(x_{i}^{\mathrm{T}} \beta+b_{i}\right)\right) \phi\left(b_{i} \mid 0, \sigma_{b}^{2}\right) \mathrm{d} b_{i} \\
& \quad \approx \sum_{q=1}^{Q} w_{q} \prod_{j} f\left(y_{i j} \mid g^{-1}\left(x_{i}^{\mathrm{T}} \beta+b_{i q}\right)\right)
\end{aligned}
$$

for suitably chosen weights $\left(w_{q}, q=1, \ldots, Q\right)$ and quadrature points ($b_{i q}, q=1, \ldots, Q$)
Effective quadrature approaches use information about the mode and dispersion of the integrand (can be done adaptively).
For multi-dimensional b_{i}, quadrature rules can be applied recursively, but performance (in fixed time) diminishes rapidly with dimension.

GLMM fitting: Penalised quasi-likelihood

An alternative approach to fitting a GLMM uses penalised quasi-likelihood (PQL).
The most straightforward way of thinking about PQL is to consider the adjusted dependent variable v constructed when computing mles for a GLM using Fisher scoring

$$
v_{i}=\left(y_{i}-\mu_{i}\right) g^{\prime}\left(\mu_{i}\right)+\eta_{i}
$$

Now, for a GLMM,

$$
\mathrm{E}(v \mid b)=\eta=X \beta+Z b
$$

and

$$
\operatorname{var}(v \mid b)=W^{-1}=\operatorname{diag}\left(\operatorname{var}\left(y_{i}\right) g^{\prime}\left(\mu_{i}\right)^{2}\right),
$$

where W is the weight matrix used in Fisher scoring.

GLMM fitting: PQL continued

Hence, approximating the conditional distribution of v by a normal distribution, we have

$$
\begin{equation*}
v \sim N\left(X \beta+Z b, W^{-1}\right), \quad b \sim N\left(0, \Sigma_{b}\right) \tag{17}
\end{equation*}
$$

where v and W also depend on β and b.
PQL proceeds by iteratively estimating β, b and Σ_{b} for the linear mixed model (17) for v, updating v and W at each stage, based on the current estimates of β and b.

An alternative justification for PQL is as using a Laplace-type approximation to the integral in the GLMM likelihood.
A full Laplace approximation (expanding the complete log-integrand, and evaluating the Hessian matrix at the mode) is an alternative, equivalent to one-point Gaussian quadrature.

APTS: Statistical Modelling

April 2018 - slide 101

GLMM fitting: discussion

Using PQL, estimates of random effects b come 'for free'. With Gaussian quadrature, some extra effort is required to compute $\mathrm{E}(b \mid y)$ - further quadrature is an obvious possibility.

There are drawbacks with PQL, and the best advice is to use it with caution.
\square It can fail badly when the normal approximation that justifies it is invalid (for example for binary observations)
\square As it does not use a full likelihood, model comparison should not be performed using PQL maximised 'likelihoods'
Likelihood inference for GLMMs remains an area of active research and vigorous debate. Recent approaches include HGLMs (hierarchical GLMs) where inference is based on the h-likelihood $f(y \mid \beta, b) f(b \mid \Sigma)$.

Bayesian estimation for GLMMs

Bayesian estimation in GLMMs, as in LMMs, is generally based on the Gibbs sampler. For the GLMM

$$
Y_{i} \stackrel{\text { ind }}{\sim} F(\cdot \mid \mu), \quad g(\mu)=X \beta+Z b, \quad b \sim N\left(0, \Sigma_{b}\right)
$$

with corresponding prior densities $f(\beta)$ and $f\left(\Sigma_{b}\right)$, we obtain the conditional posterior distributions

$$
\begin{aligned}
f(\beta \mid y, \text { rest }) & \propto f(\beta) \prod_{i} f\left(y_{i} \mid g^{-1}(X \beta+Z b)\right) \\
f(b \mid y, \text { rest }) & \propto \phi\left(b ; 0, \Sigma_{b}\right) \prod_{i} f\left(y_{i} \mid g^{-1}(X \beta+Z b)\right) \\
f\left(\Sigma_{b} \mid y, \text { rest }\right) & \propto \phi\left(b ; 0, \Sigma_{b}\right) f\left(\Sigma_{b}\right)
\end{aligned}
$$

For a conditionally conjugate choice of $f\left(\Sigma_{b}\right), f\left(\Sigma_{b} \mid y\right.$, rest) is straightforward to sample from. The conditionals for β and b are not generally available for direct sampling, but there are a number of ways of modifying the basic approach to account for this.

