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George E. P. Box (1919–2013):

All models are wrong, but some models are useful.

! Some reasons we construct models:

– to simplify reality (efficient representation);

– to gain understanding;

– to compare scientific, economic, . . . theories;

– to predict future events/data;

– to control a process.

! We (statisticians!) rarely believe in our models, but regard them as
temporary constructs subject to improvement.

! Often we have several and must decide which is preferable, if any.
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! Substantive knowledge, from prior studies, theoretical
arguments, dimensional or other general considerations
(often qualitative)

! Sensitivity to failure of assumptions (prefer models that are
robustly valid)

! Quality of fit—residuals, graphical assessment (informal), or
goodness-of-fit tests (formal)

! Prior knowledge in Bayesian sense (quantitative)

! Generalisability of conclusions and/or predictions:
same/similar models give good fit for many different datasets

! . . . but often we have just one dataset . . .
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Even after applying these criteria (but also before!) we may
compare many models:

! linear regression with p covariates, there are 2p possible
combinations of covariates (each in/out), before allowing for
transformations, etc.— if p = 20 then we have a problem;

! choice of bandwidth h > 0 in smoothing problems

! the number of different clusterings of n individuals is a Bell
number (starting from n = 1): 1, 2, 5, 15, 52, 203, 877,
4140, 21147, 115975, . . .

! we may want to assess which among 5× 105 SNPs on the
genome may influence reaction to a new drug;

! . . .

For reasons of economy we seek ‘simple’ models.



Albert Einstein (1879–1955)

Statistical Modelling

1. Model Selection

Basic Ideas

Why model?
Criteria for model
selection

◃ Motivation

Setting

Logistic regression

Nodal involvement

Log likelihood

Wrong model
Out-of-sample
prediction

Information criteria

Nodal involvement

Theoretical aspects
Properties of AIC,
NIC, BIC

Linear Model

Bayesian Inference

APTS: Statistical Modelling April 2018 – slide 8

‘Everything should be made as simple as possible, but no
simpler.’
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Occam’s razor: Entia non sunt multiplicanda sine
necessitate: entities should not be multiplied beyond
necessity.



Setting
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! To focus and simplify discussion we will consider parametric models, but the
ideas generalise to semi-parametric and non-parametric settings

! We shall take generalised linear models (GLMs) as example of moderately
complex parametric models:

– Normal linear model has three key aspects:

◃ structure for covariates: linear predictor η = xTβ;

◃ response distribution: y ∼ N(µ,σ2); and

◃ relation η = µ between µ = E(y) and η.

– GLM extends last two to

◃ y has density

f(y; θ,φ) = exp

{
yθ − b(θ)

φ
+ c(y;φ)

}
,

where θ depends on η; dispersion parameter φ is often known; and

◃ η = g(µ), where g is monotone link function.
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! Commonest choice of link function for binary reponses:

Pr(Y = 1) = π =
exp(xTβ)

1 + exp(xTβ)
, Pr(Y = 0) =

1

1 + exp(xTβ)
,

giving linear model for log odds of ‘success’,

log

{
Pr(Y = 1)

Pr(Y = 0)

}
= log

(
π

1− π

)
= xTβ.

! Log likelihood for β based on independent responses y1, . . . , yn
with covariate vectors x1, . . . , xn is

ℓ(β) =
n∑

j=1

yjx
T

j β −
n∑

j=1

log
{
1 + exp(xT

j β)
}

! Good fit gives small deviance D = 2
{
ℓ(β̃)− ℓ(β̂)

}
, where β̂ is

model fit MLE and β̃ is unrestricted MLE.



