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1

Introduction

1.1 What this course is about?

This APTS course will cover a variety of methods which enable data to be modelled

in a flexible manner. It will use and extend a variety of topics covered in earlier APTS

courses, including

– linear models, including the Bayesian version;

– generalised linear models;

– R programming;

– matrix computations, Taylor series expansions and standard asymptotic methods;

– confidence intervals/hypothesis testing.

The main emphasis will be on regression settings, because of the widespread use and

application of this kind of data structure.

As with any statistical topic, a rounded treatment involves a variety of approaches,

including

– clear understanding of the underlying concepts;

– technical understanding of methods, with an exploration of their properties;

– appreciation of the practical computational issues;

– some knowledge of the tools available to fit relevant models in R;

– understanding of how these models can bring insight into datasets and applications.

The aim is to reflect all of these aspects in the course, but to varying degrees in different

sections. There will not be time to cover all the material in the notes and some of the

material is intended to provide pointers to topics which it might be of interest to explore

in the context of your own research.
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1.2 Broad concepts

The term ‘flexible regression’ refers to a wide range of methods which provide flexibility

in the nature of the relationship being modelled. This APTS course will start with

univariate smoothing and progress through standard forms of nonparametric regression

to state-of-the art modelling tools (including quantile regression) which can be applied

in a wide variety of settings. The models of interest in this course enable:

– flexibility in the mean;

– flexibility in the response quantile.

In particular, we will achieve this through smoothing (initially considering nonparamet-

ric regression) and quantile regression.

In parametric modelling (e.g. estimating the rate of a Poisson distribution using

linear regression) we assume that we know the data generating process up to a finite

number of parameters. In ‘flexible’ modelling, the term nonparametric is used to mean

that the relationships or patterns of interest cannot be expressed in specific formulae

which involve a fixed number of unknown parameters. We want to fit a function to data,

without making such a strict parametric assumption. All we are willing to assume is

typically that the function of interest is sufficiently smooth. More formally speaking,

this corresponds to working with an infinite-dimensional parameter space. This takes us

outside of the standard framework for parametric models. Additionally, in some circum-

stances regression models under standard assumptions will not adequately describe the

distribution of the response. In such situations, relationships at different quantiles of the

response distribution may be of interest. This course will discuss how we can introduce

‘flexibility’ into modelling the mean and nature of response modelled.

On a side note, the term nonparametric is sometimes used in the narrower setting

of simple statistical methods based on the ranks of the data, rather than the original

measurements. This is not the sense in which it will be used here.

1.3 Models of interest

1.3.1 Flexibility in the mean

In general, for a single explanatory variable with data x1, . . . , xn, and response data

y1, . . . , yn we can write a regression model as:

Yi = f(xi,β) + εi.



Flexible Regression 1.3 Models of interest 3

The function f(x,β) describes the relationship between the response and the predictor

variable, this might take the form of a straight line or some other function, which has

parameters β. The problem is to estimate this function f . Initially, in this course we

will generally assume that,

E(εi) = 0 and Var(εi) = σ2

for all i, where σ2 does not depend on any other unknown or on xi, and xi are assumed

to be recorded without error. We also initially generally assume that εi ∼ N(0, σ2) and

usually that εi and εj are uncorrelated for i 6= j, (i.e. independent identically distributed,

i.i.d).

For Gaussian data we have a least squares loss function which we use to estimate the

parameters β in our model, i.e. we choose β to minimise

n∑
i=1

(yi − f(xi))
2.

Standard regression is sometimes referred to as mean regression, because the mean

minimises the squared loss.

Previous APTS courses have considered linear and non-linear functions and the in-

clusion of both fixed and random effects in a regression model. In this course we will

extend this by allowing f() to be a data driven smooth function.

For a general smooth function f() we refer to the approach as nonparametric

regression (Chapter 2). This extends to (generalised) additive models (GAMs) for

more than one smooth covariate (Chapter 4), and such models can include univariate,

bivariate (or possibly higher order) terms and be extended to distributions other than

the normal.

For initial references here see: Hastie and Tibshirani (1990), Bowman and Azzalini

(1997), Ruppert et al. (2003), Wood (2017).

1.3.2 Flexibility in the response quantile

In some circumstances regression methods based on standard distributional assumptions

will not capture all aspects of the distribution of the response variable of interest.

Usually regression models are based on a covariate-based model assumption for the

mean only. However in some situations not just the mean, but also the spread and the

shape of the distribution of the response depend on covariates. Therefore, additionally

in this course we will consider quantile regression (Chapter 3) and combine this with
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approaches which allow smooth functions for the covariates, to introduce generalised

additive quantile regression models (Chapters 3 & 5).

When the quantity of interest is just one quantile it is easiest to fit a quantile

regression model. Suppose we have data {(y1, x1), . . . , (yn, xn)} and a predictor function

f(x) which depends on parameters β. Instead of using the least squares loss function

above, if we were to use the absolute loss

n∑
i=1

|yi − f(xi)|

we would obtain median regression (also known as least absolute deviations regression).

Quantile regression is based on minimising,

n∑
i=1

ρτ (yi − f(xi))

and results in an estimate of the τ -th quantile of the response distribution, where ρτ (·)
is the so-called check function,

ρτ (u) =

τu if u > 0

(τ − 1)u if u ≤ 0.

For initial references here see: Koenker (2005), Koenker et al. (2017).

1.4 Examples

Example 1.1. The following plot gives a very basic illustration of ‘flexible regression’.

/
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The black dots refer to the data and the models fitted to try to explain the main

patterns in the data, with different degrees of polynomial, are displayed. The higher the

degree of polynomial in the model, the more flexible it can be1.

Example 1.2. This next plot demonstrates a generalised additive model from the paper

‘A case study of hurdle and generalized additive models in astronomy: the escape of

ionizing radiation’ from May 2018 (Hattab et al., 2018). In the paper, the authors use

an array of different flexible models to understand the Epoch of Reionization (EoR),

the first generation of stars residing in primeval galaxies to produce ultraviolet ionizing

photons in a period when the cosmic gas changed from a neutral state to an ionized

one. The authors state that a pivotal aspect to understaning the EoR is to account for

non-linear relationships between the fraction of ionzing photons capable to escape dark

haloes (also known as the escape fraction) and the physical properties of the galaxy...

phew!

The authors estimate the mean curves relating the escape fraction response to various

galaxy properties. The shaded areas with faint line depict 95% confidence intervals and

the estimated mean (while varying only one galaxy property and holding the other

properties fixed at their median values), and the cloud of partial residuals are laid out

in the background.

/

1 This example is taken from: https://github.com/noamross/2017-11-14-noamross-gams-nyhackr
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Example 1.3. The following plots give some basic intuition around quantile regression.

Let’s imagine we have the data as follows.

Here, the cloud of data does not quite follow a linear increasing trend, the increasing

variability is easy to see. As x gets bigger, y becomes more variable. This violates a

key assumption in linear regression: normal errors with constant variance. As we can

see in the plot in panel (a) below, with a linear regression fitted and 95% confidence

intervals, linear regression provides a good estimate of y when x is close to 0. However,

as x increases, the mean of y given x becomes less meaningful. As a predictor for y this

model is not useful.

(a) linear regression (b) quantile regression

Therefore, we look at quantile regression in the plot in panel (b) above. The intercept

estimate doesn’t change much, but the slopes steadily increase through quantiles 0.1

through to 0.9 and we can take an average of these and provide confidence intervals. /

Example 1.4. Lastly, we can see the benefits of using quantile regression in comparison

to ordinary least squares (OLS) regression with an example from the paper ‘Thinking be-

yond the mean: a practical guide for using quantile regression methods for health services

research’, February 2013, (Cook and Manning, 2013). In the paper, the authors fit the

two models to describe the relationship between the number of hours attended of a hy-

pothetical psychotherapy intervention (x-axis) and a fictitious scale of post-intervention
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mental health (higher score indicates better mental health on the y-axis) for a group of

400 individuals. We look first at the OLS regression model.

The fitted line from OLS (shown above) is essentially flat, suggesting that there is

no relationship between number of psychotherapy session-hours and mental health at

follow up. In contrast, when quantile regression is used (shown below) this allows the

slopes of the regression line to vary across quantiles of mental health scale and, although

the median line is flat as before, the 90th quantile prediction line is significantly increas-

ing whereas the 10th quantile prediction line is significantly decreasing. This suggests

that the association between the hypothetical intervention and post-intervention mental

health is positive for those with better post-intervention mental health but there is a

negative association among those with poorer post-intervention mental health.

/
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2

Nonparametric regression

Regression is one of the most widely used modelling paradigms and this will be the

main focus in the course. Here is an example which will be used to illustrate the initial

discussion.

Example 2.1 (Great Barrier Reef data). A survey of the fauna on the sea bed lying be-

tween the coast of northern Queensland and the Great Barrier Reef was carried out.

The sampling region covered a zone which was closed to commercial fishing, as well as

neighbouring zones where fishing was permitted. The variables are:

Zone an indicator for the closed (1) and open (0) zones

Year an indicator of 1992 (0) or 1993 (1)

Latitude latitude of the sampling position

Longitude longitude of the sampling position

Depth bottom depth

Score1 catch score 1

Score2 catch score 2

The details of the survey and an analysis of the data are provided by Poiner et al.

(1997), The effects of prawn trawling in the far northern section of the Great Barrier

Reef, CSIRO Division of Marine Research, Queensland Dept. of Primary Industries. /

The relationship between catch score (Score1) and longitude is of particular interest

because, at this geographical location, the coast runs roughly north-south and so longi-

tude is a proxy for distance offshore. We might therefore reasonably expect the abun-

dance of marine life to change with longitude. The first of the three panels in Figure 2.1
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shows that there is indeed a strong underlying negative relationship, with considerable

variability also present. The middle panel summarises this in a simple linear regression

which captures much of this relationship. However, if we allow our regression model to

be more flexible in the mean then a more complex relationship is suggested in the right

hand panel, with a broadly similar mean level for some distance offshore followed by a

marked decline, possibly followed by some levelling off thereafter. This gives valuable

informal and graphical insight into the data, but how can flexible regression models be

constructed, and how can we use them to evaluate whether there is really evidence of

non-linear behaviour in the data?
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Figure 2.1. Reef fishing catch score against longitude (left) with fitted simple linear
regression (middle) and fitted nonparametric regression (right).

2.1 Intro to nonparametric regression

A simple nonparametric model has the form

Yi = f(xi) + εi, i = 1, . . . , n

where the data (xi, yi) are described by a smooth curve f plus independent errors εi.

Smoothing techniques can be used to model the relationships between variables, i.e.

to estimate f(), without specifying any particular form for the underlying regression

function. Smoothers have two main uses:

Description - to aid ‘visually’ in the exploration of a relationship or pattern



Flexible Regression 2.2 A local fitting approach 11

Estimation - to estimate the dependence of the mean of Y on the predictor x.

The two key questions that arise regarding the definition of a smoother are:

– Which smoothing method should be used?

– What level of smoothing is appropriate?

We will start by considering the first question here to introduce appropriate smooth-

ing methods and then focus more on the second question in Chapter 4.

In this course, we will briefly mention a local fitting approach to smoothing and then

mainly focus on the application of spline based methods.

There is a variety of ways in which smooth curve estimates can be produced and

it can sometimes reasonably be argued that the precise mechanism usually isn’t too

important and can be chosen for convenience/computational simplicity and efficiency.

2.2 A local fitting approach

One approach to fitting f() is to take a model we know and fit it locally. For example, we

can construct a local linear regression. This involves solving the least squares problem

min
α,β

n∑
i=1

{yi − α− β(xi − x)}2w(xi − x ;h)

and taking as the estimate at x the value of α̂, as this defines the position of the local

regression line at the point x. The weight function, w(xi − x ;h), is a kernel function

which we formulate in a similar way to that which we introduced for density functions in

the preliminary material. This has an appealing simplicity and it can be generalised quite

easily to other situations. This was the approach used to produce the nonparametric

regression of the Reef data in the right hand panel of Figure 2.1.

An even simpler approach is to fit a local mean. Specifically, at any point of interest

x, we choose our estimator of the curve there as the value of µ which minimises

n∑
i=1

{yi − µ}2w(xi − x;h)

and this is easily shown to produce the ‘running mean’

f̂(x) =

∑n
i=1w(xi − x;h) yi∑n
i=1w(xi − x;h)

.

If we do the algebra to minimise the sum-of-squares in the local linear approach, then

an explicit formula for the local estimator can be derived as
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f̂(x) =
1

n

n∑
i=1

{s2(x;h)− s1(x;h)(xi − x)}w(xi − x;h)yi
s2(x;h)s0(x;h)− s1(x;h)2

,

where sr(x;h) = {
∑

(xi − x)rw(xi − x;h)}/n.

In both the local mean and the local linear cases, the estimator is seen to be of the

form
∑

i κiyi, where the weights κi sum to 1. There is a broad sense then in which even

the local linear method is ‘locally averaging’ the data. In fact, many other forms of

nonparametric regression can also be formulated in a similar way.

2.2.1 Some simple properties

One question which immediately arises is whether it matters very much which form

of nonparametric smoothing is used. Sometimes computational and other issues may

constrain what choices are practical. However, if we take the simple local mean and local

linear examples, what principles can we use to guide our choice? Deriving expressions

which capture simple properties such as bias and variance is an obvious place to start.

We will start with the local mean estimator. The exploration will be a little informal,

without the full technicality of formal proofs. The aim is to identify the properties of

the estimator in conceptual form. If the numerator and denominator of the local mean

estimator are both scaled by 1/n, then the denominator has a familiar form, namely a

kernel density estimator (which we saw in the preliminary material). Following from the

preliminary material, this has expectation

E

{
1

n

∑
i

w(xi − x;h)

}
= g(x) +

h2

2
g′′(x) + o(h2),

(we will use g() for our general function here to distinguish from the function f(x) that

we are estimating). As in the preliminary material, we assume for convenience that the

kernel function can be rewritten as 1
h
w((xi − x)/h) and w is a symmetric probability

density function around 0 with variance 1. Turning now to the numerator, we have

E

{
1

n

∑
i

w(xi − x;h) yi

}
=

1

n

∑
i

1

h
w

(
xi − x
h

)
f(xi)

≈
∫

1

h
w

(
z − x
h

)
f(z)g(z) [integral approximation]

=

∫
w(u)f(x+ hu)g(x+ hu)du [change of variable]

Now apply a Taylor series expansion to the terms involving x+ hu, to give
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f(x+ hu) = f(x) + hu f ′(x) +
(hu)2

2
f ′′(x) + o(h2),

g(x+ hu) = g(x) + hu g′(x) +
(hu)2

2
g′′(x) + o(h2).

Substituting these in and integrating over u gives

E

{
1

n

∑
i

w(xi − x;h) yi

}
≈ f(x)g(x)+h2

{
1

2
g(x)f ′′(x) + f ′(x)g′(x) +

1

2
g′′(x)f(x)

}
+o(h2).

Dividing both numerator and demoninator by g(x) gives

numerator: f(x) + h2

{
1

2
f ′′(x) + f ′(x)

g′(x)

g(x)
+

1

2

g′′(x)

g(x)
f(x)

}
+ o(h2)

denominator: 1 +
h2

2

g′′(x)

g(x)
+ o(h2)

The dominant term in the mean of the ratio of numerator and denominator is the ratio

of the means. Applying the series expansion for (1 + x)−1 allows the reciprocal of the

denominator to be written as

1− h2

2

g′′(x)

g(x)
+ o(h2).

Multiplying the different terms out, we have

E
{
f̂(x)

}
≈
{
f(x) + h2

{
1

2
f ′′(x) + f ′(x)

g′(x)

g(x)
+

1

2

g′′(x)

g(x)
f(x)

}
+ o(h2)

}
{

1− h2

2

g′′(x)

g(x)
+ o(h2)

}
= f(x) + h2

{
1

2
f ′′(x) +

f ′(x)g′(x)

g(x)

}
+ o(h2).

Phew!

A similar sequence of manipulations gives an asymptotic expression for the variance

as

Var
{
f̂(x)

}
≈ 1

nh

{∫
w(u)2du

}
σ2 1

g(x)
,

where σ2 denotes the variance of the error terms εi.

In the local linear case, the estimator can be written as
∑

i aiyi/
∑

i ai, where ai =
1
n

1
h
w(xi−x

h
){s2 − (xi − x)s1}. Consider first s1, which can be written as
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s1 =
1

n

∑
j

1

h
w

(
xi − x
h

)
(xj − x)

≈
∫

1

h
w

(
x− x
h

)
g(z)(z − x)dz

=

∫
w(u)hu{g(x) + hug′(x) + o(h)}du

= h2g′(x) + o(h2).