APTS: Statistical Modelling
April 2018 - slide 103

Toxoplasmosis revisited

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the individual-level model

$$
Y_{i j} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}\left(\mu_{i}\right), \quad \log \frac{\mu_{i}}{1-\mu_{i}}=\beta_{0}+b_{0 i}+\beta_{1} x_{i j}, \quad b_{0 i} \stackrel{\text { ind }}{\sim} N\left(0, \sigma_{b}^{2}\right)
$$

Parameter			
	Estimate (s.e.)		
β_{0}	$-0.1384(1.452)$	$-0.1343(1.440)$	$-0.115(1.445)$
$\beta_{1}\left(\times 10^{6}\right)$	$7.215(752)$	$5.930(745.7)$	$0.57(749.2)$
σ_{b}	0.5209	0.5132	0.4946
AIC	65.75	65.96	-

APTS: Statistical Modelling
April 2018 - slide 104

Toxoplasmosis continued

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the extended model

So for this example, a good agreement between the different computational methods.

Overview

1. Basic nonlinear models
2. Extending the nonlinear model
3. Computationally expensive nonlinear models
4. Model discrepancy

Basic nonlinear models

Linear models

So far we have only considered models where the link function of the mean response is equal to the linear predictor, i.e. in the most general case of the generalised linear mixed model (GLMM)

$$
\begin{aligned}
\mu_{i j} & =\mathrm{E}\left(y_{i j}\right) \\
g\left(\mu_{i j}\right) & =\eta_{i j}=x_{i j}^{\mathrm{T}} \beta+z_{i j}^{\mathrm{T}} b_{i}
\end{aligned}
$$

and where the response distribution for y is from the exponential family of distributions
$\square \quad$ The key point is that the linear predictor is a linear function of the parameters.
$\square \quad$ The GLMM has the following special cases

- linear models;
- generalised linear models (GLMs);
- linear mixed models (LMMs).

These "linear" models form the basis of most applied statistical analyses.
\square Usually, there is no scientific reason to believe these "linear" models are "true" for a given application. However, they might be "useful".

APTS: Statistical Modelling
April 2018 - slide 109

Nonlinear models

Begin by assuming that y has a normal distribution and the link function, g, is the identity link and $z_{i j}=0$, i.e.

$$
\begin{equation*}
y_{i}=x_{i}^{T} \beta+\epsilon_{i} \tag{18}
\end{equation*}
$$

where $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$, independently, where β are the p regression parameters.
\square Consider extending this model so that instead of the mean response being the linear predictor $x_{i}^{T} \beta$, it is a nonlinear function of parameters, i.e.

$$
\begin{equation*}
y_{i}=\eta\left(x_{i}, \beta\right)+\epsilon_{i} \tag{19}
\end{equation*}
$$

where $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$, independently, where β are the p nonlinear parameters.
\square Obviously, the model specified by (19) has the linear model (18) as a special case when $\eta(x, \beta)=x^{\mathrm{T}} \beta$.
$\square \quad$ Note that, sometimes the term nonlinear model is used to describe any model which is not a linear model (18), which would include GLMs and GLMMs.

Example - Calcium Data

The response, y, is the uptake of calcium (in nmoles per mg) at time x (in minutes) by $n=27$ cells in "hot" suspension.

```
> calcium
```

	x	y
	0.45	0.34170
1	1.30	1.77967
2	2.40	1.75136
3	4.00	3.12273
4	6.10	3.17881
5	8.05	3.05959
6	8	
7	11.15	4.80735
8	13.15	5.13825
9	15.00	3.60407
10	0.45	-0.00438
11	1.30	0.95384
12	2.40	1.27497
13	4.00	2.60958

APTS: Statistical Modelling

Example - Calcium Data

Plot of calcium uptake against time.

APTS: Statistical Modelling

Nonlinear parameters

Nonlinear parameters can be of two different types:
\square Physical parameters have meaning within the science underlying the model, $\eta(x, \beta)$. Estimating the value of physical parameters contributes to scientific understanding.
Tuning parameters do not have physical meaning. Their presence is often as a simplification of a more complex underlying system. Their estimation is to make the model fit best to reality.
In most cases, in a linear model, the regression parameters are tuning parameters.