Nodal involvement data

Statistical Modelling

1. Model Selection

Basic Ideas

Why model?
Criteria for model
selection

Motivation

Setting

Logistic regression

◃
Nodal
involvement

Log likelihood

Wrong model
Out-of-sample
prediction

Information criteria

Nodal involvement

Theoretical aspects
Properties of AIC,
NIC, BIC

Linear Model

Bayesian Inference

APTS: Statistical Modelling April 2018 – slide 12

Table 1: Data on nodal involvement: 53 patients with prostate
cancer have nodal involvement (r), with five binary covariates age
etc.

m r age stage grade xray acid
6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 0 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0

2 1 0 1 0 0 1
2 1 0 0 1 0 0
1 1 1 1 1 1 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
1 1 0 0 1 0 1
1 0 0 0 0 1 1
1 0 0 0 0 1 0



Nodal involvement deviances
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Deviances D for 32 logistic regression models for nodal involvement data. +
denotes a term included in the model.

age st gr xr ac df D age st gr xr ac df D

52 40.71 + + + 49 29.76
+ 51 39.32 + + + 49 23.67

+ 51 33.01 + + + 49 25.54
+ 51 35.13 + + + 49 27.50

+ 51 31.39 + + + 49 26.70
+ 51 33.17 + + + 49 24.92

+ + 50 30.90 + + + 49 23.98
+ + 50 34.54 + + + 49 23.62
+ + 50 30.48 + + + 49 19.64
+ + 50 32.67 + + + 49 21.28

+ + 50 31.00 + + + + 48 23.12
+ + 50 24.92 + + + + 48 23.38
+ + 50 26.37 + + + + 48 19.22

+ + 50 27.91 + + + + 48 21.27
+ + 50 26.72 + + + + 48 18.22

+ + 50 25.25 + + + + + 47 18.07
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! Adding terms

– always increases the log likelihood ℓ̂ and so reduces D,

– increases the number of parameters,

so taking the model with highest ℓ̂ (lowest D) would give the full
model

! We need to trade off quality of fit (measured by D) and model
complexity (number of parameters)



Log likelihood
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! Given (unknown) true model g(y), and candidate model f(y; θ), Jensen’s
inequality implies that

∫
log g(y)g(y) dy ≥

∫
log f(y; θ)g(y) dy, (1)

with equality if and only if f(y; θ) ≡ g(y).

! If θg is the value of θ that maximizes the expected log likelihood on the right of
(1), then it is natural to choose the candidate model that maximises

ℓ(θ̂) = n−1
n∑

j=1

log f(y; θ̂),

which should be an estimate of
∫
log f(y; θ)g(y) dy. However as ℓ(θ̂) ≥ ℓ(θg), by

definition of θ̂, this estimate is biased upwards.

! We need to correct for the bias, but in order to do so, need to understand the
properties of likelihood estimators when the assumed model f is not the true
model g.
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Suppose the true model is g, that is, Y1, . . . , Yn
iid
∼ g, but we assume

that Y1, . . . , Yn
iid
∼ f(y; θ). The log likelihood ℓ(θ) will be maximised

at θ̂, and

ℓ(θ̂) = n−1ℓ(θ̂)
a.s.
−→

∫
log f(y; θg)g(y) dy, n → ∞,

where θg minimizes the Kullback–Leibler discrepancy

KL(fθ, g) =

∫
log

{
g(y)

f(y; θ)

}
g(y) dy.

θg gives the density f(y; θg) closest to g in this sense, and θ̂ is
determined by the finite-sample version of ∂KL(fθ, g)/∂θ, i.e.

0 = n−1
n∑

j=1

∂ log f(yj ; θ̂)

∂θ
.



Wrong model II
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Theorem 1 Suppose the true model is g, that is, Y1, . . . , Yn
iid
∼ g, but we assume

that Y1, . . . , Yn
iid
∼ f(y; θ). Then under mild regularity conditions the maximum

likelihood estimator θ̂ satisfies

θ̂
·
∼ Np

{
θg, I(θg)

−1K(θg)I(θg)
−1

}
, (2)

where fθg is the density minimising the Kullback–Leibler discrepancy between fθ and
g, I is the Fisher information for f , and K is the variance of the score statistic. The
likelihood ratio statistic

W (θg) = 2
{
ℓ(θ̂)− ℓ(θg)

}
·
∼

p∑

r=1

λrVr,

where V1, . . . , Vp
iid
∼ χ2

1, and the λr are eigenvalues of K(θg)1/2I(θg)−1K(θg)1/2.
Thus E{W (θg)} = tr{I(θg)−1K(θg)}.