By a similar argument,

s2 ≈ h2g(x) + o(h2).

The weights ai can then be approximated by

ai ≈
1

n

1

h
w

(
xi − x
h

)
h2{g(x)− (xi − x)g′(x)}.

The mean of the estimator is E
{
f̂(x)

}
=
∑

i aif(xi)/
∑

i ai. Ignoring the term h2 which

cancels in the ratio, the numerator can be expressed as{
g(x)2 +

h2

2
g(x)g′(x)− h2g′(x)2

}
f(x) +

h2

2
g(x)2f ′′(x)2,

after an integral approximation, a change of variable and a Taylor series expansion. By

a similar argument, the denominator of E
{
f̂(x)

}
can be approximated by

g(x)2 +
h2

2
g(x)g′′(x)− h2g′(x)2.

The principal term of the ratio then gives

E
{
f̂(x)

}
≈ f(x) +

h2

2
f ′′(x).

So, after considerable work, a very simple expression has been achieved. Similar manip-

ulations for the variance produces an expression which is exactly the same as that for

the variance of the local mean estimator.

A comparison of the expressions for the local mean and local linear estimators is

interesting. For example, the principal terms in the expression for the mean of the local

linear estimator is not only simpler but also does not involve g(x), both of which are

attractive properties. This is one of the reasons that the local linear estimator is generally

preferred over the local mean.

However, another issue concerns edge effects. These require more careful analysis to

identify so, instead, we will use a simple illustration based on simulation, Figure 2.2.
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The figure shows the results of repeatedly simulating 50 data points, equally spaced over

[0, 1], from the model Y = x+ ε, where the standard deviation of the error terms is 0.1.

For each set of simulated data, a nonparametric regression curve is plotted, using local

mean (left) and local linear (right) estimators. Notice that at the ends of the sample

space the local mean has strong bias, because there is data only on one side of the

estimation point of interest. In contrast, the local linear method is unaffected. The same

pattern is displayed in the lower plots, using the model Y = x2 +ε over the range [−1, 1].
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Figure 2.2. Repetition of 50 simulated data points [0,1] from a line of equality with
error (top) and quadratic line with error (bottom). Local mean estimators (left) and
local linear estimators (right) are used for the fitted lines.

With a little more theoretical work, a central limit theorem can be constructed to

show that
f̂(x)− f(x)− b(x)√

v(x)
→ N(0, 1),

where b(x) and v(x) denote the bias and variance of f̂(x).

Following on from the discussions in density estimation, the performance of a non-

parametric estimator can be summarised in the mean integrated squared error, defined

as

MISE =

∫
E
{
f̂(x)− f(x)

}2

g(x)dx

and an optimal smoothing parameter can be defined as the value of h which minimises

the asymptotic approximation of MISE, namely

hopt =

{
γ(w)σ2∫

[f ′′(x)]2g(x)dx

}1/5

n−1/5.
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If we use this optimal smoothing parameter, then both the bias and the square root of

the variance, which determines the rate of convergence, are of order n−2/5. Notice that

this rate of convergence is slower than the n−1/2 which applies for parametric models.

Fan and Gijbels (1996) give further details on the theoretical aspects of local poly-

nomial smoothing, also see Bowman and Azzalini (1997) for more details and examples

for local polynomial regression.

2.2.2 Bias and variance trade-off

The properties derived and discussed above highlight that both bias and variance have to

be considered when it comes to fitting a smooth curve to model the relationship between

y and x. There is a trade-off between following the data closely (low bias, possibly large

variance) and obtaining a smooth function (low variance, possibly large bias). However,

the presence of bias in the estimator f̂ will have the effect of inflating the size of the

residual sum of squares. We will return to this when we consider ‘how much to smooth?’

in Chapter 4.

2.2.3 Local linear regression in R

Example 2.2. A local linear regression fit for the Reef data can be obtained using the R

library sm.

library(sm)
sm.regression(trawl$Longitude, trawl$Score1, se = TRUE)

142.8 143.0 143.2 143.4 143.6 143.8

0.
0

0.
5

1.
0

1.
5

2.
0

trawl$Longitude

tr
aw

l$
S

co
re

1

Figure 2.3. A flexible regression curve for the Reef data, with variability bands indicated.

With this, a normal density is ‘typically’ specified as the kernel to define the weights,
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w(xi − x;h) = exp

(
−0.5

(
xi − x
h

)2
)
.

The smoothing parameter h is the standard deviation of a normal density.

Unfortunately, we can’t easily produce confidence intervals for the curve because of

the bias mentioned above. However, by adding and subtracting two standard errors at

each point on the curve we can produce variability bands which express the variation in

the curve estimate. In fact, we don’t need to rely on the asymptotic formula for variance.

More details are provided later.

/

2.3 Regression splines

The second part of this chapter covers splines, which are one of the most popular tools for

flexible modelling. This section discusses a number of more philosophical concepts, some

of which we have already touched upon, initially starting with splines in one dimension.

Example 2.3. Figure 2.4 shows two smooth functions describing the relationship between

the response yi and the covariate xi. In this example both functions yield the same fitted

values ŷi = f̂(xi). This also implies that the least-squares loss
∑n

i=1(yi − f̂(xi))
2 is the

same for both functions, i.e. the data alone does not tell us which function does a better

job. There is no global answer to this question.

Which of the two functions appears better suited to us depends on the context and

also to some extent our subjective choice. In most circumstances we would prefer the

function in the left-hand panel as it is the “simpler” function. However, if we expect

the signal to have a periodic component (say we are expecting a day-of-the-week effect)

then we might prefer the function shown in the right-hand panel. /

What we have seen in the example is simply that the family of smooth functions is

so large that observing a finite sample alone will not tell us enough to learn the function

of interest f(·).

We need to provide additional information, which can be of different types:
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Figure 2.4. Two possible smooth functions modelling the relationship between the re-
sponse Yi and the covariate xi. Note that both functions yield the same fitted values
ŷi = f̂(xi) and thus the same least-squares loss

∑n
i=1(yi − f̂(xi))

2.

– We can assume that the function of interest f(·) comes from a more restricted family

of functions. We might even assume a rich class of parametric models. We will use this

idea when we are looking at splines based on truncated power series and B-splines.

– We express a preference for some functions over others (without looking at the data)

and use this in the model fitting procedure. Typically we prefer a smooth function

to a more wiggly function. In a frequentist setting, this leads to a penalty-based

approach, or can be viewed as a Bayesian prior over the space of functions.

2.3.1 Polynomial regression

We will start by revising polynomial regression. To fix notation, we quickly state the

simple linear regression model

E(Yi) = β0 + β1xi for i = 1, . . . , n,

or equivalently, in matrix-vector notation,

E(y) = Bβ with y = (Y1, . . . , Yn)> and B =


1 x1

...
...

1 xn

.

In this we call B our matrix of basis functions and β our vector of basis coefficients,

and for the simple linear regression we have the basis functions:
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B0(x) = 1, B1(x) = x.

The simple linear regression model can be extended into a polynomial regression

model by including powers of the covariates xi in the design matrix. The polynomial

regression model

E(Yi) = β0 + β1xi + . . .+ βrx
r
i for i = 1, . . . , n,

just corresponds to linear regression using the expanded design matrix (matrix of basis

functions)

B =


1 x1 . . . xr1
...

...
. . .

...

1 xn . . . xrn

 ,

where the basis functions are:

B0(x) = 1, B1(x) = x . . . , Br(x) = xr.

We can then estimate β using the same techniques as used in multiple linear regres-

sion, i.e. the least-squares estimator is

β̂ = (B>B)−1B>y.

Polynomial regression is a very simple example of a basis expansion technique. We

have simply replaced the design matrix of simple linear regression by an augmented

design matrix. In the case of polynomial regression we have simply added powers of the

xi’s.

The figures below illustrate a fitted simple linear regression with the corresponding basis:

Figure 2.5. A simple linear regression
line with underlying simulated data

Figure 2.6. The basis functions for sim-
ple linear regression 1, x
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Many of the techniques covered in this section will be based on this idea of basis

expansions. Polynomial regression can be a useful tool if a polynomial of very low order

yields a sufficient fit to the data.

Example 2.4 (Glucose levels in potatoes). Figure 2.7 shows a quadratic regression model

fitted to a simple data set from an experiment in which the glucose level in potatoes

was measured over the course of several weeks. Given the small number of observations

there is little need to go beyond a simple quadratic regression model. /
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Figure 2.7. Glucose level in potatoes. The solid line is the fitted regression function
obtained from quadratic regression.

However, polynomial regression is not very well suited for modelling more complex

relationships, as the following example shows.

Example 2.5. Consider the dataset simulated using the model

Yi = 1− x3
i − 2 exp(−100x2

i ) + εi

with x = (−1,−0.98, . . . , 0.98, 1) and εi ∼ N(0, 0.12). Figure 2.8(a) shows the data

together with the fitted function obtained for a polynomial regression model of degree

10. The polynomial model of degree 10 is not flexible enough to capture the sharp

dip around 0. If we increase the degree to 17 we can capture the dip better (panel

(b)). However, the polynomial fit of degree 17 shows strong oscillations which are not

supported by the data. Panel (c) shows the fitted regression function using a spline
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based model, which we will discuss later on in this chapter. The spline-based approach

can capture the sharp dip much better and without yielding any oscillations.
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(a) Polynomial regression of degree 10
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(b) Polynomial regression of degree 17
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(c) Quadratic-spline-based regression

Figure 2.8. Data and fitted function for the simulated data from example 2.5 for poly-
nomial regression of degrees 10 and 17 as well as for a spline-based model.

Figure 2.9 allows some insight into why the polynomial model struggles. It shows

image plots of the hat matrix S = B(B>B)−1B> for the three models under considera-

tion. The hat matrix maps the observed response to the fitted response, i.e.

ŷ = Bβ̂ = B(B>B)−1B>y = Sy

When performing flexible regression we would expect the prediction at xi to almost only

depend on observations close to xi, i.e. we would expect the hat matrix S to be largely
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(a) Polynomial regression of degree 10
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(b) Polynomial regression of degree 17
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(c) Quadratic-spline-based regression

Figure 2.9. Hat matrix S = B(B>B)−1B> for polynomial regression of degrees 10 and
17 as well as for splines applied to the simulated data from example 2.5.
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band-diagonal with a rather narrow band width. However, polynomials are not “local”.

As one can see from a Taylor series expansion, the coefficients of the polynomial can

be learnt from higher order derivatives observed at a single point. The problem is that

a sharp dip provides more information than the data on either side of it, yielding to a

poor fit on both sides. This is known as Runge’s phenomenon in Numerical Analysis.

Figure 2.8(a) and Figure 2.8(b) shows another drawback of polynomial regression. As

x→ ±∞ the polynomial must go to ±∞ as well. This often leads to very high curvature

at both ends of the range, which is typically not supported by the data.

Yet another reason for avoiding polynomial regression is that it is highly likely to be

numerically unstable. Due to the large correlations between the powers of the xi, which

make up the columns of the design matrix, the design matrix B and the matrix of cross-

products B>B is very likely to be ill-conditioned. The condition number1 of B>B for the

polynomial regression model of degree 17 is 1.56×1012, i.e. B>B is barely invertible. For

comparison, the corresponding condition number for the spline-based model is 32.49.

Instead of using monomials it would be numerically more stable to use so-called

Tchebychev polynomials (as produced for example by the R function poly). Both sets

of basis functions are equivalent, i.e. they span the same linear subspace and thus yield

identical predictions. Though numerically more stable, Tchebychev polynomials suffer

from all the other problems just as much as monomials. /

As we have seen in the example above, polynomial regression is, unless modelling very

simple relationships, not a suitable tool for flexible regression. In the next section we

will consider piecewise polynomial models, which are better suited for flexible regression.

These are based on the idea of splitting the input domain and fitting low-order polynomi-

als in each interval. As we can see from Figure 2.10(a) fitting polynomials independently

of each other does not yield satisfactory results. We will thus introduce additional con-

straints which make the function continuous and (potentially) differentiable (cf. panel

(b)).

2.3.2 Polynomial splines

In this section we will introduce polynomial splines (see, for example, de Boor (1978) for

more introductory details) which are piecewise polynomials, which are “glued together”

at the knots so that the resulting function is r-times continuously differentiable.

1 The condition number of a matrix is defined as the ratio of the largest singular value divided by the smallest
singular value. For a symmetric positive-definite matrix this is the same as the ratio of the largest over the
smallest eigenvalue. The condition number is of measure of how numerically unstable matrix operations like
taking the inverse will be.
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(a) Discontinuous piecewise polynomials
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(b) Piecewise polynomials which form a continuously
differentiable function (derivatives at knots shown as
dashed lines)

Figure 2.10. Piece-wise polynomials fitted to the data from example 2.5 with an without
smoothness constraints. The back triangles show the positions of the knots.

Definition 2.1 (Polynomial spline). Given a set of knots a = κ1 < κ2 < . . . < κl = b,

a function f : [a, b]→ R is called a (polynomial) spline of degree r if

– f(·) is a polynomial of degree r on each interval (κj, κj+1) (j = 1, . . . , l − 1).

– f(·) is r − 1 times continuously differentiable.2

Historically, a spline was an elastic ruler used to draw technical designs, notably in

shipbuilding and the early days of aircraft engineering. Figure 2.11 shows such a spline.3

Figure 2.11. A spline.

2 For a spline of degree 0 the function f(·) does not need to be continuous. For a spline of degree 1 the function
f(·) needs to be continuous, but does not need to be differentiable.

3 See http://pages.cs.wisc.edu/~deboor/draftspline.html for a picture (probably from the 1960’s) of a
Boeing engineer using a spline.



Flexible Regression 2.3 Regression splines 25

Choice of degree r. The degree r of the spline controls the smoothness in the sense

of controlling its differentiability. For r = 0 the spline is a discontinuous step function.

For r = 1 the spline is a polygonal line. For larger values of r the spline is increasingly

smooth, but also behaves more and more like one global polynomial. It is worth noting

that assuming too smooth a function can have significant detrimental effects on the

fitted regression function (e.g. oscillations, ballooning). In practice it is rarely necessary

to go beyond r = 3.
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(a) Degree r = 0 (discontinuous).
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(b) Degree r = 1 (continuous).
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(c) Degree r = 2 (continuous first derivative).
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(d) Degree r = 3 (continuous second derivative).

Figure 2.12. Splines of degree r ∈ {0, 1, 2, 3} fitted to the radiocarbon data.
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Example 2.6 (Radiocarbon dating). In a scientific experiment high-precision measure-

ments of radiocarbon were performed on Irish oak. To construct a calibration curve

we need to learn the relationship between the radiocarbon age and the calendar age.

Figure 2.12 shows spline fits to the data using splines of different degrees. /

Choice of the number of knots l. In an (unpenalised) spline the number of knots

acts as a smoothing parameter. The more knots that are used, the more flexible the

regression function can become. A more flexible regression function has a lower bias,

but a higher variance.
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(a) l = 3 knots.
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(b) l = 9 knots.
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(c) l = 15 knots.
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(d) l = 31 knots.

Figure 2.13. Cubic spline with different number of knots l ∈ {3, 9, 15, 31} fitted to the
radiocarbon data.
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Example 2.7 (Radiocarbon dating (continued)). Figure 2.13 shows a cubic spline fitted to

the radiocarbon data using an increasing number of knots. Too few knots lead to an

underfit to the data: the fitted function does not fully represent the relationship between

radiocarbon age and calendar age. Too many knots on the other hand lead to an overfit:

the spline does not only pick up the signal, but also adapts to artefacts in the noise. /

Especially when the number of knots is small, the positioning of the knots can be

important. The simplest strategy consists of using a set of equally spaced knots; this

is computationally the simplest. Alternatively, we can place the knots according to the

quantiles of the covariate. This makes the spline more flexible in regions with more data

(and thus potentially in regions with more information) and less flexible in areas with

less data (and potentially less information). A third strategy consists of trying to find

an optimal placement of the knots. This usually is computationally very demanding.

Yet another approach consists of using “too many” knots — one knot per observation

in the most extreme case — and then using a penalty term to control for the smoothness.

This avoids the need to select the number of knots altogether. We will study two such

approaches in sections 2.3.3 and 2.3.5.

Splines as a vector space. For a given set of l knots and given degree r, the space

of polynomial splines is a vector space, i.e. the sum of two splines, as well as a scalar

multiple of each spline, are again splines. To find the dimension of the vector space we

have to find the number of “free parameters”.

– Each polynomial has r + 1 parameters and there are l − 1 polynomials. Thus the

spline model has (r + 1) · (l − 1) parameters. However we cannot choose all these

parameters freely, as the resulting function needs to be r − 1 times continuously

differentiable.