APTS: Statistical Modelling

April 2018 - slide 113

Advantages and disadvantages

Advantages

Can incorporate prior scientific knowledge through the function $\eta(x, \beta)$.
\square Can fit simpler models, i.e. less parameters, to adequately describe observed data than by using linear models.
\square Can provide extrapolated predictions (typically discouraged for linear models).
\square Can directly contribute to scientific understanding through the estimation of physical parameters.

Disadvantages

Need to specify the function $\eta(x, \beta)$.
\square There are computational problems associated with these models.
\square All models are wrong.
APTS: Statistical Modelling
April 2018 - slide 114

Specifying $\eta(x, \beta)$

How might the function $\eta(x, \beta)$ be specified?
\square Mechanistically - prior scientific knowledge is incorporated into building a mathematical model for the mean response. This can often be complex and $\eta(x, \beta)$ may not be available in closed form.
\square Phenomenologically (empirically) - a function $\eta(x, \beta)$ may be posited that appears to capture the non-linear nature of the mean response.

Example - Calcium Data

\square Here the calcium uptake "grows" with time.There is a large class of phenomenological models for growth curves.Consider the non-linear model with

$$
\begin{equation*}
\eta(x, \beta)=\beta_{0}\left(1-\exp \left(-x / \beta_{1}\right)\right) \tag{20}
\end{equation*}
$$This is derived by assuming that the rate of growth is proportional to the calcium remaining, i.e.

$$
\frac{\mathrm{d} \eta}{\mathrm{~d} x}=\left(\beta_{0}-\eta\right) / \beta_{1} .
$$

$\square \quad$ The solution to this differential equation is (20).Interpretation of parameters:

- β_{0} - final size of population;
- β_{1} - (inversely) controls growth rate.

APTS: Statistical Modelling

Example - Calcium Data

Plot of calcium uptake against time.Includes fitted lines for three different models

Example - Calcium Data

A comparison of the goodness-of-fit for the three models:

Model	Parameters (p)	$l(\hat{\theta})$	AIC
Linear model (slope)	2	-28.70	63.40
Linear model (quadratic)	3	-20.95	49.91
Non-linear model	2	-20.95	47.91

The goodness-of-fit for the quadratic and nonlinear models is identical (to 2 decimal places).
\square Since the nonlinear model is simpler (less parameters), it is the preferred model.

Extending the nonlinear model

Introduction

Nonlinear models can be extended to

1. non-normal responses;
2. clustered responses;
in the same way as linear models.
\square Here, we consider clustered responses and briefly discuss the nonlinear mixed model.
APTS: Statistical Modelling
April 2018 - slide 120

Example - Theophylline

Theophylline is an anti-asthmatic drug.An experiment was performed on $n=12$ individuals to investigate the way in which the drug leaves the body.The study of drug concentrations inside organisms is called pharmacokinetics.An oral dose, D_{i}, was given to the i th individual at time $t=0$, for $i=1, \ldots, n$.\square The concentration of theophylline in the blood was then measured at 11 time points in the next 25 hours.
$\square \quad$ Let $y_{i j}$ be the theophylline concentration (mg / L) for individual i at time $t_{i j}$.

Example - Theophylline

> Theoph					
Grouped Data: conc ~ Time \| Subject					
		Wt	Dose	Time	conc
1	1	79.6	4.02	0.00	0.74
2	1	79.6	4.02	0.25	2.84
3	1	79.6	4.02	0.57	6.57
4	1	79.6	4.02	1.12	10.50
5		79.6	4.02	2.02	9.66
6		79.6	4.02	3.82	8.58
7	1	79.6	4.02	5.10	8.36
8		79.6	4.02	7.03	7.47
9		79.6	4.02	9.05	6.89
10		79.6	4.02	12.12	5.94
11	1	79.6	4.02	24.37	3.28
12		72.4	4.40	0.00	0.00
13		272.4	4.40	0.27	1.72

APTS: Statistical Modelling

Example - Theophylline

Plot of concentration of theophylline against time for each of the individuals.

There is a sharp increase in concentration followed by a steady decrease.