Under the correct model, θg is the ‘true’ value of θ, K(θ) = I(θ), λ1 = · · · = λp = 1,

and we recover the usual results.





Out-of-sample prediction
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! We need to fix two problems with using ℓ(θ̂) to choose the best candidate model:

– upward bias, as ℓ(θ̂) ≥ ℓ(θg) because θ̂ is based on Y1, . . . , Yn;

– no penalisation if the dimension of θ increases.

! If we had another independent sample Y +
1 , . . . , Y +

n
iid
∼ g and computed

ℓ
+
(θ̂) = n−1

n∑

j=1

log f(Y +
j ; θ̂),

then both problems disappear, suggesting that we choose the candidate model
that maximises

Eg

[
E+
g

{
ℓ
+
(θ̂)

}]
,

where the inner expectation is over the distribution of the Y +
j , and the outer

expectation is over the distribution of θ̂.



Information criteria
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! Previous results on wrong model give

Eg

[
E+
g

{
ℓ
+
(θ̂)

}]
.
=

∫
log f(y; θg)g(y) dy −

1

2n
tr{I(θg)

−1K(θg)},

where the second term is a penalty that depends on the model dimension.

! We want to estimate this based on Y1, . . . , Yn only, and get

Eg

{
ℓ(θ̂)

}
.
=

∫
log f(y; θg)g(y) dy +

1

2n
tr{I(θg)

−1K(θg)},

! To remove the bias, we aim to maximise

ℓ(θ̂)−
1

n
tr(Ĵ−1K̂),

where
K̂ =

n∑

j=1

∂ log f(yj ; θ̂)

∂θ

∂ log f(yj ; θ̂)

∂θT
, Ĵ = −

n∑

j=1

∂2 log f(yj ; θ̂)

∂θ∂θT
;

the latter is just the observed information matrix.
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! Let p = dim(θ) be the number of parameters for a model, and ℓ̂
the corresponding maximised log likelihood.

! For historical reasons we choose models that minimise similar
criteria

– 2(p− ℓ̂) (AIC—Akaike Information Criterion)

– 2{tr(Ĵ−1K̂)− ℓ̂} (NIC—Network Information Criterion)

– 2( 12p logn− ℓ̂) (BIC—Bayes Information Criterion)

– AICc, AICu, DIC, EIC, FIC, GIC, SIC, TIC, . . .

– Mallows Cp = RSS/s2 + 2p− n commonly used in regression
problems, where RSS is residual sum of squares for candidate
model, and s2 is an estimate of the error variance σ2.
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AIC and BIC for 25 models for binary logistic regression model
fitted to the nodal involvement data. Both criteria pick out the
same model, with the three covariates st, xr, and ac, which has
deviance D = 19.64. Note the sharper increase of BIC after the
minimum.
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Theoretical aspects
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! We may suppose that the true underlying model is of infinite dimension, and that
by choosing among our candidate models we hope to get as close as possible to
this ideal model, using the data available.

! If so, we need some measure of distance between a candidate and the true model,
and we aim to minimise this distance.

! A model selection procedure that selects the candidate closest to the truth for
large n is called asymptotically efficient.

! An alternative is to suppose that the true model is among the candidate models.

! If so, then a model selection procedure that selects the true model with
probability tending to one as n → ∞ is called consistent.



Properties of AIC, NIC, BIC
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! We seek to find the correct model by minimising IC = c(n, p)− 2ℓ̂, where the penalty
c(n, p) depends on sample size n and model dimension p

! Crucial aspect is behaviour of differences of IC.

