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1. Generalised linear models

2. Overdispersion

3. Correlation

4. Random effects models
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y1, . . . , yn are observations of response variables Y1, . . . , Yn

assumed to be independently generated by a distribution of the
same exponential family form, with means µi ≡ E(Yi) linked to
explanatory variables X1, X2, . . . , Xp through

g(µi) = ηi ≡ β0 +
p∑

r=1

βrxir ≡ xT

i β

GLMs have proved remarkably effective at modelling real world
variation in a wide range of application areas.
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However, situations frequently arise where GLMs do not
adequately describe observed data.
This can be due to a number of reasons including:

! The mean model cannot be appropriately specified as there is
dependence on an unobserved (or unobservable) explanatory
variable.

! There is excess variability between experimental units beyond
that implied by the mean/variance relationship of the chosen
response distribution.

! The assumption of independence is not appropriate.

! Complex multivariate structure in the data requires a more
flexible model class
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The table below gives data on the relationship between rainfall
(x) and the proportions of people with toxoplasmosis (y/m) for
34 cities in El Salvador.

City y x City y x City y x

1 5/18 1620 12 3/5 1800 23 3/10 1973
2 15/30 1650 13 8/10 1800 24 1/6 1976
3 0/1 1650 14 0/1 1830 25 1/5 2000
4 2/4 1735 15 53/75 1834 26 0/1 2000
5 2/2 1750 16 7/16 1871 27 7/24 2050
6 2/8 1750 17 24/51 1890 28 46/82 2063
7 2/12 1756 18 3/10 1900 29 7/19 2077
8 6/11 1770 19 23/43 1918 30 9/13 2100
9 33/54 1770 20 3/6 1920 31 4/22 2200
10 8/13 1780 21 0/1 1920 32 4/9 2240
11 41/77 1796 22 3/10 1936 33 8/11 2250

34 23/37 2292
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Fitting various binomial logistic regression models relating
toxoplasmosis incidence to rainfall:

Model df deviance

Constant 33 74.21
Linear 32 74.09
Quadratic 31 74.09
Cubic 30 62.62

So evidence in favour of the cubic over other models, but a poor
fit (X2 = 58.21 on 30df).

This is an example of overdispersion where residual variability is
greater than would be predicted by the specified mean/variance
relationship

var(Y ) =
µ(1− µ)

m
.
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A quasi-likelihood approach to accounting for overdispersion models the
mean and variance, but stops short of a full probability model for Y .

For a model specified by the mean relationship g(µi) = ηi = xT

i β, and
variance var(Yi) = σ2V (µi)/mi, the quasi-likelihood equations are

n∑

i=1

xi
yi − µi

σ2V (µi)g′(µi)/mi
= 0

If V (µi)/mi represents var(Yi) for a standard distribution from the
exponential family, then these equations can be solved for β using
standard GLM software.

Provided the mean and variance functions are correctly specified,
asymptotic normality for β̂ still holds.
The dispersion parameter σ2 can be estimated using

σ̂2 ≡
1

n− p− 1

n∑

i=1

mi(yi − µ̂i)2

V (µ̂i)
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Assuming the same mean model as before, but
var(Yi) = σ2µi(1− µi)/mi, we obtain σ̂2 = 1.94 with β̂ (and
corresponded fitted mean curves) as before.

Comparing cubic with constant model, one now obtains

F =
(74.21− 62.62)/3

1.94
= 1.99

which provides much less compelling evidence in favour of an
effect of rainfall on toxoplasmosis incidence.
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To construct a full probability model in the presence of
overdispersion, it is necessary to consider why overdispersion
might be present.

Possible reasons include:

! There may be an important explanatory variable, other than
rainfall, which we haven’t observed.

! Or there may be many other features of the cities, possibly
unobservable, all having a small individual effect on
incidence, but a larger effect in combination. Such effects
may be individually undetectable – sometimes described as
natural excess variability between units.
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When part of the linear predictor is ‘missing’ from the model,

ηtruei = ηmodel
i + ηdiffi

We can compensate for this, in modelling, by assuming that the
missing ηdiffi ∼ F in the population. Hence, given ηmodel

i

µi ≡ g−1(ηmodel
i + ηdiffi ) ∼ G

where G is the distribution induced by F . Then

E(Yi) = EG[E(Yi | µi)] = EG(µi)

var(Yi) = EG(V (µi)/mi) + varG(µi)
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One approach is to model the Yi directly, by specifying an
appropriate form for G.