Example - Theophylline

Compartmental models are a common class of model used in pharmacokinetics studies.If the initial dosage is D, then a two-compartment open pharmacokinetic model is$$
\eta(\beta, D, t)=\frac{D \beta_{1} \beta_{2}}{\beta_{3}\left(\beta_{2}-\beta_{1}\right)}\left(\exp \left(-\beta_{1} t\right)-\exp \left(-\beta_{2} t\right)\right),
$$

where the (positive) nonlinear parameters are

- β_{1} is the elimination rate and controls the rate at which the drug leaves the organism;
- β_{2} is the absorption rate and controls the rate at which the drug enters the blood;
- β_{3} is the clearance and controls the volume of blood for which a drug is completely removed per time unit.

APTS: Statistical Modelling
April 2018 - slide 124

Example - Theophylline

Initially ignore the dependence induced from repeated measurements on individuals and assume the following basic nonlinear model

$$
y_{i j}=\eta\left(\beta, D_{i}, t_{i j}\right)+\epsilon_{i j},
$$

where $\epsilon_{i j} \sim N\left(0, \sigma^{2}\right)$.
\square Residuals show evidence of an unexplained difference between individuals.

Nonlinear mixed effects models

A nonlinear mixed model is

$$
y_{i j}=\eta\left(\beta+b_{i}, x_{i j}\right)+\epsilon_{i j},
$$

where

$$
\begin{aligned}
\epsilon_{i j} & \sim N\left(0, \sigma^{2}\right) \\
b_{i} & \sim N\left(0, \Sigma_{b}\right)
\end{aligned}
$$

and Σ_{b} is a $q \times q$ covariance matrix.
\square This model specifies that $\beta_{i}=\beta+b_{i}$ are the nonlinear parameters for the i th cluster, i.e. the cluster-specific nonlinear parameters.
$\square \quad$ In the case of the Theophylline example, each individual would have unique elimination rate, absorption rate and clearance.
\square Obviously, $\beta_{i} \sim N\left(\beta, \Sigma_{b}\right)$. The mean, β, of the cluster-specific nonlinear parameters across all individuals are the population nonlinear parameters.

APTS: Statistical Modelling
April 2018 - slide 126

Non-linear mixed effects models

We might like to specify the model in a way such that only a subset of the nonlinear parameters can be different for each individual, and the remainder fixed for all individuals.
\square Suppose $q \leq p$ nonlinear parameters are can be different for each individual, then a more general way of writing the nonlinear mixed model is

$$
y_{i j}=\eta\left(\beta+A b_{i}, x\right)+\epsilon_{i j}
$$

where

$$
\begin{aligned}
\epsilon_{i j} & \sim N\left(0, \sigma^{2}\right) \\
b_{i} & \sim N\left(0, \Sigma_{b}\right)
\end{aligned}
$$

where Σ_{b} is a $q \times q$ covariance matrix and A is a $p \times q$ binary matrix.
A allows the specification of the fixed and varying nonlinear parameters.
APTS: Statistical Modelling
April 2018 - slide 127

Special case of linear mixed models

$\square \quad$ The linear mixed model is a special case of the nonlinear mixed model where

$$
\eta(\beta, x)=x^{\mathrm{T}} \beta
$$

Then

$$
\begin{aligned}
\eta(\beta+A b x) & =x^{\mathrm{T}}(\beta+A b) \\
& =x^{\mathrm{T}} \beta+x^{\mathrm{T}} A b
\end{aligned}
$$

so $z=A^{\mathrm{T}} x$.For a random intercept model, where $q=1, A=(1,0, \ldots, 0)$.

Example - Theophyline

\square Returning to the Theophyline example, we fit the nonlinear mixed model, allowing all of the nonlinear parameters to vary across individuals, i.e. $A=I_{3}$.Estimates:

$$
\begin{aligned}
& \widehat{\beta}_{1}=0.0864 \widehat{\Sigma}_{b 11}=0.0166 \\
& \widehat{\beta}_{2}=1.6067 \\
& \widehat{\Sigma}_{b 22}=0.9349 \\
& \widehat{\beta}_{3}=0.0399 \\
& \widehat{\Sigma}_{b 33}=0.0491
\end{aligned}
$$

$\square \quad \mathrm{AIC}=372.6$

Example - Theophyline

$\square \quad$ The estimated value of $\Sigma_{b 11}$ is "small" so we fit the nonlinear mixed model, allowing absorption rate and clearance to vary across individuals, i.e.

$$
A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Estimates:

$$
\begin{aligned}
& \widehat{\beta}_{1}=0.0859 \\
& \widehat{\beta}_{2}=1.6032 \quad \widehat{\Sigma}_{b 22}=0.6147 \\
& \widehat{\beta}_{3}=0.0397 \quad \widehat{\Sigma}_{b 33}=0.0284
\end{aligned}
$$

$\square \quad \mathrm{AIC}=368.6$
\square No further model simplifications reduce the AIC.