– At the l− 2 interior knots we have to guarantee that f(·) is r− 1 times continuously

differentiable. This corresponds to r constraints (r−1 constraints for each derivative

and one for f(·) to be continuous). Thus there are r · (l − 2) constraints (which are

all linearly independent).

Thus there are (r + 1) · (l− 1)− r · (l− 2) = r + l− 1 free parameters. Thus the vector

space of polynomial splines of degree r with l knots is r + l − 1.

In section 2.3.4 we will explore different ways of constructing a basis for this space.

The dimension will come in handy when proving that a given set of basis functions

is indeed a basis of this space, as we only need to show that the basis functions are

independent and that we use the correct number of basis functions.
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Natural cubic splines. Finally, we will introduce the concept of a natural cubic spline.

It is based on the idea that it is “safer” (or more “natural”) to assume that the curvature

of the spline at the first and last knot is zero. If we were to extrapolate, we would then

extrapolate linearly.

Definition 2.2 (Natural cubic spline). A polynomial spline f : [a, b] → R of degree 3

is called a natural cubic spline if f ′′(a) = f ′′(b) = 0.

Given a set of l knots the vector space of all cubic splines has dimension l+2. Natural

cubic splines introduce two additional constraints, thus they form a vector space of

dimension l. This makes natural cubic splines perfectly suited for interpolation.

Proposition 2.3. A set of l points (xi, yi) can be exactly interpolated using a natural

cubic spline with the x1 < . . . < xl as knots. The interpolating natural cubic spline is

unique.

Proof. The space of natural cubic splines with knots at x1, . . . , xl is a vector space of

dimension l. Introducing l additional constraints (yi = f(xi) for i = 1, . . . , l) yields a

system of l equations and l free parameters, which yields a unique solution.4 �

Natural cubic splines can be generated using the function ns in the package splines

in R.

In the next section we will show that natural cubic splines have an important opti-

mality property.

2.3.3 Optimality of splines

This section provides a theoretical justification for the choice of splines for flexible

regression.

In this section we will ask a rather general question. Given a data set (xi, yi) with

a ≤ xi ≤ b we try to find, amongst all twice continuously differentiable functions, the

function which “best” models the relationship between response yi and covariate xi.

First of all, we need to specify what we mean by “best”. We could look for the

function f(·) which yields the smallest least-squares criterion

4 Strictly speaking, we would need to show that the system of equations cannot be rank-deficient, which could
cause the solution to be either non-unique or non-existing.
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n∑
i=1

(yi − f(xi))
2.

This is however not a good idea. Any function which interpolates all the observations

(xi, yi) would be optimal in this sense, yet such a function would typically not describe

the relationship between xi and yi but rather model the artefacts of the random noise.

Thus we will consider a so-called penalised (or regularised) criterion which tries to bal-

ance out two aspects which are important to us:

Fit to the data. We want f(·) to follow the data closely.

Simplicity/smoothness. We want the function f(·) not to be too complicated so that it

generalises well to future unseen data.

We will thus minimise the following penalised fitting criterion

n∑
i=1

(yi − f(xi))
2

︸ ︷︷ ︸
Fit to the data

+λ

∫ b

a

f ′′(x)2 dx︸ ︷︷ ︸
Roughness penalty

, (2.1)

where λ > 0 is a tuning parameter which balances between following the data and

preventing f(·) from being too rough.

We will now establish that the minimiser of (2.1) over all twice continuously differ-

entiable functions has to be a natural cubic spline, i.e. natural cubic splines with knots

at each of the unique xi are in this sense the optimal class functions.

We will start by stating that natural cubic splines are optimal interpolators, in the

sense that they minimise the roughness penalty
∫ b
a
f ′′(x)2 dx.

Lemma 2.4. Amongst all functions on [a, b] which are twice continuously differentiable

and which interpolate the set of points (xi, yi), a natural cubic spline with knots at the

xi yields the smallest roughness penalty∫ b

a

f ′′(x)2 dx.

Proof. Let f(·) be the natural cubic spline with knots at the xi, interpolating the data.

Suppose there is another function g(·), which is twice continuously differentiable and

which also interpolates the data. Denote by h(x) = g(x)− f(x) the difference between

the two functions.

1. We will first of all show that we can decompose
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∫ b

a

g′′(x)2 dx =

∫ b

a

f ′′(x)2 dx+

∫ b

a

h′′(x)2 dx

i. As both f(·) and g(·) interpolate the (xi, yi) we have that f(xi) = g(xi) = yi,

thus h(xi) = g(xi)− f(xi) = 0.

ii. Using integration by parts we obtain that∫ b

a

f ′′(x)h′′(x) dx = [f ′′(x)h′(x)]
b
x=a︸ ︷︷ ︸

=0 (as f ′′(a) = f ′′(b) = 0)

−
∫ b

a

f ′′′(x)h′(x) dx

= −
n−1∑
i=1

∫ xi+1

xi

f ′′′(x)h′(x) dx

= −
n−1∑
i=1

f ′′′
(
xi + xi+1

2

)
·
∫ xi+1

xi

h′(x) dx︸ ︷︷ ︸
=h(xi+1)︸ ︷︷ ︸

=0

−h(xi)︸ ︷︷ ︸
=0

=0

= 0

In the second line we have used that the natural cubic spline is piece-wise cubic

polynomial, i.e. between two knots xi and xi+1 the third derivative f ′′′(x) is

constant.

iii. Thus∫ b

a

g′′(x)2 dx =

∫ b

a

(g′′(x)− f ′′(x) + f ′′(x))2 dx =

∫ b

a

(h′′(x) + f ′′(x))2 dx

=

∫ b

a

h′′(x)2 dx+ 2

∫ b

a

h′′(x)f ′′(x) dx︸ ︷︷ ︸
=0

+

∫ b

a

f ′′(x)2 dx

=

∫ b

a

h′′(x)2 dx+

∫ b

a

f ′′(x)2 dx

2. Because of
∫ b
a
h′′(x)2 dx ≥ 0 we have that

∫ b

a

g′′(x)2 dx =

∫ b

a

f ′′(x)2 dx+

∫ b

a

h′′(x)2 dx︸ ︷︷ ︸
≥0

≥
∫ b

a

f ′′(x)2,

i.e. the natural cubic spline cannot have a larger roughness penalty.

3. In the above inequality equality holds if and only if
∫ b
a
h′′(x)2 dx = 0, which, given

that h(xi) = 0, can only be the case if g(x) = f(x) for all x ∈ [a, b]. �
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Spline-based interpolation is implemented in the R functions spline and splinefun.

Theorem 2.5. The minimiser of

n∑
i=1

(yi − f(xi))
2 + λ ·

∫ b

a

f ′′(x)2 dx

amongst all twice continuously differentiable functions on [a, b] is given by a a natural

cubic spline with knots in the unique xi.

This is an extremely powerful theorem. Even though we consider the entire infinite-

dimensional vector space of all twice continuously differentiable functions, we only need

to consider the finite-dimensional vector space of natural cubic splines. We have thus

reduced the complexity of the optimisation problem to the comparatively simple problem

of finding the optimal coefficients of the natural cubic spline. This can be done using

least-squares.

Proof. Let g(·) be a twice continuously differentiable function. We will now create a

competitor to g(·), which is a natural cubic spline with knots in the xi. We will now

show that, unless g(·) is already a natural cubic spline, f(·) leads to a smaller value of

the objective function. We choose the natural cubic spline f(·) such that it interpolates

the fitted values g(·) generates, i.e. f(xi) = g(xi). Thus
∑n

i=1(yi − f(xi))
2 =

∑n
i=1(yi −

g(xi))
2, i.e. both functions model the data equally well, however as we have shown in

Lemma 2.4 the natural cubic spline f(·) has the smaller roughness penalty. �

Note that the proof did not make use of the fact that we have used the least-squares

loss function. In fact, the theorem holds for any pointwise loss function.

The technique of smoothing splines is based on this theoretical result and finds

the natural cubic spline minimising (2.1), and, due to the theorem, the optimal function

amongst all twice continuously differentiable functions. This approach is implemented

in the R function smooth.spline, illustrated here in Figure 2.14.

We will revisit the idea of regularisaton in more detail in section 2.3.5.
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radiocarbon <- radioc[(radioc$Cal.age>=2000)&(radioc$Cal.age<=3000),]
smsp <- with(radiocarbon, {

plot(Cal.age, Rc.age)
smooth.spline(Cal.age, Rc.age)

})
smsp

## Call:
## smooth.spline(x = Cal.age, y = Rc.age)
##
## Smoothing Parameter spar= 0.3707624 lambda= 2.777959e-06 (15 iterations)
## Equivalent Degrees of Freedom (Df): 24.10109
## Penalized Criterion (RSS): 10466.32
## GCV: 737.7253

lines(smsp)
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Figure 2.14. Smoothing spline fit to the radiocarbon data.
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2.3.4 Constructing splines

In this section we will study two ways of constructing a basis for the vector space of

polynomial splines: the truncated power basis and the B-spline basis. We will only cover

the case of generic polynomial splines. However one can modify these bases to only span

the space of natural cubic splines.

Truncated power basis. The simplest basis for polynomial splines is the truncated

power basis.

Definition 2.6 (Truncated power basis). Given a set of knots a = κ1 < . . . < κl = b

the truncated power basis of degree r is given by

(
1, x, . . . , xr−1, (x− κ1)r+, (x− κ2)r+, . . . , (x− κl−1)r+

)
,

where (z)r+ =

{
zr for z > 0

0 otherwise.

The truncated power basis has r + l − 1 basis functions. It is easy to see that they

are linearly independent. Thus the truncated power basis is indeed a basis of the vector

space of polynomial splines. Figure 2.15(a) shows the truncated power series basis of

degree 3 for six equally spaced knots.
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(a) Truncated power series
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(b) B-splines

Figure 2.15. Basis functions Bj(x) of the cubic truncated power series basis (left panel)
and B-splines (right panel). The vertical lines indicate the location of the knots.
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To fit a polynomial spline to data we can exploit the fact the truncated power basis

is a basis of the vector space of polynomial splines of the given degree and with the

given set of knots. Thus we can write any spline f(·) as a linear combination of the basis

functions, i.e.

f(x) = β0 + β1x+ . . .+ βr−1x
r−1 + βr(x− κ1)r+ + . . .+ βr+l−2(x− κl−1)r+

We can thus find the optimal spline f(·) by just finding the optimal set of coefficients

βj, which is nothing other than a linear regression problem with design matrix

B =


1 x1 . . . xr−1

1 (x1 − κ1)r+ . . . (x1 − κl−1)r+
...

...
. . .

...
...

. . .
...

1 xn . . . xr−1
n (xn − κ1)r+ . . . (xn − κl−1)r+


We can use the design matrix B in exactly the same way as we would use the design

matrix of a classical linear model.

We can interpret the truncated power series as a regression model in which the leading

coefficient changes at each knot. At each knot, the remaining coefficients change as well.

However they are fully constrained by the condition that the spline has to be r−1 times

continuously differentiable at each knot.

Example 2.8 (Radiocarbon data (continued)). Figure 2.19 illustrates the use of a trun-

cated power series basis for fitting a spline-based flexible regression model for the radio-

carbon data.

As one can see from the middle panel of Figure 2.19 and from Figure 2.17, some of

the estimated coefficients are very large: some of the basis functions are scaled up by

a factor of more than 1000, with “neighbouring” basis functions having opposite signs.

The reason for this is the high correlation between the columns of the design matrix of

the truncated power series. The largest correlation between columns is 0.99921, which

is very close to 1.

Figure 2.18 shows a scree plot of the singular values of the design matrix B. The

condition number of the matrix B is 225333.0, with the condition number of B>B being

5, 857, 413, 839, i.e. B>B is close to being numerically singular. This suggests that finding

the least-squares estimate of the coefficients is close to being numerically unstable. /
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We can generate a truncated power basis in R as follows.

tpower <- function(x, t, p)
(x - t) ^ p * (x > t)

tbase <- function(x, xl = min(x), xr = max(x), n.knots = 10, deg = 3) {
nseg <- n.knots - 1
dx <- (xr - xl) / nseg
knots <- seq(xl, xr, len=n.knots)
B <- cbind(outer(x-xl,0:(deg-1),"^"),

outer(x,knots[-length(knots)],function(x,y) pmax(x-y,0))^deg)
B

}

B <- tbase(radiocarbon$Cal.age, n.knots=10)
y <- radiocarbon$Rc.age
beta <- qr.coef(qr(B), y)
y.hat <- B%*%beta
with(radiocarbon, {

plot(Cal.age, Rc.age)
lines(Cal.age, y.hat)

})
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Figure 2.16. Truncated power basis fit to the radiocarbon data.

As we have seen in the above example the truncated power basis can easily lead to

numerical instability. Thus we will turn to an alternative basis, the so-called B-spline

basis.
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Figure 2.17. Bar plot of the coefficients β̂ estimated using the truncated power series
regression model shown in Figure 2.19.
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Figure 2.18. Scree plot of the singular values of the design matrix B (square root of the
eigenvalues of the cross-product matrix B′B) for the truncated power series regression
model shown in Figure 2.19.

B-splines. B-splines form a numerically more stable basis. They also make the definition

of meaningful penalty matrices easier, which we will exploit in section 2.3.5.

The key idea of B-splines is to use basis functions which are local, i.e. only non-zero

for a “small” proportion of the range of the covariate and which are bounded above. We

can think of B-splines as a sequence of “bumps”.

Definition 2.7 (B-spline basis). (a) Given a set of l knots the B-spline basis of degree

0 is given by the functions (B0
1(x), . . . , B0

l−1(x)) with

B0
j (x) =

{
1 for κj ≤ x < κj+1

0 otherwise.

(b) Given a set of l knots the B-spline basis of degree r > 0 is given by the functions

(Br
1(x), . . . , Br

l+r−1(x)) with

Br
j (x) =

x− κj−r
κj − κj−r

Br−1
j−1(x) +

κj+1 − x
κj+1 − κj+1−r

Br−1
j (x).

In order to be able to construct the splines recursively we have to introduce additional

outside knots to the left of κ1 and to the right of κl. In order to be able to construct a
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Figure 2.19. Illustration of flexible regression using the truncated power series ba-
sis of degree 3 applied to the radiocarbon data. The top panel shows the unscaled
basis functions Bj(x). The middle panel shows the scaled basis functions β̂jBj(x).
The bottom panel shows a scatter plot of the data together with the fitted function
f̂(x) =

∑
j β̂jBj(x).
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(a) Degree r = 1
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(b) Degree r = 2
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(c) Degree r = 3

Figure 2.20. B spline bases for degrees r ∈ {1, 2, 3}.
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basis of degree r we need r additional outside knots on each side. Figure 2.20 illustrates

this idea. These outside knots are just used to construct the basis.

From their recursive definition one can derive that B-splines have the following prop-

erties. These can also be seen in Figure 2.20.

– A B-spline basis function of degree r is made up of r + 1 polynomials of degree r.

Outside these r+1 intervals, the basis function is zero. This makes the basis functions

local.

– At every x ∈ (a, b) only r + 1 basis functions are non-zero.

– The basis functions sum to 1 for all x ∈ [a, b]. This implies that we do not need to

include an intercept in the design matrix.

– One can show that the derivative of a B-spline of degree r is a B-spline of degree

r − 1.

We can fit a B-spline model to data by using the design matrix

B =


Br

1(x1) . . . Br
l+r−1(x1)

...
. . .

...

Br
1(xn) . . . Br

l+r−1(xn)

 .

Example 2.9 (Radiocarbon data (continued)). Figure 2.24 illustrates the use of a B-spline

basis for fitting a spline-based flexible regression model for the radiocarbon data.

The B-spline basis is numerically much better behaved. The coefficient values (cf.

Figure 2.22) are not too large and the columns of the design matrix B are much less

correlated than the columns of the truncated power basis; the maximum correlation is

0.8309. The condition number of B is 25.664 (cf. Figure 2.23) and the condition number

of B>B is 358.263. /

The R function bs from the package splines can generate a B-spline basis and

can be used inside lm. The number of basis functions needs to be chosen manually when

using bs. This is done by selecting a value for df - here the degrees of freedom for the

basis - we’ll return to this idea in Chapter 4.
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model <- lm(Rc.age~bs(Cal.age, df=10), data=radiocarbon)
with(radiocarbon, {

plot(Cal.age, Rc.age)
lines(Cal.age, predict(model))

})
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Figure 2.21. B-spline fit to the radiocarbon data.