For example, for the toxoplasmosis data, we might specify a
beta-binomial model, where

µi ∼ Beta(kµ∗
i , k[1− µ∗

i ])

leading to

E(Yi) = µ∗
i , var(Yi) =

µ∗
i (1− µ∗

i )

mi

(
1 +

mi − 1

k + 1

)

with (mi − 1)/(k + 1) representing an overdispersion factor.
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Models which explicitly account for overdispersion can, in
principle, be fitted using your preferred approach, e.g. the
beta-binomial model has likelihood

f(y | µ∗, k) ∝
n∏

i=1

Γ(kµ∗
i +miyi)Γ{k(1− µ∗

i ) +mi(1− yi)}Γ(k)

Γ(kµ∗
i )Γ{k(1− µ∗

i )}Γ(k +mi)
.

Similarly the corresponding model for count data specifies a
gamma distribution for the Poisson mean, leading to a negative
binomial marginal distribution for Yi.

However, these models have limited flexibility and can be difficult
to fit, so an alternative approach is usually preferred.
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A more flexible, and extensible approach models the excess
variability by including an extra term in the linear predictor

ηi = xT

i β + ui (1)

where the ui can be thought of as representing the ‘extra’
variability between units, and are called random effects.

The model is completed by specifying a distribution F for ui in
the population – almost always, we use

ui ∼ N(0,σ2)

for some unknown σ2.
We set E(ui) = 0, as an unknown mean for ui would be
unidentifiable in the presence of the intercept parameter β0.
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The parameters of this random effects model are usually
considered to be (β,σ2) and therefore the likelihood is given by

f(y | β,σ2) =

∫
f(y | β, u,σ2)f(u | β,σ2)du

=

∫
f(y | β, u)f(u | σ2)du

=

∫ n∏

i=1

f(yi | β, ui)f(ui | σ
2)dui (2)

where f(yi | β, ui) arises from our chosen exponential family,
with linear predictor (1) and f(ui | σ2) is a univariate normal
p.d.f.

Often no further simplification of (2) is possible, so computation
needs careful consideration – we will come back to this later.
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We can think of the toxoplasmosis proportions Yi in each city (i)
as arising from the sum of binary variables, Yij , representing the
toxoplasmosis status of individuals (j), so miYi =

∑mi

j=1
Yij .

Then

var(Yi) =
1

m2
i

mi∑

j=1

var(Yij) +
1

m2
i

∑

j≠k

cov(Yij, Yik)

=
µi(1− µi)

mi
+

1

m2
i

∑

j≠k

cov(Yij, Yik)

So any positive correlation between individuals induces
overdispersion in the counts.
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There may be a number of plausible reasons why the responses
corresponding to units within a given cluster are dependent (in the
toxoplasmosis example, cluster = city)

One compelling reason is the unobserved heterogeneity discussed
previously.
In the ‘correct’ model (corresponding to ηtruei ), the toxoplasmosis
status of individuals, Yij , are independent, so

Yij ⊥⊥ Yik | ηtruei ⇔ Yij ⊥⊥ Yik | ηmodel
i , ηdiffi

However, in the absence of knowledge of ηdiffi

Yij ⊥⊥/ Yik | ηmodel
i

Hence conditional (given ηdiffi ) independence between units in a

common cluster i becomes marginal dependence, when marginalised

over the population distribution F of unobserved ηdiffi .
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The correspondence between positive intra-cluster correlation
and unobserved heterogeneity suggests that intra-cluster
dependence might be modelled using random effects, For
example, for the individual-level toxoplasmosis data

Yij
ind
∼ Bernoulli(µij), log

µij

1− µij
= xT

ijβ+ui, ui ∼ N(0,σ2)

which implies
Yij ⊥⊥/ Yik | β,σ2

Intra-cluster dependence arises in many applications, and random
effects provide an effective way of modelling it.
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Random effects modelling is not the only way of accounting for
intra-cluster dependence.