! We obtain IC for the true model, and IC+ for a model with one more parameter. Then

Pr(IC+ < IC) = Pr
{
c(n, p+ 1)− 2ℓ̂+ < c(n, p)− 2ℓ̂

}

= Pr
{
2(ℓ̂+ − ℓ̂) > c(n, p+ 1)− c(n, p)

}
.

and in large samples

for AIC, c(n, p+ 1)− c(n, p) = 2

for NIC, c(n, p+ 1)− c(n, p)
·
∼ 2

for BIC, c(n, p+ 1)− c(n, p) = logn

! In a regular case 2(ℓ̂+ − ℓ̂)
·
∼ χ2

1, so as n → ∞,

Pr(IC+ < IC) →

{
0.16, AIC,NIC,

0, BIC.

Thus AIC and NIC have non-zero probability of over-fitting, even in very large samples,
but BIC does not.
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! Consider normal linear model

Yn×1 = X†
n×pβp×1 + εn×1, ε ∼ Nn(0,σ

2In),

where design matrix X† has full rank p < n and columns xr, for
r ∈ X = {1, . . . , p}. Subsets S of X correspond to subsets of
columns.

! Terminology

– the true model corresponds to subset T = {r : βr ̸= 0}, and
|T | = q < p;

– a correct model contains T but has other columns also,
corresponding subset S satisfies T ⊂ S ⊂ X and T ̸= S;

– a wrong model has subset S lacking some xr for which βr ̸= 0,
and so T ̸⊂ S.

! Aim to identify T .

! If we choose a wrong model, have bias; if we choose a correct
model, increase variance—seek to balance these.
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! Forward selection: starting from model with constant only,

1. add each remaining term separately to the current
model;

2. if none of these terms is significant, stop; otherwise

3. update the current model to include the most significant
new term; go to 1

! Backward elimination: starting from model with all terms,

1. if all terms are significant, stop; otherwise

2. update current model by dropping the term with the
smallest F statistic; go to 1

! Stepwise: starting from an arbitary model,

1. consider 3 options—add a term, delete a term, swap a
term in the model for one not in the model;

2. if model unchanged, stop; otherwise go to 1
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> nuclear

cost date t1 t2 cap pr ne ct bw cum.n pt

1 460.05 68.58 14 46 687 0 1 0 0 14 0

2 452.99 67.33 10 73 1065 0 0 1 0 1 0

3 443.22 67.33 10 85 1065 1 0 1 0 1 0

4 652.32 68.00 11 67 1065 0 1 1 0 12 0

5 642.23 68.00 11 78 1065 1 1 1 0 12 0

6 345.39 67.92 13 51 514 0 1 1 0 3 0

7 272.37 68.17 12 50 822 0 0 0 0 5 0

8 317.21 68.42 14 59 457 0 0 0 0 1 0

9 457.12 68.42 15 55 822 1 0 0 0 5 0

10 690.19 68.33 12 71 792 0 1 1 1 2 0

...

32 270.71 67.83 7 80 886 1 0 0 1 11 1



Nuclear power station data
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Full model Backward Forward
Est (SE) t Est (SE) t Est (SE) t

Constant −14.24 (4.229) −3.37 −13.26 (3.140) −4.22 −7.627 (2.875) −2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 4.91 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR −0.092 (0.077) −1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) −0.080 (0.046) −1.74 −0.088 (0.042) −2.11
PT −0.224 (0.123) −1.83 −0.226 (0.114) −1.99 −0.490 (0.103) −4.77
s (df) 0.164 (21) 0.159 (25) 0.195 (28)

Backward selection chooses a model with seven covariates also chosen by

minimising AIC.
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! Systematic search minimising AIC or similar over all possible
models is preferable—not always feasible.

! Stepwise methods can fit models to purely random
data—main problem is no objective function.

! Sometimes used by replacing F significance points by
(arbitrary!) numbers, e.g. F = 4

! Can be improved by comparing AIC for different models at
each step—uses AIC as objective function, but no systematic
search.



Prediction error
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! To identify T , we fit candidate model

Y = Xβ + ε,

where columns of X are a subset S of those of X†.

! Fitted value is

Xβ̂ = X{(XTX)−1XTY } = HY = H(µ+ ε) = Hµ+Hε,

where H = X(XTX)−1XT is the hat matrix and Hµ = µ if the model is
correct.