However, in terms of scaling and properties on the boundary, the basis returned by

bs differs slightly from the definitions above. The function given below (based on a

function written by Paul Eilers) generates a B spline basis which looks exactly like the

ones shown above.

bbase <- function(x, xl = min(x), xr = max(x), n.knots = 10, deg = 3) {
# Construct B-spline basis (based on a function written by Paul Eilers)

nseg <- n.knots-1

dx <- (xr - xl) / nseg

knots <- seq(xl - deg * dx, xr + deg * dx, len = n.knots + 2*deg )

P <- outer(x, knots, tpower, deg)

n <- dim(P)[2]

D <- diff(diag(n), diff = deg + 1) / (gamma(deg + 1) * dx ^ deg)

B <- (-1) ^ (deg + 1) * P %*% t(D)

B

}

The function bbase can be used in the same way as the function tbase.
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Figure 2.22. Bar plot of the coefficients β̂ estimated using the B-spline regression model
shown in Figure 2.20.
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Figure 2.23. Scree plot of the singular values of the design matrix B (square root of the
eigenvalues of the cross-product matrix B′B) for the B-spline regression model shown
in Figure 2.20. The condition number of B′B is 395.661.

2.3.5 Penalised splines (P-splines)

A reminder of ridge regression

Ridge regression solves the penalised (or regularised) least-squares criterion

‖y −Bβ‖2 + λ‖β‖2,

where B is the matrix of covariates. The solution of this problem is given by

β̂ridge = (B>B + λIp)
−1B>y

To compute β̂ridge it is numerically more stable to use a QR decomposition (as

mentioned in the preliminary material) to minimise the augmented system

∥∥∥∥∥
(

y

0

)
−

(
B
√
λI

)
β

∥∥∥∥∥
2

When using splines the positioning of the knots can have a large influence on the

fitted function, especially if a comparatively small number of basis functions is used.
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Figure 2.24. Illustration of flexible regression using the B-spline basis applied to the
radiocarbon data. The top panel shows the unscaled basis functions Bj(x). The middle

panel shows the scaled basis functions β̂jBj(x). The bottom panel shows a scatter plot

of the data together with the fitted function f̂(x) =
∑

j β̂jBj(x).
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One way of avoiding this problem is to use penalised splines. They are based on the idea

of not using the number of basis functions to control the smoothness of the estimate, but

to use a roughness penalty to this end. This is similar in spirit to the approach discussed

in section 2.3.3, though in most cases it is not necessary to use one basis function per

observation. Around 20 to 30 basis functions should be sufficient. Without including

a penalty in the fitting criterion this would most likely lead to an overfit to the data.

Thus we need to consider a penalised criterion which, just like in section 2.3.3, contains

a roughness penalty. In this section we will use ‖Dβ‖2 as roughness penalty, i.e. we

choose the regression coefficients β by minimising

n∑
i=1

(yi − f(xi))
2 + λ‖Dβ‖2. (2.2)

This objective function is, with the exception of the inclusion of the matrix D, the ob-

jective function of ridge regression. As before, λ controls the trade-off between following

the data (small λ) and obtaining a strongly regularised curve (large λ). In analogy with

ridge regression one can show that the optimal β is given by

β = (B>B + λD>D)−1B>y,

where B is the design matrix corresponding to the B-spline basis used for f(·). Numer-

ically, it is more advantageous to represent the penalty term λ‖Dβ‖2 by including it

into an expanded design matrix, i.e. to solve

∥∥∥∥∥
(

y

0

)
−

(
B
√
λD

)
β

∥∥∥∥∥
2

using a QR decomposition.

There are (at least) two possible approaches for choosing D. We can choose D to be

a difference matrix, or we can choose D such that ‖Dβ‖2 =
∫ b
a
f ′′(x)2 dx. The former is

both conceptually and computationally simpler; the latter is closer to what the theory

suggests as optimal.

2.3.6 Difference penalties

The simplest choice of D is to use a difference penalty. Using the identity matrix for D,

as we would in ridge regression, is usually not appropriate: it shrinks all coefficients to

zero, i.e. it shrinks the regression function f(·) to zero as well, which is rarely desirable

(cf. Figure 2.25(a)). As we can see from the middle panel of Figure 2.24, we obtain a

smooth function when neighbouring βj’s are similar.
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This can be achieved by using one of the following choices. We assume that we are

using equally-spaced knots.

First-order differences. We can set

D1 =


1 −1 . . . 0
...

. . . . . . 0

0 . . . 1 −1

 .

This calculates the roughness penalty as the sum of the squared first-order differences

between the neighbouring βj, i.e.

‖D1β‖2 =
l+r−2∑
j=1

(βj+1 − βj)2

This penalty shrinks the coefficients towards a common constant (cf. Figure 2.25(b))

and thus shrinks the regression function f(·) towards a constant function. Adding a

constant to f(·) does thus not change the penalty.

This penalty is the natural choice if B-splines of order 2 are used.

Second-order differences. We can set

D2 =


1 −2 1 . . . 0
...

. . . . . . . . . 0

0 . . . 1 −2 1

 .

This calculates the roughness penalty as the sum of the squared second-order differ-

ences between the neighbouring βj, i.e.

‖D2β‖2 =
l+r−3∑
j=1

(βj+2 − 2βj+1 + βj)
2

This penalty shrinks the coefficients towards a linear sequence (cf. Figure 2.25(c))

and thus shrinks the regression function f(·) towards a linear function. Adding a

linear function to f(·) does thus not change the penalty.

This penalty is the natural choice if B-splines of order 3 are used.

Higher-order differences. Higher-order difference matrices can be constructed using the

recursive formula Dr = D1Dr−1 where Dr denotes the penalty matrix of order r.

Example 2.10 (Radiocarbon dating (continued)). Figure 2.26 shows the model fit obtained

when fitting a P-spline model with different values of the smoothing parameter λ. The
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Penalty interpretation: Only an
all-zero coefficient vector incurs
no penalty.
Bayesian interpretation: Inde-
pendent zero-mean Gaussian
prior.

0 ● ●

β1 β2

(a) Illustration of a 0-th order
penalty (ridge regression).

Penalty interpretation: Only an
all constant coefficient vector in-
curs no penalty.
Bayesian interpretation: Condi-
tional distribution of β2 given β1
is Gaussian with mean β1.
(First-order random walk)

0

● ●

β1 β2

(b) Illustration of a first-order
penalty.

Penalty interpretation: Only a co-
efficient vector which forms a lin-
ear sequence incurs no penalty.
Bayesian interpretation: Condi-
tional distribution of β3 given β1
and β2 is Gaussian with mean
2 · β2 − β1.
(Second-order random walk)

0

●

●

●

β1 β2 β3

(c) Illustration of a second-order
penalty.

Figure 2.25. Illustration of difference penalties of order 0 to 2.

smaller λ the closer the fitted function f̂(·) is to the data, which leads for very small

values of λ to an overfit to the data. /

For more details on this p-splines approach see Marx and Eilers (1998).

Other penalties Difference penalties are not the only choice of penalty matrix. An

alternative choice consists of choosing D such that ‖Dβ‖2 =
∫ b
a
f ′′(x)2 dx, which is the

roughness penalty we have used in section 2.3.3.

Using that f ′′(x) =
∑l+r−1

j=1 βjB
′′
j (x) we have that

∫ b

a

f ′′(x)2 dx =
l+r−1∑
j=1

l+r−1∑
k=1

βjβk

∫ b

a

B′′j (x)B′′k(x) dx

= β>


∫ b
a
B′′1 (x)B′′1 (x) dx . . .

∫ b
a
B′′1 (x)B′′l+r−1(x) dx

...
. . .

...∫ b
a
B′′1 (x)B′′l+r−1(x) dx . . .

∫ b
a
B′′l+r−1(x)B′′l+r−1(x) dx

β
Thus we just need to choose D such that

D>D =


∫ b
a
B′′1 (x)B′′1 (x) dx . . .

∫ b
a
B′′1 (x)B′′l+r−1(x) dx

...
. . .

...∫ b
a
B′′1 (x)B′′l+r−1(x) dx . . .

∫ b
a
B′′l+r−1(x)B′′l+r−1(x) dx

 .
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(a) λ = 0.0001.
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(b) λ = 0.01.
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(c) λ = 1.
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(d) λ = 10.

Figure 2.26. P-spline with different values of the smoothing parameter λ fitted to the
radiocarbon data.
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2.3.7 Penalised splines in R

We can fit a penalised spline from “first principles” in R as follows.

B <- bbase(radiocarbon$Cal.age, n.knots=25)
D <- diff(diag(ncol(B)), diff=2)
y <- radiocarbon$Rc.age
lambda <- 1
beta <- qr.coef(qr(rbind(B, lambda*D)), c(y, rep(0, nrow(D))))
y.hat <- B%*%beta
with(radiocarbon, {

plot(Cal.age, Rc.age)
lines(Cal.age, y.hat)

})

2000 2200 2400 2600 2800 3000

22
00

24
00

26
00

28
00

Cal.age

R
c.

ag
e

Figure 2.27. P-spline fit to the radiocarbon data.

The parameter λ would need to be tuned manually.

It is however simpler to use the function gam from the package mgcv, see Figure

2.28, which automatically tunes the smoothing parameters (though these can also be

set manually, if needed).

The function s uses by default a penalty based on the integrated squared second

derivative, but can be set to use a difference penalty by using the additional argument

bs=‘ps’,
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model <- gam(Rc.age~s(Cal.age), data=radiocarbon)
model

##
## Family: gaussian
## Link function: identity
##
## Formula:
## Rc.age ~ s(Cal.age)
##
## Estimated degrees of freedom:
## 7.56 total = 8.56
##
## GCV score: 1470.6

plot(model, residuals=TRUE)

2000 2200 2400 2600 2800 3000

−
40

0
−

20
0

0
20

0
40

0

Cal.age

s(
C

al
.a

ge
,7

.5
6)

Figure 2.28. Penalised spline fit using mgcv to the radiocarbon data.
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Quantile regression

When we talk about regression, we usually refer to mean regression which describes how

the expected value of a response variable of interest varies with explanatory variables.

Sometimes it is also useful to consider the effect of explanatory variables on the entire

conditional distribution of the variable of interest. Quantile regression is one way of

achieving this. In this chapter we will introduce quantile regression by first considering

what is a quantile and what is meant by quantile regression, before presenting the main

properties of quantiles and the theory of estimation and inference for quantile regression

models. Throughout the chapter we will show examples of implementation of quantile

regression in R.

To explain what we mean by the term quantile regression, we must first define the

term quantile.

Definition 3.1. Suppose that the random variable Y has cumulative distribution function

(cdf) FY (y) = P (Y ≤ y). The τ th quantile of Y is defined as

Qτ (Y ) = inf{y : FY (y) ≥ τ},

where 0 < τ < 1 is the quantile level.

From the definition of a quantile we can see that Q0.5(Y ) is the median, also referred

to to as the second quartile, while Q0.25(Y ) is the first quartile or 25th percentile and

Q0.75(Y ) is the third quartile or 75th percentile. Quantiles and percentiles are essen-

tially the same thing, except that the former refer to proportions while the latter to

percentages.
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The quantile function Qτ (Y ) is a non-decreasing function of τ , i.e. Qτ1(Y ) ≤ Qτ2(Y )

for τ1 < τ2. In a regression setting we are actually interested in the τth conditional

quantile, defined as follows.

Definition 3.2. Suppose that we have a response variable Y , and that x is a p-dimensional

predictor. Let FY (y|x) = P (Y ≤ y|x) denote the conditional cdf of Y given x. Then the

τ th conditional quantile of Y is defined as

Qτ (Y |x) = inf{y : FY (y|x) ≥ τ}.

This allows us to consider a model of the form

Qτ (Y |x) = xTβ(τ), 0 < τ < 1, (3.1)

which is similar to the more familiar model for the mean E(Y |x) = xTβ, where β

measures the marginal change in the mean of Y due to a marginal change in x.

In the linear quantile regression model defined by equation (3.1), the regression co-

efficients are allowed to depend on the quantile level τ : β = (β1(τ), . . . , βp(τ))T is the

quantile coefficient that may depend on τ . The first element of x is equal to 1, corre-

sponding to the intercept so that Qτ (Y |x) = β1(τ) + x2β2(τ) + · · · + xpβp(τ). We can

interpret β(τ) as the marginal change in the τth quantile due to the marginal change

in x. Note that this is for a particular value of τ and that different quantiles can have

coefficients that differ from each other in magnitude, sign, or both. Also note the mono-

tonicity property of conditional quantiles: Qτ (Y |x) is a nondecreasing function of τ for

any given x.

Situations in which the quantile coefficients may vary with τ can arise in a number

of ways, as can be seen in the following examples.

Example 3.1 (Location-scale shift model). Consider random variabes Yi, i = 1, . . . , n

where

Yi = α + zT
i β + (1 + zT

i γ)εi,

with ε
i.i.d∼ F (·). Then the conditional quantile function can be written as

Qτ (Y |xi) = α(τ) + zT
i β(τ),

where α(τ) = α+F−1(τ) is non-decreasing in τ and β(τ) = β+γF−1(τ) may depend

on τ . That is, the explanatory variable is allowed to have a different impact on different
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quantiles of the Y distribution. If, however, γ = 0, β(τ) = β becomes constant across

quantile levels, and the model simplifies to a location shift model.

/

Example 3.2 (Quantile treatment effect). Suppose that we are interested in exploring a

treatment effect where the explanatory variable takes values Xi = 0 for the control

group and Xi = 1 for the treatment group. Then the conditional distribution of Y given

X will be Yi|Xi = 0 ∼ F for the control group and Yi|Xi = 1 ∼ G for the treatment

group. The mean treatment effect is given by

∆ = E(Yi|Xi = 1)− E(Yi|Xi = 0) =

∫
ydG(y)−

∫
ydF (y).

The quantile treatment effect can be thought of as the horizontal distance between F

and G at y: F (y) = G(y + ∆(y)) (Doksum, 1974). Then ∆(y) is uniquely defined as

∆(y) = G−1(F (y))−y. Changing variables so that τ = F (y) (or τ = F (Y |x) to be more

precise) we have the quantile treatment effect (QTE)

δ(τ) = ∆(F−1(τ)) = G−1(τ)− F−1(τ) = Qτ (Y |Xi = 1)−Qτ (Y |Xi = 0).

Thus,

∆ =

∫ 1

0

G−1(u)du−
∫ 1

0

F−1(u)du =

∫ 1

0

δ(u)du.

We can write this as a quantile regression model with a binary explanatory variable x:

Qτ (Y |x) = α(τ) + δ(τ)x.

Assuming a location shift where the relationship between F and G is shown in the

leftmost panel of Figure 3.1, we have

F (y) = G(y + δ)⇒ δ(τ) = ∆ = δ,

resulting in a constant quantile treatment effect as can be seen in the rightmost panel

of Figure 3.1.

In the case of a scale shift, with a cdf and density as shown in the left and middle

panel of Figure 3.2 below, we have δ(0.5) = 0 but δ(τ) 6= 0 at other quantiles, as shown

in the right hand panel of Figure 3.2.

Finally the cdf, density and quantile treatment effect in the case of a location and

scale shift are shown in Figure 3.3.
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Figure 3.1. Cumulative distribution function, density and quantile treatment effect in
the case of a location shift.
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Figure 3.2. Cumulative distribution function, density and quantile treatment effect in
the case of a scale shift.
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Figure 3.3. Cumulative distribution function, density and quantile treatment effect for
a location and scale shift model.
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/

There are several reasons why using quantile regression might be a good idea. The

most important one is that quantile regression allows us to study the impact of predictors

on different quantiles of the response distribution, which provides a more complete

picture of the relationship between Y and x.

Example 3.3 (Are tropical cyclones becoming more severe?). The maximum wind speed of

tropical cyclones in the North Atlantic was recorded over the years 1978 to 2009. A plot

of the maximum wind speed against the year is shown in Figure 3.4, with the least

squares regression line shown in red.
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Figure 3.4. Maximum wind speed of North Atlantic cyclones over the period 1978-2009
with least squares regression line (solid red line).

Here a linear model with maximum wind speed Y as the response and the year x as the

explanatory variable gives a slope estimate of 0.095 with a p-value of 0.569 indicating no

significant trend in the mean. However, we might want to explore whether the quantiles

of maximum wind speed change over time. Figure 3.5 shows the fitted quantile regression

lines for τ = 0.25, 0.5, 0.75 and 0.95. The coefficient of year is not significant for the
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first three quantile levels (p-values of 0.100, 0.718 and 0.659 respectively), however for

τ = 0.95 the year coefficient is significant with a p-value of 0.009.
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Figure 3.5. Quantile regression fit for maximum wind speed of North Atlantic cyclones
as a function of time over the period 1978-2009 for τ = 0.25, 0.5, 0.75 and 0.95.

So there is a significant trend for the cyclones with the highest wind speeds (95th

percentile of wind speed) – they are getting faster over time.