A marginal model models µij ≡ E(Yij) as a function of explanatory
variables, through g(µij) = xT

ijβ, and also specifies a variance
relationship var(Yij) = σ2V (µij)/mij and a model for corr(Yij , Yik),
as a function of µ and possibly additional parameters.

It is important to note that the parameters β in a marginal model have
a different interpretation from those in a random effects model,
because for the latter

E(Yij) = E(g−1[xT

ijβ + ui]) ≠ g−1(xT

ijβ) (unless g is linear).

! A random effects model describes the mean response at the subject
level (‘subject specific’)

! A marginal model describes the mean response across the
population (‘population averaged’)



GEEs

2. Beyond the
Generalised Linear
Model

Generalised Linear
Models

Overdispersion

Dependence

Example 1 revisited

Reasons

Random effects

◃ Marginal models

Clustered data
Example 2: Rat
growth

Random Effects and
Mixed Models

APTS: Statistical Modelling April 2018 – slide 76

As with the quasi-likelihood approach above, marginal models do not
generally provide a full probability model for Y . Nevertheless, β can be
estimated using generalised estimating equations (GEEs).

The GEE for estimating β in a marginal model is of the form

∑

i

(
∂µi

∂β

)
T

var(Yi)
−1(Yi − µi) = 0

where Yi = (Yij) and µi = (µij)

Consistent covariance estimates are available for GEE estimators.

Furthermore, the approach is generally robust to mis-specification of
the correlation structure.

For the rest of this module, we focus on fully specified probability
models.
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Examples where data are collected in clusters include:

! Studies in biometry where repeated measures are made on
experimental units. Such studies can effectively mitigate the
effect of between-unit variability on important inferences.

! Agricultural field trials, or similar studies, for example in
engineering, where experimental units are arranged within
blocks

! Sample surveys where collecting data within clusters or small
areas can save costs

Of course, other forms of dependence exist, for example spatial
or serial dependence induced by arrangement in space or time of
units of observation.
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The table below is extracted from a data set giving the weekly
weights of 30 young rats.

Week
Rat 1 2 3 4 5

1 151 199 246 283 320
2 145 199 249 293 354
3 147 214 263 312 328
4 155 200 237 272 297
5 135 188 230 280 323
6 159 210 252 298 331
7 141 189 231 275 305
8 159 201 248 297 338
· · · · · · · · · · · · · · · · · ·
30 153 200 244 286 324
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Letting Y represent weight, and X represent week, we can fit
the simple linear regression

yij = β0 + β1xij + ϵij

with resulting estimates β̂0 = 156.1 (2.25) and β̂1 = 43.3 (0.92)
Residuals show clear evidence of an unexplained difference
between rats
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Naively adding a (fixed) effect for animal gives

yij = β0 + β1xij + ui + ϵij .

Residuals show evidence of a further unexplained difference
between rats in terms of dependence on x.
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More complex cluster dependence required.
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A linear mixed model (LMM) for observations y = (y1, . . . , yn)
has the general form

Y ∼ N(µ,Σ), µ = Xβ + Zb, b ∼ N(0,Σb), (3)

where X and Z are matrices containing values of explanatory
variables. Usually, Σ = σ2In.
A typical example for clustered data might be

Yij
ind
∼ N(µij,σ

2), µij = xT

ijβ+zT

ijbi, bi
ind
∼ N(0,Σ∗

b), (4)

where xij contain the explanatory data for cluster i, observation
j and (normally) zij contains that sub-vector of xij which is
allowed to exhibit extra between cluster variation in its
relationship with Y .
In the simplest (random intercept) case, zij = (1), as in
equation (1).
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A plausible LMM for k clusters with n1, . . . , nk observations per
cluster, and a single explanatory variable x (e.g. the rat growth data) is

yij = β0 + b0i + (β1 + b1i)xij + ϵij , (b0i, b1i)
T ind

∼ N(0,Σ∗
b).

This fits into the general LMM framework (3) with Σ = σ2In and

X =

⎛

⎜⎝
1 x11
...

...
1 xknk

⎞

⎟⎠ , Z =

⎛

⎜⎝
Z1 0 0

0
. . . 0

0 0 Zk

⎞

⎟⎠ , Zi =

⎛

⎜⎝
1 xi1
...