! Following reasoning for AIC, suppose we also have independent dataset Y+ from
the true model, so Y+ = µ+ ε+

! Apart from constants, previous measure of prediction error is

∆(X) = n−1E E+

{
(Y+ −Xβ̂)T(Y+ −Xβ̂)

}
,

with expectations over both Y+ and Y .
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! Can show that

∆(X) =

⎧
⎪⎨

⎪⎩

n−1µT(I −H)µ+ (1 + p/n)σ2, wrong model,

(1 + q/n)σ2, true model,

(1 + p/n)σ2, correct model;

(3)

recall that q < p.

! Bias: n−1µT(I −H)µ > 0 unless model is correct, and is
reduced by including useful terms

! Variance: (1 + p/n)σ2 increased by including useless terms

! Ideal would be to choose covariates X to minimise ∆(X):
impossible—depends on unknowns µ,σ.

! Must estimate ∆(X)



Example
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∆(X) as a function of the number of included variables p for data with n = 20,
q = 6, σ2 = 1. The minimum is at p = q = 6:

! there is a sharp decrease in bias as useful covariates are added;

! there is a slow increase with variance as the number of variables p increases.



Cross-validation
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! If n is large, can split data into two parts (X ′, y′) and (X∗, y∗), say, and use one part to
estimate model, and the other to compute prediction error; then choose the model that
minimises

∆̂ = n
′−1(y′ −X ′β̂∗)T(y′ −X ′β̂∗) = n

′−1
n′∑

j=1

(y′
j − x′

j β̂
∗)2.

! Usually dataset is too small for this; use leave-one-out cross-validation sum of squares

n∆̂CV = CV =
n∑

j=1

(yj − xT

j β̂−j)
2,

where β̂−j is estimate computed without (xj , yj).

! Seems to require n fits of model, but in fact

CV =
n∑

j=1

(yj − xT

j β̂)
2

(1− hjj)2
,

where h11, . . . , hnn are diagonal elements of H, and so can be obtained from one fit.



Cross-validation II
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! Simpler (more stable?) version uses generalised cross-validation sum of squares

GCV =
n∑

j=1

(yj − xT

j β̂)
2

{1− tr(H)/n}2
.

! Can show that

E(GCV) = µT(I −H)µ/(1− p/n)2 + nσ2/(1− p/n) ≈ n∆(X) (4)

so try and minimise GCV or CV.

! Many variants of cross-validation exist. Typically find that model chosen based
on CV is somewhat unstable, and that GCV or k-fold cross-validation works
better. Standard strategy is to split data into 10 roughly equal parts, predict for
each part based on the other nine-tenths of the data, and find model that
minimises this estimate of prediction error.
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! Corrected version of AIC for models with normal responses:

AICc ≡ n log σ̂2 + n
1 + p/n

1− (p+ 2)/n
,

where σ̂2 = RSS/n. Related (unbiased) AICu replaces σ̂2 by
S2 = RSS/(n− p).

! Mallows suggested

Cp =
SSp

s2
+ 2p− n,

where SSp is RSS for fitted model and s2 estimates σ2.

! Comments:

– AIC tends to choose models that are too complicated; AICc

cures this somewhat

– BIC chooses true model with probability → 1 as n → ∞, if the
true model is fitted.



Simulation experiment
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Number of times models were selected using various model selection criteria in 50
repetitions using simulated normal data for each of 20 design matrices. The true
model has p = 3.

n Number of covariates
1 2 3 4 5 6 7

10 Cp 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AICc 15 398 565 18 4

20 Cp 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 577 144 104 76 97
AICc 8 859 94 30 8 1

40 Cp 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AICc 786 105 52 41 16



Simulation experiment
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Twenty replicate traces of AIC, BIC, and AICc, for data simulated with
n = 20, p = 1, . . . , 16, and q = 6.