APTS: Statistical Modelling

Extensions to nonnormal responses

Nonlinear models can be extended to nonnormal responses in the same way as linear models.The most general model is the generalised nonlinear mixed model (GNLMM).$y_{i j}$ is from exponential family.$\mathrm{E}\left(y_{i j}\right)=\mu_{i j}$.$g\left(\mu_{i j}\right)=\eta\left(\beta+A b_{i}, x_{i j}\right)$.This model has the following special cases:| linear model | nonlinear model |
| :--- | :--- |
| linear mixed model | nonlinear mixed model |
| generalised linear model | generalised nonlinear model |
| generalised linear mixed model | |

Issues

There are various technical and practical issues related to fitting nonlinear models (some of these are common to GLMs and GLMMs).
$\square \quad$ Approximation of likelihood function (random effects are integrated out)
\square Convergence of optimisation routines to find estimates
\square Existence of estimates
$\square \quad$ Reliability of asymptotic inference
$\square \quad$ Computational expense of evaluating $\eta(\beta, x)$.
$\square \quad$ All models are wrong.
These are all areas of current research.

Computationally expensive nonlinear models

Computationally expensive nonlinear models

$\square \quad$ It typically requires many evaluations of $\eta(\beta, x)$ to fit a nonlinear model, either to find the estimate of β or to generate an MCMC sample.
$\square \quad$ What happens if the non-linear model $\eta(\beta, x)$ is computationally expensive?
\square For example, $\eta(\beta, x)$ could be the numerical solution to a system of differential equations where the exact solution is not available in closed form.
\square The numerical solution to $\eta(\beta, x)$, implemented in computer code, is computationally expensive to evaluate.
$\square \quad$ This can render model fitting to be infeasible.
APTS: Statistical Modelling
April 2018 - slide 134

Computer experiments and emulators

\square One approach is to develop an approximation, $\widehat{\eta}(\beta, x)$, to the non-linear model $\eta(\beta, x)$.
\square Evaluation of $\widehat{\eta}(\beta, x)$ replaces evaluation of $\eta(\beta, x)$ in all model fitting procedures.
$\square \quad$ The approximation is typically called an emulator or surrogate.
\square How is such an emulator constructed?
\square Answer: via a computer experiment. This topic is briefly discussed here and will be covered in much more detail on the APTS Week 4 module: Design of Experiments and Studies

APTS: Statistical Modelling
April 2018 - slide 135

Computer experiments and emulators

\square Let $z=(\beta, x)$ be the inputs to the nonlinear model such that $\eta(\beta, x)=\eta(z)$. Let d be the dimension of z.
\square The nonlinear model is evaluated at a "small" number, m, of inputs

$$
\zeta=\left\{z^{1}, \ldots, z^{m}\right\}
$$

where $z^{i}=\left(\beta^{i}, x^{i}\right)$, for $i=1, \ldots, m$.Finally, let $\eta^{i}=\eta\left(z^{i}\right)$, for $i=1, \ldots, m$ and $\eta=\left(\eta^{1}, \ldots, \eta^{m}\right)$.

APTS: Statistical Modelling

April 2018 - slide 136

Gaussian Process Emulators

The most commonly-used emulator is a Gaussian Process (GP) emulator.
\square Here any finite collection of evaluations of $\eta(z)$ is assumed to have a multivariate normal distribution.
$\square \quad$ Suppose $\eta_{0}=\eta\left(z^{0}\right)=\eta\left(\beta^{0}, x^{0}\right)$ is the value of the nonlinear model we wish to predict.
\square Assumption:

$$
\binom{\eta}{\eta^{0}} \sim N\left(\left(\begin{array}{c}
\theta \\
\vdots \\
\theta
\end{array}\right), \tau^{2}\left(\begin{array}{cc}
C & c^{\mathrm{T}} \\
c & 1
\end{array}\right)\right)
$$

i.e. a multivariate normal with (marginally) common mean θ and variance τ^{2}.