...
1 xini

⎞

⎟⎠ ,

β =

(
β0

β1

)
, b =

⎛

⎜⎝
b1
...
bk

⎞

⎟⎠ , bi =

(
b0i
b1i

)
, Σb =

⎛

⎜⎝
Σ∗

b 0 0

0
. . . 0

0 0 Σ∗
b

⎞

⎟⎠

where Σ∗
b is an unspecified 2× 2 positive definite matrix.
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The term mixed model refers to the fact that the linear predictor
Xβ + Zb contains both fixed effects β and random effects b.
Under an LMM, we can write the marginal distribution of Y directly as

Y ∼ N(Xβ,Σ+ ZΣbZ
T) (5)

where X and Z are matrices containing values of explanatory variables.
Hence var(Y ) is comprised of two variance components.

Other ways of describing LMMs for clustered data, such as (4) (and
their generalised linear model counterparts) are as hierarchical models
or multilevel models. This reflects the two-stage structure of the
model, a conditional model for Yij | bi, followed by a marginal model
for the random effects bi.

Sometimes the hierarchy can have further levels, corresponding to
clusters nested within clusters, for example, patients within wards
within hospitals, or pupils within classes within schools.
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It would be perfectly possible to take a model such as (4) and ignore
the final component, leading to fixed cluster effects (as we did for the
rat growth data).

The main issue with such an approach is that inferences, particularly
predictive inferences can then only be made about those clusters
present in the observed data.
Random effects models, on the other hand, allow inferences to be
extended to a wider population (at the expense of a further modelling
assumption).

It also can be the case, as in (1) with only one observation per ‘cluster’,
that fixed effects are not identifiable, whereas random effects can still
be estimated. Similarly, some treatment variables must be applied at
the cluster level, so fixed treatment and cluster effects are aliased.

Finally, random effects allow ‘borrowing strength’ across clusters by

shrinking fixed effects towards a common mean.



Discussion: A Bayesian perspective

2. Beyond the
Generalised Linear
Model

Generalised Linear
Models

Overdispersion

Dependence

Random Effects and
Mixed Models

Linear mixed models

◃ Discussion

LMM fitting

REML
Estimating random
effects

Bayesian LMMs

Example 2 revisited

GLMMs

GLMM fitting

Bayesian GLMMS

Example 1 revisited

APTS: Statistical Modelling April 2018 – slide 87

A Bayesian LMM supplements (3) with prior distributions for β,
Σ and Σb.

In one sense the distinction between fixed and random effects is
much less significant, as in the full Bayesian probability
specification, both β and b, as unknowns have probability
distributions, f(β) and f(b) =

∫
f(b | Σb)f(Σb)dΣb

Indeed, prior distributions for ‘fixed’ effects are sometimes
constructed in a hierarchical fashion, for convenience (for
example, heavy-tailed priors are often constructed this way).

The main difference is the possibility that random effects for
which we have no relevant data (for example cluster effects for
unobserved clusters) might need to be predicted.
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The likelihood for (β,Σ,Σb) is available directly from (5) as

f(y | β,Σ,Σb) ∝ |V |−1/2 exp
(
− 1

2 (y −Xβ)TV −1(y −Xβ)
)

(6)

where V = Σ+ ZΣbZT. This likelihood can be maximised
directly (usually numerically).

However, mles for variance parameters of LMMs can have large
downward bias (particularly in cluster models with a small
number of observed clusters).
Hence estimation by REML – REstricted (or REsidual)
Maximum Likelihood is usually preferred.

REML proceeds by estimating the variance parameters (Σ,Σb)
using a marginal likelihood based on the residuals from a
(generalised) least squares fit of the model E(Y ) = Xβ.
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In effect, REML maximizes the likelihood of any linearly independent
sub-vector of (In −H)y where H = X(XTX)−1XT is the usual hat
matrix. As

(In −H)y ∼ N(0, (In −H)V (In −H))

this likelihood will be free of β. It can be written in terms of the full
likelihood (6) as

f(r | Σ,Σb) ∝ f(y | β̂,Σ,Σb)|X
TV X|1/2 (7)

where

β̂ = (XTV −1X)−1XTV −1y (8)

is the usual generalised least squares estimator given known V .
Having first obtained (Σ̂, Σ̂b) by maximising (7), β̂ is obtained by
plugging the resulting V̂ into (8).