5 10 15

0
5

1
0

1
5

2
0

n=20

Number of covariates

A
IC

5 10 15

0
5

1
0

1
5

2
0

n=20

Number of covariates

B
IC

5 10 15

0
5

1
0

1
5

2
0

n=20

Number of covariates

A
IC

C



Simulation experiment
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Twenty replicate traces of AIC, BIC, and AICc, for data simulated with
n = 40, p = 1, . . . , 16, and q = 6.
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Simulation experiment
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Twenty replicate traces of AIC, BIC, and AICc, for data simulated with
n = 80, p = 1, . . . , 16, and q = 6.
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As n increases, note how

! AIC and AICc still allow some over-fitting, but BIC does not, and

! AICc approaches AIC.
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Bayes (1763/4) Essay towards solving a problem in the doctrine

of chances. Philosophical Transactions of the Royal Society of
London.
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Parametric model for data y assumed to be realisation of Y ∼ f(y; θ),
where θ ∈ Ωθ.
Frequentist viewpoint (cartoon version):

! there is a true value of θ that generated the data;

! this ‘true’ value of θ is to be treated as an unknown constant;

! probability statements concern randomness in hypothetical
replications of the data (possibly conditioned on an ancillary
statistic).
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Parametric model for data y assumed to be realisation of Y ∼ f(y; θ),
where θ ∈ Ωθ.
Frequentist viewpoint (cartoon version):

! there is a true value of θ that generated the data;

! this ‘true’ value of θ is to be treated as an unknown constant;

! probability statements concern randomness in hypothetical
replications of the data (possibly conditioned on an ancillary
statistic).

Bayesian viewpoint (cartoon version):

! all ignorance may be expressed in terms of probability statements;

! a joint probability distribution for data and all unknowns can be
constructed;

! Bayes’ theorem should be used to convert prior beliefs π(θ) about
unknown θ into posterior beliefs π(θ | y), conditioned on data;

! probability statements concern randomness of unknowns,
conditioned on all known quantities.
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! Separate from data, we have prior information about
parameter θ summarised in density π(θ)

! Data model f(y | θ) ≡ f(y; θ)

! Posterior density given by Bayes’ theorem:

π(θ | y) =
π(θ)f(y | θ)∫
π(θ)f(y | θ) dθ

.

! π(θ | y) contains all information about θ, conditional on
observed data y

! If θ = (ψ,λ), then inference for ψ is based on marginal
posterior density

π(ψ | y) =

∫
π(θ | y) dλ



Encompassing model
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! Suppose we have M alternative models for the data, with respective parameters
θ1 ∈ Ωθ1 , . . . , θm ∈ Ωθm . Typically dimensions of Ωθm are different.

! We enlarge the parameter space to give an encompassing model with parameter

θ = (m, θm) ∈ Ω =
M⋃

m=1

{m}× Ωθm .

! Thus need priors πm(θm | m) for the parameters of each model, plus a prior
π(m) giving pre-data probabilities for each of the models; overall

π(m, θm) = π(θm | m)π(m) = πm(θm)πm,

say.

! Inference about model choice is based on marginal posterior density

π(m | y) =

∫
f(y | θm)πm(θm)πm dθm

∑M
m′=1

∫
f(y | θm′)πm′(θm′)πm′ dθm′

=
πmf(y | m)

∑M
m′=1 πm′f(y | m′)

.



Inference
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! Can write
π(m, θm | y) = π(θm | y,m)π(m | y),

so Bayesian updating corresponds to

π(θm | m)π(m) -→ π(θm | y,m)π(m | y)

and for each model m = 1, . . . ,M we need

– posterior probability π(m | y), which involves the marginal likelihood
f(y | m) =

∫
f(y | θm,m)π(θm | m) dθm; and

– the posterior density f(θm | y,m).

! If there are just two models, can write

π(1 | y)

π(2 | y)
=
π1
π2

f(y | 1)

f(y | 2)
,

so the posterior odds on model 1 equal the prior odds on model 1 multiplied by
the Bayes factor B12 = f(y | 1)/f(y | 2).