/

Another reason quantile regression might be useful is that it is robust to outliers in

y observations, as can be seen in Figure 3.6.

A third reason quantile regression might be preferred in certain situations is that it

does not make any distributional assumptions and therefore estimation and inference are

distribution-free. This differentiates it from models which estimate conditional quantiles

by assuming a distributional form, e.g. GAMLSS (see Chapter 5 for an example).

3.1 Properties of quantiles and quantile regression

In this section we will explore some of the basic properties of quantiles and quantile

regression, beginning with some basic equivariance properties.



Flexible Regression 3.1 Properties of quantiles and quantile regression 55

0 1 2 3 4 5 6

0
2

4
6

8
10

x

y

Median

Mean

Figure 3.6. Fitted mean and median regression lines in the presence of an outlier.

Consider β̂(τ ; y,X), the estimator for the τth quantile regression based on observa-

tions (y,X) and let A be any p× p non-singular matrix, γ ∈ Rp, and a > 0 be constant.

Then for any τ ∈ [0, 1],

1. β̂(τ ; ay,X) = aβ̂(τ ; y,X) and β̂(τ ;−ay,X) = −aβ̂(1− τ ; y,X) (scale equivariance);

2. β̂(τ ; y +Xγ,x) = β̂(τ ; y,X) + γ (regression shift);

3. β̂(τ ; y,XA) = A−1β̂(τ ; y,X) (reparameterisation of design).

In addition, conditional quantile functions are equivariant to monotone transforma-

tions. Suppose that h(·) is an increasing function on R. Then for any variable Y ,

Qτ (h(Y |X)) = h(Qτ (Y |X)).

That is, the quantiles of the transformed random variable h(Y ) are simply the trans-

formed quantiles on the original scale. This is useful, for instance, when we log-transform

the response. In the case of quantile regression Qτ (log(Y |X)) = log(Qτ (Y |X), while the

same is not true in mean regression as E(log(Y )|X) 6= log(E(Y |X)) in general.

Another interesting property of linear quantile regression is that it exactly fits p

observations. If the first column of the design matrix is a column of ones corresponding

to the intercept, then there are roughly p zero, nτ negative and n(1−τ) positive residuals

yi − xT
i β̂(τ). We will look at this property in more detail in Section 3.3.2.
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3.2 Estimation and computation

We have seen why quantile regression is useful and have explored some of its properties.

Now let us turn our attention to coefficient estimation. We begin by comparing the esti-

mation procedure for mean and median regression before we generalise to other quantiles.

Suppose that we observe realisations {yi} with corresponding values of the explanatory

variables {xi, i = 1, . . . , n}. In mean regression using ordinary least squares estimation

(OLS), we estimate the regression coefficients by minimising the sum of squares. The

simplest case is that of an intercept-only model, where E(Y ) = µY = argminaE(Y − a)2.

The sample mean solves mina
∑n

i=1 (yi − a)2. When other explanatory variables are

present, the least squares estimates are obtained by minimising
∑n

i=1 (yi − xT
i β)2. This

gives estimates that are consistent for the conditional mean E(Y |x) = xTβ. Similarly

we can estimate the sample median and the regression coefficients in median regres-

sion using the method of least absolute deviations (LAD). The median is defined as

Q0.5(Y ) = argminaE|Y − a| and the sample median solves mina
∑n

i=1 |yi − a|. If we as-

sume that the conditional median of Y given x is equal to xTβ(0.5), then β̂(0.5) can be

obtained by solving

min
β

n∑
i=1

|yi − xT
i β|.

Now let us consider quantile regression at quantile level 0 < τ < 1. The τth quantile

of Y is given by

Qτ (Y ) = argmin
a

E [ρτ (Y − a)] ,

where ρτ (u) = uτ − I(u < 0) is the quantile loss function, shown in Figure 3.7.

0

1

u

(u)

Figure 3.7. The objective function for the τth conditional quantile.

The τth sample quantile of Y solves
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min
a

n∑
i=1

ρτ (yi − a).

If we assume that Qτ (Y |x) = xTβ(τ), then

β̂(τ) = argmin
β

n∑
i=1

ρτ (yi − xT
i β).

The solution that minimises the objective function is typically found using linear

programming. The main idea of using linear programming for solving a standard min-

imisation problem can be summarised as follows.

Suppose that we wish to solve

min
y∈Rm

yTb,

subject to constraints

yTA ≥ cT,

and y1 ≥ 0, . . . , ym ≥ 0. Here A is an m× n matrix, b ∈ Rm, and c ∈ Rn.

The minimisation problem above has a dual maximisation problem which can be

expressed as

max
x∈Rn

cTx,

subject to constraints Ax ≥ b and x ≥ 0.

Noting that the linear quantile regression model can be rewritten as

yi = xT
i β(τ) + ei = xT

i β(τ) + (ui − vi),

where ui = eiI(ei > 0) and vi = |ei|I(ei < 0), we see that the minimisation problem

min
b

n∑
i=1

ρτ (yi − xT
i b)

becomes

min
b,u,v

τ1T
nu + (1− τ)1T

nv

such that y − xTb = u− v

where

b ∈ Rp, u ≥ 0, v ≥ 0.
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This is a minimisation problem which can be solved using linear programming meth-

ods. In the remainder of this section we will briefly decribe the solving algorithms that

are relevant for computation in quantile regression.

1. Simplex method: An essential linear programming theory result is that solutions

are focused on the vertices of the constraint set. This is the subset that provides

an exact fit to the p observations. The first phase of the simplex algorithm finds an

initial feasible vertex. This can be achieved by choosing any subset h such that x(h)

is of full rank and b(h) = x(h)−1y. In the second phase the algorithm travels from

one vertex to another until optimality is achieved. The moves are along the direction

of “steepest descent”, i.e. the one with the most negative directional derivative; see

Barrodale and Roberts (1974) for more details. The simplex method is the default

method for estimating quantile coefficients in R as it is efficient for problems with

modest sample size (n up to several thousands) and its speed is comparable to the

least squares estimator for n up to several hundreds. However, the algorithm is very

slow relative to OLS for larger sample sizes. For more details on the simplex algorithm

for obtaining quantile regression coefficients see Keener and d’Orey (1987).

2. Frisch-Newton interior point method: In contrast to the simplex, this algorithm

traverses the interior of the feasible region, which makes it more efficient than the

simplex algorithm for larger sample sizes. For more details see Portnoy and Koenker

(1997).

3. Sparse regression quantile fitting: This is a sparse implementation of the Frisch-

Newton interior-point algorithm which is efficient when the design matrix has many

zeros, as is often the case when the predictors contain several factors. This method

is implemented in the R function rq.fit.sfn() in library(quantreg). For more

details see Koenker and Ng (2003).

The three algorithms described above are implemented in library(quantreg) in

RṪhe default method of estimation is method=br for the simplex (Barrodale-Roberts)

algorithm. Other options are method="fn" for the Frisch-Newton interior point method

which may be better for larger problems and method="pfn" (Frisch-Newton approach

with preprocessing) for very large problems. Finally method="sfn" uses the interior

point algorithm in the case of a sparse design matrix, e.g. when the model includes

factors.

Example 3.4 (Quantile regression in R estimation and computation of quantile coefficients).

We illustrate quantile regression coefficient estimation in R by simulating heteroscedastic

data and fitting quantile regression models for different values of τ .
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First we generate the data, setting the seed for reproducibility:

x <- seq(0,100,length.out = 100)

sig <- 0.1 + 0.05*x

b_0 <- 6

b_1 <- 0.1

set.seed(9873)

e <- rnorm(100,mean = 0, sd = sig)

y <- b_0 + b_1*x + e

dat <- data.frame(x,y)

We can plot the data along with the least squares regression line as shown in Figure

3.8. Notice how this fit is not particularly helpful for x values that lie away from zero.

library(ggplot2)
ggplot(dat, aes(x,y)) + geom_point() + geom_smooth(method="lm")
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Figure 3.8. Simulated data with least squares regression line and confidence intervals.

We fit a quantile regression model using the rq() function which takes a tau argument

in addition to the usual formula and data arguments. The summary function gives a

summary of the fit including coefficient estimates, standard errors and p-values. Here

we print the results for τ = 0.9. The fitted quantile regression line is shown in Figure

3.9.

For a more complete picture we might wish to fit quantile regression models for

several τ values. The regression lines can be plotted against the data as shown in Figure

3.10.

In the case of multiple τ values a summary plot of the β coefficient estimates gives a

quick impression of whether they are constant across quantile levels. Figure 3.11 shows

that the quantile coefficients are not constant for all τ as the grey bands for the quantiles

do not overlap with those for least squares regression (dashed red lines).
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library(quantreg)
fit <- rq(y ~ x, data=dat, tau = 0.9)

summary(fit)

##
## Call: rq(formula = y ~ x, tau = 0.9, data = dat)
##
## tau: [1] 0.9
##
## Coefficients:
## coefficients lower bd upper bd
## (Intercept) 6.76819 6.14746 9.04763
## x 0.15111 0.12035 0.17442

library(ggplot2)
ggplot(dat, aes(x,y)) + geom_point() + geom_abline(intercept=coef(fit)[1], slope=coef(fit)[2])
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Figure 3.9. Quantile regression fit for τ = 0.9.

taus <- 1:9/10
fit2 <- rq(y ~ x, data=dat, tau = taus)

ggplot(dat, aes(x,y)) + geom_point() + geom_quantile(quantiles = taus)
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Figure 3.10. Fitted quantile regression lines for τ = 0.1, 0.2, . . . , 0.9.
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plot(summary(fit2), parm="x")
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Figure 3.11. Coefficient estimates for τ = 0.1, 0.2, . . . , 0.9 along with confidence intervals
in grey. The confidence intervals do not overlap with the least squares regression line
(horizontal solid line in red).

We will discuss confidence intervals in more detail in Section 3.4. /

3.3 Statistical properties of quantile regression coeffi-

cient estimates

3.3.1 Consistency and asymptotic normality

The quantile regression coefficient estimates can be shown to be consistent and to fol-

low an asymptotic normal distribution. The coefficient estimator in a linear quantile

regression model is given by

β̂(τ) = argmin
b∈Rp

n∑
i=1

ρτ (yi − xT
i b).

The coefficient estimates are consistent under the following regularity conditions.

A1. The distribution functions of Y given xi, Fi(·), are absolutely continuous with

continuous densities fi(·) that are uniformly bounded away from 0 and ∞ at

ξi(τ) = Qτ (Y |xi).
A2. There exist positive definite matrices D0 and D1 such that

(i) limn→∞ n
−1
∑n

i=1 xix
T
i = D0;

(ii) limn→∞ n
−1
∑n

i=1 fi (ξi(τ)) xix
T
i = D1(τ);
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(iii) maxi=1,...,n||xi|| = o(n
1
2 ).

Theorem 3.3 (Consistency). Under conditions A1 and A2(i), β̂(τ)
p→ β(τ).

Proof (Sketch). Following Pollard (1991), use the uniform law of large numbers to show

that

sup
b∈B

n−1

n∑
i=1

[
ρτ (yi − xT

i b)− E{ρτ (yi − xT
i b)})

]
→ 0,

where B is a compact subset of Rp. Note that β̂(τ) → β(τ) holds if for any ε > 0,

Q̄(b) ≡ n−1
∑n

i=1 E
[
ρτ (yi − xT

i b)
]

is bounded away from zero with probability ap-

proaching one for any ||b− β(τ)|| ≥ ε.

Under Conditions A1 and A2(i), Q̄(b) has a unique minimiser β(τ).

�

Next we will discuss asymptotic normality of the quantile regression coefficient esti-

mates.

Theorem 3.4. Under Conditions A1 and A2,

√
n
(
β̂(τ)− β(τ)

)
d→ N

(
0, τ(1− τ)D−1

1 D0D
−1
1

)
.

For i.i.d. error models, i.e. fi(ξi(τ)) = fε(0), the above result can be simplified to

√
n
(
β̂(τ)− β(τ)

)
d→ N

(
0,
τ(1− τ)

f 2
ε (0)

D−1
0

)
.

Proof (Sketch). Define δ̂n =
√
n(β̂(τ)− β(τ)), which is the minimiser of

Zn(δ) =
n∑
i=1

[
ρτ (εi − n−

1
2 xT

i δ)− ρτ (εi)
]
,

where εi = yi − xT
i β(τ).

By Knight’s identity (Knight (1998))

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

{I(u ≤ s)− I(u ≤ 0)}ds,
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where ψτ (u) = τI(u < 0) (see Figure 3.12), it can be shown that

Zn(δ) = −δTWn + Z2n(δ),

where

Wn = n−
1
2

n∑
i=1

xiψτ (εi)
d→ W, W ∼ N(0, τ(1− τ)D0),

and

Z2n(δ) =
n∑
i=1

Z2ni(δ) =
n∑
i=1

∫ xT
i δ/
√
n

0

[I(εi ≤ s)− I(εi ≤ 0)] ds.

ττ − 1

ρτ(u)
τ

τ − 1

ψτ(u)

Figure 3.12. The objective function ρ(τ) (left panel) and function ψ(τ) (right panel).

Using a Taylor series expansion,

E(Z2n(δ)) =
1

2
δTD1δ + o(1),

and

Var(Z2n(δ)) ≤ 1√
n

max
i
|xT
i δ|E [Z2n(δ)] = o(‖δ‖)

Thus

Zn(δ)→ Z0(δ) = −δTW +
1

2
δTD1δ.

Z0(δ) is convex and thus has a unique minimiser
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argmin
δ
Z0(δ) = D−1

1 W.

By the complexity lemma of Pollard (1991), the result can be strengthened to be uniform

over δ. Thus, δ̂n = argminZn(δ)
d→ D−1

1 W.

An alternative approach based on the score function can be found in He and Shao

(1996). �

3.3.2 Subgradient condition

Let us now explore the condition that ensures basic optimality in a quantile regression

problem. Define

R(β) =
n∑
i=1

ρτ (yi − xT
i β)

noting that R(β) is piecewise linear, continuous and differentiable except at points such

that yi − xT
i β = 0. The directional derivative of R(β) in direction w is given by

∇R(βw) =
d

dt
R(β + xT

i w)|t=0.

We have

d

dt
ρτ (y − xTβ − xTwt)|t=0

=
d

dt
(y − xTβ − xTw){τ − I(y − xTβ − xTw < 0)}|t=0

=


xTwτ, y − xTβ > 0

−xTw(1− τ), y − xTβ < 0

−xTw{τ − I(−xTw < 0)}, y − xTβ = 0

= xTwψ∗τ (y − xTβ,−xTw),

where

ψ∗τ (u, v) =

τ − I(u < 0), u 6= 0

τ − I(v < 0), u = 0.

Thus

∇R(β,w) =
n∑
i=1

xT
i wψ∗τ (yi − xT

i β,−xT
i w).

Noting that ∇R(β̂,w) ≥ 0 for all w ∈ Rp with ‖w‖ = 1 we have
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β̂ = argmin
β
R(β).

Theorem 3.5. If (y,x) are in general position (i.e. if any p observations of them yield a

unique exact fit), then there exists a minimiser of R(β) of the form b(h) = x(h)−1y(h)

if and only if, for some h ∈ H,

−τ1p ≤ ψ(h) ≤ (1− τ)1p,

where ξ(h)T =
∑

i∈h̄ ψτ (yi − xT
i b(h))xT

i x(h)−1, ψτ (u) = τ − I(u < 0) and h̄ is the

complement of h.

What this result says is that the quantile regression line fits p points exactly. This

may seem surprising, but of course we shouldn’t forget that all the points were used to

determine which p points should be interpolated.

Proof. In linear programming, vertex solutions, also known as basic solutions, correspond

to points at which p observations are interpolated, i.e. (y(h),x(h)) = {(yi,xi), i ∈ h}.
That is, the basic solutions pass through these n points as

b(h) = x(h)−1y(h), h ∈ H∗ − {h ∈ H∗ : |x(h)| 6= 0}.

For any w ∈ Rp, reparameterise to get v = x(h)w, i.e. w = x(h)−1v.

For a basic solution b(h) to be the minimiser, we need for all v ∈ Rp,

−
n∑
i=1

ψ∗τ{yi − xT
i b(h),−xT

i x(h)−1v}xT
i x(h)−1v ≥ 0.

Without loss of generality, assume that x(h) = (xT
1 , . . . ,x

T
p )T. If i ∈ h,xT

i x(h) = eT
i ,

where ei is a p-dimensional vector containing all zeros except the ith element being of

1. Thus eiv = vi. If (y,x) are in general position, none of the residuals yi−xT
i b(h) with

i ∈ h̄ is zero. If the yi’s have a density wrt Lesbesgue measure, then with probability one

(y,x) are in general position. The space of directions v ∈ Rp is spanned by v = ±ek, k =

1, . . . , p, so the equation above holds for any v ∈ Rp if and only if the inequality holds

for ±ek, k = 1, . . . , p.