Note that REML maximised likelihoods cannot be used to compare
different fixed effects specifications, due to the dependence of ‘data’ r
in f(r | Σ,Σb) on X.
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A natural predictor b̃ of the random effect vector b is obtained by
minimising the mean squared prediction error E[(b̃− b)T(b̃− b)] where
the expectation is over both b and y.
This is achieved by

b̃ = E(b | y) = (ZTΣ−1Z + Σ−1
b )−1ZTΣ−1(y −Xβ) (9)

giving the Best Linear Unbiased Predictor (BLUP) for b, with
corresponding variance

var(b | y) = (ZTΣ−1Z + Σ−1
b )−1

The estimates are obtained by plugging in (β̂, Σ̂, Σ̂b), and are shrunk
towards 0, in comparison with equivalent fixed effects estimators.

Any component, bk of b with no relevant data (for example a cluster
effect for an as yet unobserved cluster) corresponds to a null column of
Z, and then b̃k = 0 and var(bk | y) = [Σb]kk, which may be estimated
if, as is usual, bk shares a variance with other random effects.
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Bayesian estimation in LMMs (and their generalised linear model
counterparts) generally proceeds using Markov Chain Monte Carlo
(MCMC) methods, in particular approaches based on the Gibbs
sampler. Such methods have proved very effective.

MCMC computation provides posterior summaries, by generating a
dependent sample from the posterior distribution of interest. Then,
any posterior expectation can be estimated by the corresponding Monte
Carlo sample mean, densities can be estimated from samples etc.

MCMC will be covered in detail in APTS: Computer Intensive
Statistics. Here we simply describe the (most basic) Gibbs sampler.

To generate from f(y1, . . . , yn), (where the component yis are allowed
to be multivarate) the Gibbs sampler starts from an arbitrary value of y
and updates components (sequentially or otherwise) by generating
from the conditional distributions f(yi | y\i) where y\i are all the
variables other than yi, set at their currently generated values.

Hence, to apply the Gibbs sampler, we require conditional distributions
which are available for sampling.
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For the LMM

Y ∼ N(µ,Σ), µ = Xβ + Zb, b ∼ N(0,Σb)

with corresponding prior densities f(β), f(Σ), f(Σb), we obtain the
conditional posterior distributions

f(β | y, rest) ∝ φ(y − Zb;Xβ, V )f(β)

f(b | y, rest) ∝ φ(y −Xβ;Zb, V )φ(b; 0,Σb)

f(Σ | y, rest) ∝ φ(y −Xβ − Zb; 0, V )f(Σ)

f(Σb | y, rest) ∝ φ(b; 0,Σb)f(Σb)

where φ(y;µ,Σ) is a N(µ,Σ) p.d.f. evaluated at y.

We can exploit conditional conjugacy in the choices of f(β), f(Σ),
f(Σb) making the conditionals above of known form and hence
straightforward to sample from. The conditional independence
(β,Σ) ⊥⊥ Σb | b is also helpful.

See Practical 3 for further details.
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Here, we consider the model

yij = β0 + b0i + (β1 + b1i)xij + ϵij , (b0i, b1i)
T ind

∼ N(0,Σb)

where ϵij
iid
∼ N (0,σ2) and Σb is an unspecified covariance matrix. This

model allows for random (cluster specific) slope and intercept.

Estimates obtained by REML (ML in brackets) are

Parameter Estimate Standard error

β0 156.05 2.16 (2.13)
β1 43.27 0.73 (0.72)

Σ1/2
00 = s.d.(b0) 10.93 (10.71)

Σ1/2
11 = s.d.(b1) 3.53 (3.46)
Corr(b0, b1) 0.18 (0.19)

σ 5.82 (5.82)