Note that

$C_{i j}$	- correlation between $\eta\left(z^{i}\right)$ and $\eta\left(z^{j}\right)$
c_{i}	- correlation between $\eta\left(z^{i}\right)$ and $\eta\left(z^{0}\right)$

APTS: Statistical Modelling

Gaussian Process Emulators

By the properties of the multivariate normal

$$
\eta^{0} \mid \eta \sim N\left(\theta+c^{\mathrm{T}} C^{-1}\left(\eta-\theta 1_{m}\right), \tau^{2}\left(1-c^{\mathrm{T}} C^{-1} c\right)\right)
$$

where 1_{m} is a vector of m ones.
$\square \quad$ Structure is imposed on the elements of C and c as follows

$$
\begin{aligned}
C_{i j} & =\kappa\left(z^{i}, z^{j} ; \rho\right) \\
c_{i j} & =\kappa\left(z^{i}, z^{0} ; \rho\right)
\end{aligned}
$$

where $\kappa(\cdot, \cdot ; \rho)$ is a correlation function depending on ρ.A commonly-used correlation function is the squared exponential:

$$
\kappa\left(z^{i}, z^{j} ; \rho\right)=\exp \left(-\sum_{k=1}^{d} \rho_{i}\left(z_{k}^{i}-z_{k}^{j}\right)^{2}\right)
$$

θ, τ^{2} and ρ can be estimated via maximum likelihood or a Bayesian approach taken.

Example

Model discrepancy

Model discrepancy

Under the basic nonlinear model we are assuming

$$
y=\eta(\beta, x)+\epsilon,
$$

i.e. the observed responses are given by the nonlinear model plus some random error.However, all models are wrong.In Chapter 1, we accounted for this by considering more complex models.If $\eta(\beta, x)$ is a mechanistic model, there is not really scope to make it more complex.

Model discrepancy

$\square \quad$ Let $\mu(x)$ be true system depending on x.We observe

$$
y=\mu(x)+\epsilon
$$$\eta(\beta, x)$ is our model and is our best guess at $\mu(x)$ where β are the true value of the parameters.Assume

$$
\mu(x)=\eta(\beta, x)+\delta(x)
$$

where $\delta(x)$ is the difference between reality and our model, i.e. the model discrepancy.Therefore

$$
y=\eta(\beta, x)+\delta(x)+\epsilon
$$The model discrepancy is an unknown function.Taking a Bayesian approach, a prior is placed on this function. In particular, the Kennedy \& O'Hagan (2001) framework places a Gaussian process prior on this function.Therefore, we are explicitly modelling the model discrepancy.

APTS: Statistical Modelling
April 2018 - slide 142

Example - Illustrative

\square This example is adapted from Brynjarsdottir \& O'Hagan (2014).
$\square \quad$ Suppose reality is such that

$$
\mu(x)=\frac{\beta x}{1+x / 20}
$$

where $\beta=0.65$ is the true value of nonlinear parameter.Our model is such that

$$
\eta(\beta, x)=\beta x
$$

The model discrepancy is then

$$
\delta(x)=\frac{x}{20+x}
$$

APTS: Statistical Modelling

Example - Illustrative

APTS: Statistical Modelling

Example - Illustrative

\square Consider an experiment to achieve the three aims of

1. Interpolation prediction, i.e. predict value of y for $x=2$;
2. Extrapolation prediction, i.e. predict value of y for $x=6$;
3. Estimate value of β.We observe the response y at n values of $x \in[0,4]$.We take two different approaches:
4. Ignore mode discrepancy - just fit basic nonlinear model;
5. Use Kennedy \& O'Hagan framework with nonlinear model with model discrepancy.

Estimation

Posterior density of β under basic nonlinear model (left) and nonlinear model with model discrepancy (right).

APTS: Statistical Modelling

Example - Interpolation

Posterior density of $\mu\left(x_{0}\right)$ (with $x_{0}=2$) under basic nonlinear model (left) and nonlinear model with model discrepancy (right).

Example - Extrapolation

Posterior density of $\mu\left(x_{0}\right)$ (with $x_{0}=6$) under basic nonlinear model (left) and nonlinear model with model discrepancy (right).

APTS: Statistical Modelling
April 2018 - slide 148

Model discrepancy - discussion

Modelling the model discrepancy with a Gaussian process alleviated the problem with interpolation prediction but not for extrapolation prediction or parameter estimation.Brynjarsdottir \& O'Hagan (2014) considered using a constrained Gaussian process to incorporate prior information on the model discrepancy (e.g. value at $x=0$ and monotoncity) and this eased the problem for parameter estimation but not for extrapolation prediction.How to account for model discrepancy remains an open research problem.