Sensitivity of the marginal likelihood
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Suppose the prior for each θm is N (0,σ2Idm
), where dm = dim(θm). Then,

dropping the m subscript for clarity,

f(y | m) = σ−d/2(2π)−d/2

∫
f(y | m, θ)

∏

r

exp
{
−θ2r/(2σ

2)
}
dθr

≈ σ−d/2(2π)−d/2

∫
f(y | m, θ)

∏

r

dθr,

for a highly diffuse prior distribution (large σ2). The Bayes factor for comparing the
models is approximately

f(y | 1)

f(y | 2)
≈ σ(d2−d1)/2g(y),

where g(y) depends on the two likelihoods but is independent of σ2. Hence,
whatever the data tell us about the relative merits of the two models, the Bayes
factor in favour of the simpler model can be made arbitrarily large by increasing σ.

This illustrates Lindley’s paradox, and implies that we must be careful when

specifying prior dispersion parameters to compare models.



Model averaging

APTS: Statistical Modelling April 2018 – slide 47

! If a quantity Z has the same interpretation for all models, it may be necessary to
allow for model uncertainty:

– in prediction, each model may be just a vehicle that provides a future value,
not of interest per se;

– physical parameters (means, variances, etc.) may be suitable for averaging,
but care is needed.

! The predictive distribution for Z may be written

f(z | y) =
M∑

m=1

f(z | y,m)Pr(m | y)

where

Pr(m | y) =
f(y | m)Pr(m)

∑M
m′=1 f(y | m′)Pr(m′)
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Percentage weights in clinkers of 4 four constitutents of cement

(x1, . . . , x4) and heat evolved y in calories, in n = 13 samples.
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> cement

x1 x2 x3 x4 y

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.8

12 11 66 9 12 113.3

13 10 68 8 12 109.4



Example: Cement data
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Bayesian model choice and prediction using model averaging for the cement data
(n = 13, p = 4). For each of the 16 possible subsets of covariates, the table shows
the log Bayes factor in favour of that subset compared to the model with no
covariates and gives the posterior probability of each model. The values of the
posterior mean and scale parameters a and b are also shown for the six most plausible
models; (y+ − a)/b has a posterior t density. For comparison, the residual sums of
squares are also given.

Model RSS 2 logB10 Pr(M | y) a b

– – – – 2715.8 0.0 0.0000
1 – – – 1265.7 7.1 0.0000
– 2 – – 906.3 12.2 0.0000
– – 3 – 1939.4 0.6 0.0000
– – – 4 883.9 12.6 0.0000
1 2 – – 57.9 45.7 0.2027 93.77 2.31
1 – 3 – 1227.1 4.0 0.0000
1 – – 4 74.8 42.8 0.0480 99.05 2.58
– 2 3 – 415.4 19.3 0.0000
– 2 – 4 868.9 11.0 0.0000
– – 3 4 175.7 31.3 0.0002
1 2 3 – 48.11 43.6 0.0716 95.96 2.80
1 2 – 4 47.97 47.2 0.4344 95.88 2.45
1 – 3 4 50.84 44.2 0.0986 94.66 2.89
– 2 3 4 73.81 33.2 0.0004
1 2 3 4 47.86 45.0 0.1441 95.20 2.97



Example: Cement data
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Posterior predictive densities for cement data. Predictive densities for a future
observation y+ with covariate values x+ based on individual models are given
as dotted curves. The heavy curve is the average density from all 16 models.
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! How to compare complex models (e.g. hierarchical models, mixed
models, Bayesian settings), in which the ‘number of parameters’ may:

– outnumber the number of observations?

– be unclear because of the regularisation provided by a prior density?

! Suppose model has ‘Bayesian deviance’

D(θ) = −2 log f(y | θ) + 2 log f(y)

for some normalising function f(y), and suppose that samples from the
posterior density of θ are available and give θ = E(θ | y).

! One possibility is the deviance information criterion (DIC)

D(θ) + 2pD,

where the number of associated parameters is

pD = D(θ)−D(θ).

! This involves only (MCMC) samples from the posterior, no analytical
computations, and reproduces AIC for some classes of models.