As expected ML variances are smaller, but not by much.
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The shrinkage of random effect estimates towards a common
mean is clearly illustrated.
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Random effects estimates ‘borrow strength’ across clusters, due
to the Σ−1

b term in (9). Extent of this is determined by cluster
similarity. This is usually considered to be a desirable behaviour.
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The following simple example illustrates (from a Bayesian perspective)
why and how random effects are shrunk to a common value.
Suppose that y1, . . . , yn satisfy

yj | θj
ind
∼ N(θj , vj), θ1, . . . , θn | µ

iid
∼ N(µ,σ2), µ ∼ N(µ0, τ

2),

where v1, . . . , vn, σ2, µ0 and τ2 are assumed known here. Then, the
usual posterior calculations give us

E(µ | y) =
µ0/τ2 +

∑
yj/(σ2 + vj)

1/τ2 +
∑

1/(σ2 + vj)
, var(µ | y) =

1

1/τ2 +
∑

1/(σ2 + vj)
,

and
E(θj | y) = (1− w)E(µ | y) + wyj ,

where

w =
σ2

σ2 + vj
.
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Normal Q-Q plots of intercept (panel 1) and slope (panel 2)
random effects and residuals v. week (panel 3)
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Evidence of a common quadratic effect, confirmed by AIC (1036
v. 1099) and BIC (1054 v. 1114) based on full ML fits. AIC
would also include a cluster quadratic effect (BIC equivocal).
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Generalised linear mixed models (GLMMs) generalise LMMs to
non-normal data, in the obvious way:

Yi
ind
∼ F (· | µi,σ

2), g(µ) ≡

⎛

⎜⎝
g(µ1)

...
g(µn)

⎞

⎟⎠ = Xβ+Zb, b ∼ N(0,Σb)

(10)

where F (· | µi,σ2) is an exponential family distribution with
E(Y ) = µ and var(Y ) = σ2V (µ)/m for known m. Commonly
(e.g. Binomial, Poisson) σ2 = 1, and we shall assume this from
here on.

It is not necessary that the distribution for the random effects b
is normal, but this usually fits. It is possible (but beyond the
scope of this module) to relax this.
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A plausible GLMM for binary data in k clusters with n1, . . . , nk

observations per cluster, and a single explanatory variable x (e.g. the
toxoplasmosis data at individual level) is

Yij
ind
∼ Bernoulli(µi), log

µi

1− µi
= β0+b0i+β1xij , b0i

ind
∼ N(0,σ2

b )

(11)

[note: no random slope here]. This fits into the general GLMM
framework (10) with

X =

⎛

⎜⎝
1 x11
...

...
1 xknk

⎞

⎟⎠ , Z =

⎛

⎜⎝
Z1 0 0

0
. . . 0

0 0 Zk

⎞

⎟⎠ , Zi =

⎛

⎜⎝
1
...
1

⎞

⎟⎠ ,

β = (β0,β1)
T, b = (b01, . . . , b0k)

T, Σb = σ2
bIk

[or equivalent binomial representation for city data, with clusters of

size 1.]
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The marginal distribution for the observed Y in a GLMM does not usually have a
convenient closed-form representation.

f(y | β,Σb) =

∫
f(y | β, b,Σb)f(b | β,Σb)db

=

∫
f(y | β, b)f(b | Σb)db

=

∫ n∏

i=1

f
(
yi | g

−1([Xβ + Zb]i)
)
f(b | Σb)db. (12)

For nested random effects structures, some simplification is possible. For example,
for (11)

f(y | β,σ2
b ) ∝

n∏

i=1

∫
exp(

∑
j yij(β0+b0i+β1xij))

{1+exp(
∑

j yij(β0+b0i+β1xij))}nk φ(b0i; 0,σ
2
b )db0i

a product of one-dimensional integrals.
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Fitting a GLMM by likelihood methods requires some method for
approximating the integrals involved.

The most reliable when the integrals are of low dimension is to use
Gaussian quadrature (see APTS: Statistical computing). For example,
for a one-dimensional cluster-level random intercept bi we might use

∫ ∏

j

f
(
yij | g

−1(xT

i β + bi)
)
φ(bi | 0,σ

2
b )dbi

≈
Q∑

q=1

wq

∏

j

f
(
yij | g

−1(xT

i β + biq)
)

for suitably chosen weights (wq, q = 1, . . . , Q) and quadrature points
(biq, q = 1, . . . , Q)

Effective quadrature approaches use information about the mode and
dispersion of the integrand (can be done adaptively).