Therefore, the equation above becomes

0 ≤ −
∑
i∈h

ψ∗τ{0,−vi}vi − ξ(h)Tv,
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where ξ(h)T =
∑

i∈h̄ ψτ (yi − xT
i b(h))xT

i x(h)−1.

If v = ei, we have

0 ≤ −(τ − 1)− ξi(h), i = 1, . . . , p.

If v = −ei, we have

0 ≤ τ + ξi(h), i = 1, . . . , p.

That is,

−τ1p ≤ ξ(h) ≤ (1− τ)1p.

�

3.3.3 Bahadur representation

A linear representation for the quantile regression estimator can be obtained under the

following regularity conditions.

C1. The distribution functions of Y given xi, Fi(·), have continuous densities fi(·) that

are bounded away from zero and uniformly bounded away from infinity in a neigh-

bourhood of ξi(τ) = Qτ (Y |xi), i = 1, . . . , n. In addition, the first derivative of fi(·)
is uniformly bounded in a neighbourhood of ξi(τ), i = 1, . . . , n.

C2. maxi=1,...,n||xi|| = O(n
1
4{log(n)} 1

2 ).

C3. n−1
∑n

i=1 ||xi||4 ≤ B for some finite constant B.

C4. There exist positive definite matrices D0 and D1 such that

limn→∞n
−1

n∑
i=1

xix
T
i = D0 and

limn→∞n
−1

n∑
i=1

fi(x
T
i β(τ))xix

T
i = D1.

Theorem 3.6. Assuming that Conditions C1-C4 above hold, then

√
n(β̂(τ)− β(τ)) = D−1

1

√
n

n∑
i=1

xiψτ (yi − xT
i β(τ)) +Op(n

1
4

√
log n).

For a linear regression model with i.i.d. errors εi = yi − xTβ(τ) ∼ Fε, we have

√
n{β̂(τ)− β(τ)} =

1

fε(0)
D−1

0

√
n

n∑
i=1

xiψτ (εi) +Op(n
− 1

4

√
log n).
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Proof (Sketch). Step 1 (uniform approximation): Let C be some fixed constant.

Define

Rn(δ) =
n∑
i=1

xi
[
ψτ (εi − xT

i δ)− ψτ (εi)
]
,

where εi = yi − xT
i β(τ). Then

sup
δ:||δ||≤C

||Rn(δ)− E [Rn(δ)] || = Op(n
1
2 (log n)||δ||

1
2 ).

The uniform approximation can be obtained by applying exponential inequality and

chaining arguments, e.g. applying Lemma 4.1 of He and Shao (1996).

Step 2: The consistency of β̂(τ) was proven earlier (Theorem 3.3).

Step 3: Define δ = (b− β(τ)). Then

Rn(δ) =
n∑
i=1

xi
[
ψτ (εi − xT

i δ)− ψτ (εi)
]

=
n∑
i=1

xi
[
ψτ (yi = xT

i β(τ)− xT
i δ)− ψτ (yi − xT

i β(τ))
]

and

E(Rn(δ)) =
n∑
i=1

xi
[
τ − Fi(xT

i β(τ) + xT
i δ)
]

=
n∑
i=1

xi
[
Fi(x

T
i β(τ))− Fi(xT

i β(τ) + xT
i δ)
]

= −
n∑
i=1

xi
[
fi(x

T
i β(τ))xT

i δ + f ′i(ηi)(x
T
i δ)2

]
= −

n∑
i=1

xix
T
i fi(x

T
i β(τ))δ +O

( n∑
i=1

||xi||3||δ||2
)
.

Define δ̂ = β̂(τ). By the uniform approximation and the root-n consistency of β̂(τ),

under Conditions C1-C3 we get

n∑
i=1

xiψτ (yi − xT
i β̂(τ))−

n∑
i=1

xiψτ (yi − xT
i β(τ))

= −
[
n−1

n∑
i=1

xix
T
i fi(x

T
i β(τ))

]
n

+Op(n‖δ̂‖2) +Op(n
1/2(log n)‖δ̂‖1/2).
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By the subgradient condition and Condition C2,

n∑
i=1

xiψτ (yi − xT
i β̂(τ)) = Op(p max

i=1,...,n
||xi||) = Op(n

1
4/
√

log n).

Combining with the previous equation, we get δ̂ = Op(n
−1/2 log n).

Therefore,

√
n(β̂(τ)− β(τ)) = D−1

1 n−
1
2

n∑
i=1

xiψτ (yi − xT
i β(τ)) +Op(n

−1
4

√
log n)

�

3.4 Statistical inference

Having obtained regression coefficient estimates, the next step is to say something about

their significance. This can be done via hypothesis tests and confidence intervals and we

will discuss several ways of obtaining these in a quantile regression setting.

3.4.1 Wald-type tests

The first test we consider is a Wald-type test based on the asymptotic normality of the

quantile regression coefficients.

In an i.i.d. setting we have the asymptotic normality result

√
n(β̂(τ)− β(τ))

d→ N
(

0,
τ(1− τ)

f 2
ε (0)

D−1
0

)
,

where D0 = limn→∞ n
−1
∑n

i=1 xix
T
i .

In non- i.i.d. settings the asymptotic normality result becomes

√
n(β̂(τ) = β(τ))

d→ N(0, τ(1− τ)D1(τ)−1D0D1(τ)),

where

D1(τ) = lim
n→∞

n−1

n∑
i=1

fi(x
T
i β(τ))xix

T
i .

Also the asymptotic covariance between quantiles is

Acov
(√

n(β̂(τi)− β(τi)),
√
n(β̂(τj)− β(τj))

)
= (τi ∧ τj − τiτj)D1(τi)

−1D0D1(τj).

A Wald test for general linear hypotheses is as follows. Define the coefficient vector

θ = (β(τ1)T, . . . ,β(τm)T)T.
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The null hypothesis is H0 : Rθ = r. The test statistic is

Tn = n(Rθ̂ − r)T(RV −1RT)−1(Rθ̂ − r),

where V is the mp×mp matrix with the ijth block

V (τi, τj) = (τi ∧ τj − τiτj)D1(τi)
−1D0D1(τj).

Under H0, Tn
d→ χ2

q, where q is the rank of R. One problem with implementing this

test in practice is that the covariance matrix involves the unknown density functions

(nuisance parameters), i.e. fi(x
T
i β(τ)) in non-i.i.d. settings, and fε(0) in i.i.d. settings.

So how can we estimate the asymptotic covariance matrix?

In i.i.d. settings

Var(
√
nβ̂(τ)) =

τ(1− τ)

f̂ 2
ε (0)

D̂−1
0 ,

where D̂0 = n−1
∑n

i=1 xix
T
i .

To estimate fε(0) = fε(f
−1
ε (τ)) we use the sparsity parameter s(τ) =

1

f(F−1(τ))
.

Note that F (F−1(t)) = t. Differentiating both sides with respect to t, we get

f(F−1(t))
d

dt
F−1(t) = 1⇔ d

dt
F−1(t) = s(t).

That is, the sparsity parameter s(t) is simply the derivative of the quantile function

F−1(t) with respect to t. We can estimate s(t) using the difference quotient estimator

proposed by Siddiqui (1960):

ŝn(t) =
F̂−1
n (t+ hn|x̄)− F̂−1

n (t− hn|x̄)

2hn
,

where hn → 0 as n → ∞, and F̂−1
n (t|x̄) is the estimated tth conditional quantile of Y

given x̄ = n−1
∑n

i=1 xi.

In non-i.i.d. settings

Var(
√
nβ̂(τ)) = τ(1− τ)D̂1(τ)−1D̂0(τ)D̂1(τ).

We can use a “sandwich formula” (Hendricks-Koenker sandwich) for estimating D1(τ).

Suppose the conditional quantiles of Y given x are linear at quantile levels around τ .

Then we can fit quantile regressions at the (τ ± hn)th quantiles, resulting in β̂(τ − hn)

and β̂(τ + hn). We estimate fi(ξi(τ)) by

f̃i(ξi(τ)) =
2hn

xT
i β̂(τ + hn)− xT

i β̂(τ − hn)
,
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where ξi(τ) = Qτ (Y |xi). In finite samples quantiles may cross so that the upper quantiles

may be estimated to be smaller than lower quantiles. A modified estimator to account

for this issue is

f̂i(ξi(τ)) = max

(
0,

2hn

xT
i β̂(τ + hn)− xT

i β̂(τ − hn)− ε

)
,

where ε is a small positive constant to avoid zero denominator. Barney et al. (1991)

proposed the following kernel estimator of D1(τ):

D̂1(τ) = n−1

n∑
i=1

K
( ε̂i(τ)

hn

)
xix

T
i ,

where ε̂i(τ) = yi − xT
i β̂(τ), and hn is a bandwidth parameter satisfying hn → 0 and

n
1
2hn →∞ as n→∞. Under certain continuity conditions on fi, D̂1(τ)

P→ D1(τ).

fit <- rq(y x, tau=0.9) summary.rq(fit, se="iid") assuming iid errors

Call: rq(formula = y x, tau = 0.9) tau: [1] 0.9

##

## Coefficients:

## Value Std. Error t value Pr(>|t|)

## (Intercept) 6.76819 0.72282 9.36355 0.00000

## x 0.15111 0.01249 12.10025 0.00000

summary.rq(fit, se="nid") # assuming non-iid errors, Hendricks-Koenker sandwich

##

## Call: rq(formula = y ~ x, tau = 0.9)

##

## tau: [1] 0.9

##

## Coefficients:

## Value Std. Error t value Pr(>|t|)

## (Intercept) 6.76819 0.91973 7.35890 0.00000

## x 0.15111 0.01872 8.07143 0.00000

summary.rq(fit, se="ker") # based on Powell kernel estimator

##

## Call: rq(formula = y ~ x, tau = 0.9)

##

## tau: [1] 0.9

##

## Coefficients:

## Value Std. Error t value Pr(>|t|)

## (Intercept) 6.76819 0.55162 12.26969 0.00000

## x 0.15111 0.01462 10.33560 0.00000

/
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3.4.2 Rank score test

Another type of test is the rank score test. Consider the model

Qτ (Y |xi, zi) = xT
i β(τ) + zT

i γ(τ)

and the hypotheses

H0 : γ(τ) = 0 vs H1 : γ(τ) 6= 0.

Here β(τ) ∈ Rp and γ(τ) ∈ Rq. The score function is

Sn =
√
n

n∑
i=1

z∗i ψτ (yi − xT
i β̂(τ)),

where ψτ (u) = τ−I(u < 0), z∗ = (z∗i ) = z−x(xTΨx)−1xTΨz, Ψ = diag(fi(Qτ (Y |xi, zi))
and β̂(τ) is the quantile coefficient estimator obtained under H0.

Under H0, as n→∞,

Sn = AN(0,M
1
2
n ),

where Mn = n−1
∑n

i=1 z∗i z
∗T
i τ(1− τ).

Then the rank-score test statistic Tn = ST
nM

−1
n Sn

d→ χ2
q, under H0.

In i.i.d. settings z∗ = (z∗i ) = {I − x(xTx)−1xT}z are the residuals by projecting z

on x and Mn = τ(1 − τ)n−1
∑n

i=1 zi∗z
∗T
i , so there is no need to estimate the nuisance

parameters fi{Qτ (Y |xi, zi)}.
We can invert the rank score test to construct a confidence interval (CI) of γ(τ).

Consider the hypotheses

H0 : γ(τ) = γ0 vs H1 : γ(τ) 6= γ0,

where γ0 is a prespecified scalar. The test rejects H0 if Tn ≥ χ2
α(1), the (1 − α)th

quantile of χ2(1). The collection of all the γ0 for which H0 is not rejected is taken to

be the (1 − α)th confidence interval of γ(τ). For more detail see Gutenbrunner et al.

(1993).

fit <- rq(y x, tau=0.9) summary.rq(fit, se="rank", alpha=0.05, iid=TRUE) assuming iid errors

Call: rq(formula = y x, tau = 0.9) tau: [1] 0.9

##

## Coefficients:

## coefficients lower bd upper bd

## (Intercept) 6.76819 6.04781 11.22792

## x 0.15111 0.10823 0.17721

summary.rq(fit, se="rank", alpha=0.05, iid=FALSE) # assuming non-iid errors
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##

## Call: rq(formula = y ~ x, tau = 0.9)

##

## tau: [1] 0.9

##

## Coefficients:

## coefficients lower bd upper bd

## (Intercept) 6.76819 6.04702 11.26816

## x 0.15111 0.10730 0.17725

/

3.4.3 Resampling and bootstrap methods

A way to get around the issues with the unknown densities appearing in the formulae

for standard errors is to use resampling methods. First consider the case of i.i.d. errors

in a location-shift model. A bootstrap method can be implemented as follows.

1. Obtain the estimator β̂(τ) using the observed sample, and residuals ε̂i = yi−xT
i β̂(τ).

2. Draw bootstrap samples ε∗i , i = 1, . . . , n from {ε̂i, i = 1, . . . , n} with replacement, and

define y∗i = xT
i β̂(τ) + ε∗i .

3. Compute the bootstrap estimator β̂∗(τ) by quantile regression using the bootstrap

sample.

4. Carry out inference by calculating the covariance of β̂(τ) by the sample covariance

of bootstrap estimators or contruct a confidence interval using percentile methods.

For more detail on bootstrap methods see De Angelis et al. (1993) and Knight (2003).

An alternative method is paired bootstrap, which can be implemented as follows:

1. Generate a bootstrap sample (y∗i ,x
∗
i ) by drawing with replacement from the n pairs

{(yi,xi), i = 1, . . . , n}.
2. Obtain the bootstrap estimator β̂∗(τ) by quantile regression using the bootstrap

sample.

For more detail see Andrews and Buchinsky (2000, 2001).

Another option is to use Markov chain marginal bootstrap (MCMB) He and Hu

(2002) and Kocherginsky et al. (2005). Instead of solving a p-dimensional estimating

equation for each bootstrap replication, MCMB solves p one-dimensional estimating

equations. In MCMB we consider the model

Qτ (Yi|xi) = xT
i β(τ), β(τ) ∈ Rp,

where xi = (xi,1, . . . , xi,p)
T. Calculate ri = yi−xT

i β̂(τ). Define zi = xiψτ (ri)− z̄ with

z̄ = n−1
∑n

i=1 xiψτ (ri), where ψτ (r) = τ − I(r < 0).
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1. Step 1: let β(0) = β̂(τ).

2. Step k: for each integer 1 ≤ j ≤ p in ascending order, draw with replacement from

z1, . . . , zn to obtain zj,k1 , . . . , zj,kn . Obtain β
(k)
j as the solution to

n∑
i=1

xiψτ

{
yi −

∑
l<j

xi,lβ
(k)
l −

∑
l>j

xi,lβl
(k−1) − xi,jβ(k)

j

}
=

n∑
i=1

zj,ki .

3. Repeat until K replications βk, k = 1, . . . , K are obtained. The variance of β̂(τ) is

then estimated by the sample variance of {β(k), k = 1, . . . , K}.

In addition to the bootstrap methods described here, there are other options such as

the bootstrap estimating equations of Parzen and Ying (1994) and the wild bootstrap

method of Feng et al. (2011). All of the above bootstrap methods are implemented in R

– see function boot.rq from library(quantreg) for details.

3.5 Nonparametric quantile regression

So far we have restricted our attention to linear quantile regression models, but we

can also fit models with a smooth term for the explanatory variable using the methods

described in Chapter 4. We will illustrate how these methods can be applied in a quantile

regression setting using a well-known simulated dataset, the “motorcycle” data (mcycle

from library(MASS)).

Example 3.7 (Quantile regression for the motorcycle data). We begin by considering a lo-

cally linear approach using the lprq function from library(quantreg). This function

computes a quantile regression fit at each of m equally spaced x-values over the support

of the observed x points. The median regression fits for different values of the smoothing

parameter can be seen in Figure 3.13 below.

Another approach is to use regression splines such as B-splines. We can do this

directly, using the bs() function from library(splines) and choosing the order of the

spline, the number and even placements of knots ourselves. The fit is shown in Figure

3.7.