For multi-dimensional bi, quadrature rules can be applied recursively,
but performance (in fixed time) diminishes rapidly with dimension.
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An alternative approach to fitting a GLMM uses penalised
quasi-likelihood (PQL).

The most straightforward way of thinking about PQL is to consider the
adjusted dependent variable v constructed when computing mles for a
GLM using Fisher scoring

vi = (yi − µi)g
′(µi) + ηi

Now, for a GLMM,

E(v | b) = η = Xβ + Zb

and
var(v | b) = W−1 = diag

(
var(yi)g

′(µi)
2
)
,

where W is the weight matrix used in Fisher scoring.
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Hence, approximating the conditional distribution of v by a normal
distribution, we have

v ∼ N(Xβ + Zb,W−1), b ∼ N(0,Σb) (13)

where v and W also depend on β and b.

PQL proceeds by iteratively estimating β, b and Σb for the linear mixed
model (13) for v, updating v and W at each stage, based on the
current estimates of β and b.

An alternative justification for PQL is as using a Laplace-type
approximation to the integral in the GLMM likelihood.

A full Laplace approximation (expanding the complete log-integrand,
and evaluating the Hessian matrix at the mode) is an alternative,
equivalent to one-point Gaussian quadrature.
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Using PQL, estimates of random effects b come ‘for free’. With
Gaussian quadrature, some extra effort is required to compute E(b | y)
– further quadrature is an obvious possibility.

There are drawbacks with PQL, and the best advice is to use it with
caution.

! It can fail badly when the normal approximation that justifies it is
invalid (for example for binary observations)

! As it does not use a full likelihood, model comparison should not
be performed using PQL maximised ‘likelihoods’

Likelihood inference for GLMMs remains an area of active research and

vigorous debate. Recent approaches include HGLMs (hierarchical

GLMs) where inference is based on the h-likelihood f(y | β, b)f(b | Σ).
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Bayesian estimation in GLMMs, as in LMMs, is generally based on the
Gibbs sampler. For the GLMM

Yi
ind
∼ F (· | µ), g(µ) = Xβ + Zb, b ∼ N(0,Σb)

with corresponding prior densities f(β) and f(Σb), we obtain the
conditional posterior distributions

f(β | y, rest) ∝ f(β)
∏

i

f(yi | g
−1(Xβ + Zb))

f(b | y, rest) ∝ φ(b; 0,Σb)
∏

i

f(yi | g
−1(Xβ + Zb))

f(Σb | y, rest) ∝ φ(b; 0,Σb)f(Σb)

For a conditionally conjugate choice of f(Σb), f(Σb | y, rest) is

straightforward to sample from. The conditionals for β and b are not

generally available for direct sampling, but there are a number of ways

of modifying the basic approach to account for this.
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Estimates and standard errors obtained by ML (quadrature), Laplace
and PQL for the individual-level model

Yij
ind
∼ Bernoulli(µi), log

µi

1− µi
= β0+b0i+β1xij , b0i

ind
∼ N(0,σ2

b )

Parameter Estimate (s.e.)
ML Laplace PQL

β0 −0.1384 (1.452) −0.1343 (1.440) −0.115 (1.445)
β1 (×106) 7.215 (752) 5.930 (745.7) 0.57 (749.2)

σb 0.5209 0.5132 0.4946
AIC 65.75 65.96 —
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Estimates and standard errors obtained by ML (quadrature), Laplace
and PQL for the extended model

log
µi

1− µi
= β0 + b0i + β1xij + β1x

2
ij + β1x

3
ij .

Parameter Estimate (s.e.)
ML Laplace PQL

β0 −335.5 (137.3) −335.1 (136.3) −330.8 (143.4)
β1 0.5238 (0.2128) 0.5231 (0.2112) 0.5166 (0.222)

β2 (×104) −2.710 (1.094) −2.706 (1.086) −3 (1.1)
β3 (×108) 4.643 (1.866) 4.636 (1.852) 0 (0)

σb 0.4232 0.4171 0.4315
AIC 63.84 63.97 —

So for this example, a good agreement between the different
computational methods.