An even better approach might be to use the rqss function from library(quantreg)

which applies a smoothness penalty λ and also allows various constraints such as mono-

tonicity and convexity for the fitted smooth curves. Here the user is responsible for

selecting the value of λ as there is no automatic selection criterion in the current imple-

mentation. In our example we set λ = 1 (default) and we do not impose any monotonicity

or convexity constraint (constraint="N"). The resulting fit is shown in Figure 3.7.
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library(MASS)
par(mfrow=c(1,2))
plot(mcycle$times, mcycle$accel, xlab="milliseconds", ylab="acceleration (in g)", pch=20)
fit1 <- lprq(mcycle$times,mcycle$accel,h=0.5,tau=0.5)
lines(fit1$xx,fit1$fv,col="blue",lwd=2)
plot(mcycle$times, mcycle$accel, xlab="milliseconds", ylab="acceleration (in g)", pch=20)
fit2 <- lprq(mcycle$times,mcycle$accel,h=2,tau=0.5)
lines(fit2$xx,fit2$fv,col="blue",lwd=2)
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Figure 3.13. Local linear median regression fit for the motorcycle data with smoothing
parameter h = 0.5 (left) and h = 2 (right).

fit3 <- rq(accel~bs(times,df=10),tau=0.5, data=mcycle)
fit4 <- rqss(accel~qss(times,constraint="N", lambda=1),tau=0.5, data=mcycle)
par(mfrow=c(1,2))
plot(mcycle$times, mcycle$accel, xlab="milliseconds", ylab="acceleration (in g)", pch=20)
lines(mcycle$times,fit3$fitted.values,col="blue",lwd=2)
plot(mcycle$times, mcycle$accel, xlab="milliseconds", ylab="acceleration (in g)", pch=20)
lines(mcycle$times,fitted(fit4),col="blue",lwd=2)

10 20 30 40 50

−
10

0
−

50
0

50

milliseconds

ac
ce

le
ra

tio
n 

(in
 g

)

10 20 30 40 50

−
10

0
−

50
0

50

milliseconds

ac
ce

le
ra

tio
n 

(in
 g

)

Figure 3.14. Median regression fit for the motorcycle data using cubic B-splines with 5
degrees of freedom (left panel) and using quantile smoothing splines with penalty λ = 1.
(right panel)
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/

Hopefully by now it is clear that flexible regression models for the mean can be

extended in a very straightforward way to the conditional quantiles of a response vari-

able of interest. The issues of choosing the smoothing parameter and the potential of

over/under-smoothing remain, and in addition we have to worry about quantile cross-

ing. This is a risk with any quantile regression model but especially so when fitting

non-parametric smooth curves to the data. In Chapter 5 we will see how we can avoid

this problem by using models that make distributional assumptions.
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4

Generalised Additive Models (GAMs)

In this chapter, methods of extending flexible regression to more than one covariate will

be explored by introducing a more general approach known as additive modelling. Firstly,

though we will extend the initial concepts introduced in Chapter 2 by considering:

– How much to smooth?

– How to select smoothing parameters?

– Nonparametric regression in higher dimensions

4.1 How much to smooth?

One of the key questions with nonparametric regression models is how much smoothing

to apply to the data. For exploratory work, it can often be helpful simply to experiment

with different degrees of smoothing. One appealing way to do that is to specify how

many degrees of freedom you would like to have (for the model, or smooth covariate of

interest).

4.1.1 Effective degrees of freedom and standard errors

For this, we introduce the notion of effective degrees of freedom, also sometimes called

the effective number of parameters.

As illustrated earlier, it is helpful to express the fitted values of the nonparametric

regression as

ŷ = f̂ = Sy,

where f̂ denotes the vector of fitted values, S denotes a smoothing matrix whose rows

consist of the weights appropriate to estimation at each evaluation point, and y denotes
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the observed responses in vector form. This linear structure applies with both local

fitting and spline approaches and it is very helpful.

For example, it gives us a route to defining degrees of freedom for the model by analogy

with what happens with the usual linear model, where the number of parameters is the

trace of the projection matrix. An approximate version of these can be constructed for

nonparametric models as

dfmod = tr {S} .

In an un-penalised regression problem, the number of parameters provides us with

information about the complexity of the model. More complex models have more param-

eters than simpler models. For penalised regression problems counting the parameters

is however not meaningful. Due to the roughness penalty not all parameters are “free”.

Recall that in linear regression the hat matrix S = B(B>B)−1B> (where B would usu-

ally be the standard design matrix X) is a projection matrix and thus the trace tr(S)

equals the number of parameters. We can generalise this to penalised models and define

the effective degrees of freedom for the model as

edfmod(λ) = tr(Sλ),

where Sλ = B(B>B + λD>D)−1B>.

Error variance and standard errors Similarly, we can construct an estimate of the

error variance σ2 through the residual sum-of-squares, which in a nonparametric setting

is simply RSS =
∑
{yi − f̂(xi)}2. This leads to the estimator of the error variance

σ̂2 = RSS/dferr, where dferr = n− tr(S) if S
>

= S and S2 = S.

The linear structure of the fitted values also makes it very easy to produce standard

errors which quantify the variability of the estimate at any value of x.

If f̂ denotes the estimated values of f at a set of evaluation points then

Var
{
f̂
}

= Var{Sy} = SSTσ2

and so, by plugging in σ̂2 and taking the square root of the diagonal elements, the

standard errors at each evaluation point are easily constructed.
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4.2 Automatic methods for smoothing

In more complicated situations only using degrees of freedom to determine the appro-

priate level of smoothing can be difficult and it is helpful to have an automatic way

of producing a suitable level of smoothing. There are several ways to do this, some of

which are carefully tailored to particular models. Here we will outline a method called

cross-validation which, although it has some difficulties, has the advantage that the

generality of its definition allows it to be applied to quite a wide variety of settings. In

the present setting, the idea is to choose the smoothing parameter to minimise

CV :
n∑
i=1

{yi − f̂−i(xi)}2.

The subscript −i denotes that the estimate of the smooth curve at xi is constructed

from the remainder of the data, excluding xi. The aim then is to evaluate the level of

smoothing through the extent to which each observation is predicted from the smooth

curve produced by the rest of the data. The level of smoothing which minimises the

expression above should provide a suitable level of smoothing. The linearity of smoothing

operations allows the computations to be performed in a very efficient manner.

It is often convenient to use an approximation known as generalised cross-validation

(GCV) which has the efficient computational form

GCV : nRSS/{tr {I − S}2}.

Altering the smoothing parameters changes the entries of S, which in turns affects the

value of gcv.

The degree of smoothing can also be selected automatically by minimising a quantity

based on Akaike’s information criterion, namely

AIC :
RSS

n
+ 1 +

2(ν + 1)

(n− ν − 2)
,

where ν denotes the degrees of freedom.

The following two approaches provide interpretations of a penalised regression spline

model, which enable automatic selection of the level of smoothing.
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4.2.1 Random effects interpretation

Random effect models – Likelihood

In the random effects model

y = Xα+ Zγ + ε

with error term ε ∼ N(0, σ2I) and random effect γ ∼ N(0, τ 2I), twice the loglikelihood

is (ignoring the variance parameters) given by

− 1

σ2

n∑
i=1

(yi − x>i α− z>i γ)2 − 1

τ 2

q∑
j=1

γ2
j

**note, the change in notation here from the preliminary material from Xβ to Xα

so that we can reserve β to be a vector of basis coefficients later.

Comparing the penalised least squares criterion (2.2) to the loglikelihood suggests

that we can interpret the penalised regression model as a random effects model with no

fixed effect and random effect β. However the problem is that, at least for difference

matrices, D>D is not of full rank, thus we cannot take its inverse matrix square root.

In order to obtain a proper random-effects representation we need to “split” β into an

(unpenalised) fixed effect and a (penalised) random effect.

In the following we will only consider the case of a difference penalty of order 1

or 2. In the case of a first-order difference penalty we define G = (1, . . . , 1). For a

second-order difference penalty we define G =

(
1 1 . . . 1

1 2 . . . l + r − 1

)
. The rows in

G are parameter sequences which do not incur a penalty, i.e. GD = 0. We also define

H = D>(DD>)−1. We can now write

β = Gα+ Hγ

Because DD> is of full rank we have that DH = DD>(DD>)−1 = I. Plugging this into

the objective function (2.2) gives

‖y −BGα−BHγ‖2 + λ
(
αG>D>DGα︸ ︷︷ ︸

=0

+2αG>D>DHγ︸ ︷︷ ︸
=0

+γ>H>D>DH︸ ︷︷ ︸
=I

γ
)

= ‖y −BGα−BHγ‖2 + λ‖γ‖2
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Defining X = BG and Z = BH and denoting rows of X and Z by xi and zi respectively,

this is equivalent to
n∑
i=1

(yi − x>i α− z>i γ)2 + λ

q∑
j=1

γ2
j ,

which is −σ2 times the loglikelihood of a random-effects model, which we have stated

above. Hereby we have used λ = σ2/τ 2.

Thus the penalised regression model is nothing other than a random effects effect and

we can use standard mixed model software to fit these models. Most importantly we can

estimate the variances σ2 and τ 2 in a mixed model (using (restricted) maximum likeli-

hood - see the preliminary material), which gives us a way of estimating the otherwise

rather elusive smoothing parameter λ̂ = σ̂2/τ̂ 2.

This approach is used in the mgcv package in R that we have used to illustrate

examples in Chapter 2 of fitting penalised regression spline models. For the radiocarbon

data considered before in Chapter 2, we have:

model <- gam(Rc.age~s(Cal.age), method="REML", data=radiocarbon)
model

##
## Family: gaussian
## Link function: identity
##
## Formula:
## Rc.age ~ s(Cal.age)
##
## Estimated degrees of freedom:
## 7.44 total = 8.44
##
## REML score: 258.6108

plot(model, residuals=TRUE)
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Figure 4.1. Automatic smoothness detection using mgcv.
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4.2.2 Bayesian interpretation

Rather than interpreting the penalised fitting criterion as a random effects model we

can treat the penalised regression model as a fully Bayesian model with the following

prior and data model.

Dβ|τ 2 ∼ N(0, τ 2I)

y|β, σ2 ∼ N(Bβ, σ2I)

The prior distribution of β is improper if D is not of full rank, which is the case for all

difference penalties. However in the case of difference penalties the prior distribution of

β can be expressed in terms of random walks (cf. Figure 2.25).

First-order random walk The first-order penalty corresponds to an improper flat prior on

β1 and βj|βj−1 ∼ N(βj−1|τ 2) (for j ≥ 2).

Second-order random walk The second-order penalty corresponds to an improper flat

prior on β1 and β2 and βj|βj−1, βj−2 ∼ N(2βj−1 − βj−2|τ 2) (for j ≥ 3).

It seems natural to complement the model with priors for σ2 and τ 2

σ2 ∼ IG(aσ2 , bσ2)

τ 2 ∼ IG(aτ2 , bτ2)

Inference can then be carried out efficiently using a Gibbs sampler. This model and

many other Bayesian smoothing models are implemented in the software BayesX.

Rather than placing an independent inverse-gamma prior on τ 2 we can set τ 2 = σ2/λ

and place a prior of our choice on λ. In this model the posterior distribution of λ does not

follow a known distribution, but can be evaluated efficiently, as all the other parameters

can be integrated out in closed form. The drawback is that the integration over λ would

need to be carried out numerically, which suggests that this approach is better suited

for an empirical Bayes strategy for estimating λ.

We can also use BayesX(see www.bayesx.org) to estimate a penalised spline model

in the Bayesian framework (using the package R2BayesX).
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library(R2BayesX)
model <- bayesx(Rc.age ~ sx(Cal.age), data = radiocarbon)
model

## Call:
## bayesx(formula = Rc.age ~ sx(Cal.age), data = radiocarbon)
## Summary:
## N = 51 burnin = 2000 method = MCMC family = gaussian
## step = 10

plot(model)
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Figure 4.2. Penalised spline fit using a Bayesian framework.

4.3 Nonparametric regression in higher dimensions

4.3.1 Local fitting with bivariate smoothing

It is rare to have problems which involve only a single covariate. For the Reef data,

Chapter 2, a natural extension is to look at the relationship between the catch score

and both latitude (x1) and longitude (x2), in a model

Yi = f(x1i, x2i) + εi.

The local linear approach is particularly easy to extend to this setting. If the observed

data are denoted by {x1i, x2i, yi; i = 1, . . . , n}, then for estimation at the point (x1, x2)

the weighted least squares formulation is

min
α,β,γ

n∑
i=1

{yi − α− β(x1i − x1)− γ(x2i − x2)}2w(x1i − x1;h1)w(x2i − x2;h2).

The value of the fitted surface at (x1, x2) is simply α̂. With careful thought, the com-

putation can be performed efficiently.
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This will be illustrated using the Reef data, a reminder is below:

Example 4.1 (Great Barrier Reef data). A survey of the fauna on the sea bed lying be-

tween the coast of northern Queensland and the Great Barrier Reef was carried out.

The sampling region covered a zone which was closed to commercial fishing, as well as

neighbouring zones where fishing was permitted. The variables are:

Zone an indicator for the closed (1) and open (0) zones

Year an indicator of 1992 (0) or 1993 (1)

Latitude latitude of the sampling position

Longitude longitude of the sampling position

Depth bottom depth

Score1 catch score 1

Score2 catch score 2
/

Investigating one year of the Reef data, the effect of longitude dominates, as we

see from the earlier nonparametric regression in Chapter 2. However, a small effect of

latitude is also suggested.

trawl1 <- subset(trawl, Year == 0)
sm.regression(trawl1[ , c("Longitude", "Latitude")], trawl1$Score1, theta = 120)
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Figure 4.3. Reef data with two covariates for one year.
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Notice that two smoothing parameters, h1 and h2, are now required - one for each

covariate.

4.3.2 Bivariate splines

Tensor-product splines So far we have only covered the construction of spline bases

in one dimension. In this section we will see how we can turn a one-dimensional spline

basis into a spline basis of any dimension. To keep things simple we shall start with the

bivariate case.

Suppose we have two covariates and want to fit a regression model of the form

E(Yi) = f(xi1, xi2),

where f(·, ·) is a bivariate surface.

We start by placing a basis on each dimension separately. Denote byB
(1)
1 (x1), . . . , B

(1)
l1+r−1(x)

the basis functions placed on the first covariate, and by B
(2)
1 (x1), . . . , B

(2)
l2+r−1(x) the basis

functions placed on the second covariate. We now define a set of basis functions

Bjk(x1, x2) = B
(1)
j (x1) ·B(2)

k (x2)

for j ∈ 1, . . . , l1 + r − 1 and k ∈ 1, . . . , l2 + r − 1. Figure 4.4 shows how one such

bivariate basis function looks like for different degrees of the underlying univariate B-

spline. Figure 4.5 shows all 36 bivariate basis functions resulting from two B-spline bases

with six basis functions each.

We will now use the basis expansion

f(xi1, xi2) =

l1+r−1∑
j=1

βjkBjk(x1, x2)

which corresponds to the design matrix

B =

(
B11(x11, x12) . . . Bl1+r−1,1(x11, x12) B12(x11, x12) . . . Bl1+r−1,2(x11, x12) . . . Bl1+r−1,l+2+r−1(x11, x12)

.

.

.
.
. .

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

B11(xn1, xn2) . . . Bl1+r−1,1(xn1, xn1) B12(xn1, xn2) . . . Bl1+r−1,2(xn1, xn2) . . . Bl1+r−1,l+2+r−1(xn1, xn2)

)

and coefficient vector β = (β11, . . . , βl1+r−1,1, β12, . . . , βl2+r−1,2, . . . , βl1+r−1,l2+r−1)>.

We can generalise this principle of constructing a basis to dimension p by multiplying

all combinations of basis functions of the p covariates.

Finally, we need to explain how a penalty matrix can be constructed for this bivariate

spline basis. We will explain the basic idea using Figure 4.5. A simple way of constructing

a roughness penalty consists of applying the univariate roughness penalties to the rows
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(a) Basis of degree 0 (b) Basis of degree 1

(c) Basis of degree 2 (d) Basis of degree 3

Figure 4.4. Illustration of the construction of a single bivariate B-spline basis function
Bjk(x1, x2) = Bj(x1) ·Bk(x2) for B-spline bases of different degree.

Figure 4.5. Illustration of the construction of a bivariate B-spline basis created from a
univariate B-spline basis.
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and columns of the basis functions. More mathematically, this corresponds to taking

Kronecker products, i.e. using the difference matrix

D =

(
D(2) ⊗ Il1+r−1

Il2+r−1 ⊗D(1)

)
,

where D(1) is the univariate difference matrix used for the first dimension and D(2) is

the univariate difference matrix used for the second dimension.

Example 4.2 (Great Barrier Reef (continued)). Figure 4.6 shows the result of fitting a

tensor-product-spline model to the data from example 4.1. The objective is to model

a score which represents the composition of the catch as a function of longitude and

latitude. /
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Figure 4.6. Predicted score obtained from a tensor-product-spline model fitted to the
Great Barrier Reef data.

In principle, tensor-product spline bases can be constructed for any dimension, how-

ever the number of basis functions scales exponentially in the dimension, so tensor-
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product splines do not scale well as the dimension is increased. The number of basis

functions increases exponentially in the dimension. Thus they cannot be used for di-

mensions beyond three (and in some cases even two).

Thin-plate splines In this section we generalise natural cubic splines to the bivariate

case, which provides an alternative way of bivariate spline smoothing. In section 2.3.3

we have seen that the minimiser of

n∑
i=1

(yi − f(xi))
2

︸ ︷︷ ︸
Fit to the data

+λ

∫ b

a

f ′′(x)2 dx︸ ︷︷ ︸
Roughness penalty

,

has to be a natural cubic spline.

Generalising this variational problem to the bivariate case leads to the objective

function

n∑
i=1

(yi − f(xi1, xi2))2︸ ︷︷ ︸
Fit to the data

+λ

∫ ∫ (
∂2

∂x21
f(x1, x2) + 2

∂2

∂x1∂x2
f(x1, x2) +

∂2

∂x22
f(x1, x2)

)2

dx2 dx1︸ ︷︷ ︸
Roughness penalty

,

The roughness penalty can be interpreted as the bending energy of a thin plate of

metal. One can show that the solution to this problem has to be a so-called thin-plate

spline of the form

f(ξ1, ξ2) = β0 + β1ξ1 + β2ξ2 +
n∑
i=1

β2+iK ((ξ1, ξ2) , (xi1, xi2)) ,

where K ((ξ1, ξ2) , (ζ1, ζ2)) = 1
2

((ζ1 − ξ1)2 + (ζ2 − ξ2)2) · log ((ζ1 − ξ1)2 + (ζ2 − ξ2)2).

Similar to what we have discussed in section 2.3.5 we can estimate the coefficients

βj using a penalised least squares criterion. In fact, we need to minimise the objective

function
n∑
i=1

(yi − f(xi1, xi2))2 + λβ′β

subject to the constraints that
∑n

i=1 β2+i =
∑n

i=1 xi1β2+i =
∑n

i=1 xi2β2+i = 0, where

=



0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 K ((x11, x12) , (x11, x12)) . . . K ((x11, x12) , (xn1, xn2))
...

...
...

...
. . .

...

0 0 0 K ((xn1, xn2) , (x11, x12)) . . . K ((xn1, xn2) , (xn1, xn2))


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Thin-plate splines scale much better in dimensionality, however they do not scale as

well as tensor-product splines in the number of data points. Thin-plate splines are the

default in mgcv’s function gam.

model <- gam(Score1~s(Latitude, Longitude), data=trawl)
vis.gam(model, plot.type="contour")
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Figure 4.7. Bivariate splines using thin plate splines in mgcv

4.4 A simple additive model

We will now use all of the concepts above and from Chapter 2 to extend nonparametric

regression.

Now that we have tools available to estimate smooth curves and surfaces, linear

regression models can be extended to additive models as

Yi = β0 + f1(x1i) + . . .+ fp(xpi) + εi, i = 1, . . . , n,

where the fi are functions whose shapes are unrestricted, apart from an assumption of

smoothness. This gives a very flexible set of modelling tools. To see how these models

can be fitted, consider the case of only two covariates,

Yi = β0 + f1(x1i) + f2(x2i) + εi, i = 1, . . . , n.

A rearrangement of this as yi − β0 − f2(x2i) = f1(x1i) + εi suggests that an estimate of

component f1 can then be obtained by smoothing the residuals of the data after fitting

f̂2,
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f̂1 = S1(y − ȳ − f̂2)

and that, similarly, subsequent estimates of f2 can be obtained as

f̂2 = S2(y − ȳ − f̂1).

Repetition of these steps gives a simple form of the backfitting algorithm. The same idea

applies when we have more than two components on the model. At each step we smooth

over a particular variable using as response the y variable with the current estimates of

the other components subtracted.

If a spline basis is used, then the backfitting algorithm is not required as we have a

form of linear model with a penalty term. This can be written as

Yi = Bβ + εi

where, as usual, the columns of the matrix B evaluate the basis functions at each

observation. This time B is constructed by stacking together the columns of a basis

matrix for each covariate. The model is fitted by choosing the vector of weights β to

minimise

(y −Bβ)T(y −Bβ) + βTPβ, (4.1)

where the penalty matrix P is of block-diagonal form, constructed from the penalties

from the individual model components, with the jth component λjD
T
j Dj, where Dj is

a differencing matrix. This leads to the direct solution

β̂ =
(
BTB + P

)−1
BTy.

The terms of an additive model are unidentifiable without imposing some constraint,

as a constant can be added and subtracted from the individual components without

changing the resulting value. A simple solution is to require that
∑

i fj(xij) = 0 for each

component j.

A simple example of an additive model for the Reef data is shown in Figure 4.8.

4.5 More general additive models

A more general formulation of an additive model is:

Yi = β0 + f1(x1i) + . . .+ fp(xpi) + εi.
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Figure 4.8. The top left hand plot shows a two-dimensional smooth estimate of the
combined effects of latitude and longitude on the catch score for the Reef data after
fitting Yi = f(lati, longi) + εi. The lower plots show the estimated components from a
gam after fitting Yi = β0 + f1(lati) + f2(longi) + εi. The top right hand plot shows the
surface produced by the combination of the two gam components.
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Further generality can be achieved by the use of a link function to create a generalised

additive model or gam for short. At the moment we will consider additive models, with

link functions considered later, but it is convenient to use the terminology gam in this

case too. A simple extension of the steps outlined for two covariates gives a form of the

backfitting algorithm. In order to ensure identifiability, we assume that
∑

i fj(xji) = 0,

for each j. At each step we smooth over a particular variable using as response the y

variable with the current estimates of the other components subtracted.

The backfitting algorithm can be expressed as:

f̂
(l)
j = Sj

(
y − β̂01−

∑
k<j

f̂
(l)
k −

∑
k>j

f̂
(l−1)
k

)
.

We can also express these in terms of projection matrices.

P
(l)
j = (In −P0)Sj(In −

∑
k<j

P
(l)
k −

∑
k>j

P
(l−1)
k ),

ŷ = Py = (P0 +

p∑
j=1

Pj)y

If a regression splines or p-splines model is adopted, then each of the functions fi(x) is

represented by a linear expression and so the model itself remains linear. It can then be

fitted by standard linear regression, incorporating a set of penalties in the p-splines case.

This has the advantage of direct, rather than iterative, fitting but it has the potential

disadvantage of needing to invert very large matrices if the model has many terms.

Example 4.3. The plots in Figure 4.9 show data from a survey of dissolved oxygen (DO)

in the River Clyde at a single sampling station, related to potential explanatory variables

of interest (top). In the bottom row is the output from fitting the following GAM:

DOi = β0 + f1(Yeari) + f2(Tempi) + f3(logSalinity) + εi, εi ∼ N(0, σ2)

The additive terms usefully capture the underlying trends.

The points on the plots in the bottom row of the figure are partial residuals (see the

preliminary material). These help us to assess whether or not the fitted function appears

to be appropriate. /
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Figure 4.9. The top row of plots show Dissolved Oxygen against three covariates. The
bottom row of plots show the fitted components, and partial residuals, of a gam model.

As ever, a method of determining the level of smoothing in an additive model is

required. Cross-validation provides a convenient option. The mgcv package for R has effi-

cient algorithms for identifying the optimal smoothing parameters. In particular, the op-

tions of selecting smoothing parameters using maximum likelihood (ML) and restricted

maximum likelihood (REML) are provided, which make use of the random effects for-

mulation presented previously to estimate smoothing parameters. In recent literature,

Wood (2011), these latter methods have been seen to outperform other methods such

as GCV and AIC.

4.6 Fitting (G)AMs

As illustrated previously, one way to fit (Generalised) Additive Models is to use the

mgcv library in R. A few notes on this are:

– the function bam fits a generalised additive model to a very large dataset;

– diagnostic plots can be obtained by using the function plot(model) for the fitted

model. Note that these are in terms of deviance residuals (see the preliminary ma-

terial for more details here);

– the Table 4.1 contains some useful notes on the type of smoothers that can be used;

– a generalised additive model is of the form:
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g(µi) = β0 +

p∑
j=1

fp(xpi)

where the mean µ = E(y|x1, ...xp) and g() is a link function such that ηi = g(µi).

This can be fitted using a local scoring procedure or penalised iteratively re-weighted

least squares (see for example Hastie and Tibshirani (1990) and Wood (2017)). The

fitting procedure is similar to that of a generalised linear model with a weighted

linear model replaced by a weighted additive model in the fitting algorithm.

– for response distributions other than the normal, some examples of family arguments

for GAMs are provided in Table 4.2;

– The default number of basis function used by mgcv is 9 (accounting for the identifi-

ability constraint). This can be increased inside the call to the smooth function by

specifying a value for k i.e. s(x, k=15);

– The basis dimension can be assessed by using the function gam.check.

spline description
cubic regression spline Efficient and straight for-

ward to interpret
cubic regression spline with
shrinkage

The smoothness selection
can set a covariate that is
not important completely to
zero

cyclic cubic regression
spline

Constrains the start point
to be the same as the end
point

P-splines Eilers & Marx p-splines
with a difference penalty

thin plate regression splines The default for mgcv
this plate regression splines
with shrinkage

The smoothness selection
can set a covariate that is
not important completely to
zero

Table 4.1. Alternative spline functions available in library(mgcv)

See Wood (2006) and Wood (2017) for a much fuller description of the mgcv package.

4.7 Comparing additive models

While models of this type provide very flexible and visually informative descriptions of

the data, it is also necessary to consider how models can be compared and inferences

drawn. Hastie and Tibshirani (1990) recommend the use of residual sums-of-squares



Flexible Regression 4.7 Comparing additive models 95

Distribution Description
Gamma strictly positive real valued

data
Poisson count data
Binomial binary data, or number of

successes from a trial
Inverse gaussian strictly positive real valued

response data
Quasi distributions e.g. quasibinomial and

quasipoisson, allows infer-
ence when the full distribu-
tion does not hold but the
mean variance relationship
is well approximated

Negative binomial overdispersed count data
Tweedie when the power parameter

relating the variance to the
mean is to be estimated

ocat ordered categorical data
betar for proportions data (0,1)

when binomial is not appro-
priate

ziP for zero inflated poisson
data

Table 4.2. Family arguments in gam

and their associated approximate degrees of freedom to provide guidance for model

comparisons.

For an additive model, the residual sum-of-squares can easily be defined as

RSS =
n∑
i=1

(yi − ŷi)2,

where ŷi denotes the fitted value, produced by evaluating the additive model at the

observation xi. We can write the residual sum-of-squares as

RSS =
n∑
i=1

(yi − ŷi)2 = y>(I −P)>(I −P)y,

where P denotes the projection matrix discussed earlier. The approximate degrees of

freedom for error can be defined as

df = tr
{

(I −P)>(I −P)
}
.
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In an obvious notation, comparisons of two models can be expressed quantitatively

in

F =
(RSS2 − RSS1)/(df2 − df1)

RSS1/df1
,

by analogy with the F -statistic used to compare linear models. Unfortunately, this

analogy does not extend to distributional calculations and no general expression for

the distribution of this test statistic is available. However, Hastie and Tibshirani (1990,

sections 3.9 and 6.8) suggest that at least some approximate guidance can be given by

referring the observed nonparametric F -statistic to an F distribution with (df2 − df1)

and df1 degrees of freedom.

There are corresponding analogies for the Wald approach to testing, using quadratic

forms associated with individual terms in an additive model to assess their significance.

Wood (2006) and Wood (2017) describes the details in the context of testing whether

relevant spline coefficients might be 0.

The reef data provide a simple illustration of how model comparisons may be made,

using the mgcv package. The table below indicates that the evidence for a latitude effect

is not compelling.

## model2 <- gam(score1 ~ s(latitude) + s(longitude))

## anova(model2)

Approximate significance of smooth terms:

edf Ref.df F p-value

s(latitude) 4.329 5.284 2.131 0.0822

s(longitude) 4.763 5.791 29.386 <2e-16

4.8 Further examples of additive models

Example 4.4. Mackerel eggs in the Eastern Atlantic

A further example uses data from a multi-country survey of mackerel eggs in the

Eastern Atlantic 1. Figure 4.10 shows the locations at which samples were taken. An

additive model for egg density might reasonably contain terms for depth and tempera-

ture, plus a joint term for latitude and longitude, to reflect spatial position. This leads

to the model

Yi = β0 + f12(x1i, x2i) + f3(x3i) + f4(x4i) + εi,

where f12 represents a smooth two-dimensional function of latitude (x1) and longitude

(x2), and f3 and f4 represent additive terms of the usual type for depth (x3) and temper-

ature (x4). Two-dimensional terms require restrictions to define the functions uniquely,

as in the one-dimensional case. A simple convention is
∑n

i=1 f12(x1i, x2i) = 0.

1 available in the sm package in R
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Figure 4.10. Locations of mackerel egg samples.

Figure 4.11 gives the details of a fitted gam for the mackerel data.

/

4.8.1 Interactions in gam models

What does an interaction mean in a gam model? A broad interpretation of an interaction

between two covariates is that the effect of one depends on the setting of the other. For

a gam, this means that we need a smooth surface to describe the combined effects of the

two covariates (just as we used for the spatial term in the mackerel data above). Two

one-dimensional functions to capture the effects of the separate (marginal) covariates is

no longer enough.

A model for the dissolved oxygen in the River Clyde illustrates this, expressed here

in R syntax:

DO ~ s(lSalinity, Station) + s(Temperature, Station) + s(Year, Station)

This builds a model for the whole river, using data at many sampling stations. (Some

care has to be taken here because of the repeated measures nature of the data. We will

ignore this complication for the moment). We might reasonably expect that the effects

of salinity, temperature and year will be different at different locations on the river. The

interaction terms are shown in the surface plots, see Figure 4.12.
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model1 <- gam(log(Density) ~ s(log(mack.depth)) + s(Temperature)
+ s(mack.lat, mack.long), data = mackerel)

par(mfrow=c(1,3), mar = c(3, 3, 1, 1), mgp = c(1.2, 0.2, 0), tcl = -0.2)
plot.gam(model1, se = TRUE, shade = TRUE, residuals = TRUE)
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anova(model1)

Family: gaussian
Link function: identity

Formula:
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Approximate significance of smooth terms:
edf Ref.df F p-value
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Figure 4.11. A gam model for the density of mackerel eggs. The right hand plot uses
contours to indicate the spatial effect, with shaded contours to indicate variability.
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Figure 4.12. The top row of plots show DO against four covariates. The lower row of
plots show interaction terms from a fitted gam model.
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4.8.2 Correlation in GAMs

The random effects framework introduced earlier can also be used in order to incorporate,

and account for, correlation in GAMs.

Example 4.5. Daily river flow data were collected for a Scottish river between 1997 and

2001. It was of interest to investigate the long-term trend and any cyclical patterns in

the data. /

The natural log transform of the data over the years and over the days of the year is

displayed in the plots below.
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Figure 4.13. Flow data over year and day of year

We could then fit an additive model to these data to try to describe the long-term

trend (Year) and the seasonal pattern (Day of Year, doy).

For example, we could fit the model:

log(flowi) = β0 + s(Yeari) + s(Day of Yeari) + εi (4.2)

This model can be fitted using the mgcv libray and the following commands:

gam.ind<-gam(log(Flow)~s(Year,bs="cr")+s(doy,bs="cc"))

summary(gam.ind)

##
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## Family: gaussian

## Link function: identity

##

## Formula:

## log(Flow) ~ s(Year, bs = "cr") + s(doy, bs = "cc")

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.36328 0.01473 92.56 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(Year) 8.911 8.994 52.09 <2e-16 ***

## s(doy) 6.408 8.000 50.46 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.45 Deviance explained = 45.6%

## GCV = 0.32055 Scale est. = 0.31697 n = 1461

Note here that a circular smoother has been used for the day of year term,

(bs=‘‘cc’’).

We can then plot the fitted model with partial residuals and a shaded band to illus-

trate the standard errors of the estimates.

plot(gam.ind, residuals=T,lty=2,lwd=2,pages=1, se=TRUE, shade.col="light blue", shade=TRUE)
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Figure 4.14. Fitted smooth components for year and day of year for a response of
log(flow) for Model 4.2
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Since these data are recorded over time, it is likely that there is still some correlation

remaining in the residuals. This can be assessed by investigating the autocorrelation and

partial autocorrelation functions of the residuals.

par(mfrow=c(1,2))
acf(gam.ind$residuals,plot=T,main="")
pacf(gam.ind$residuals,plot=T,main="")
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Figure 4.15. Autocorrelation (left) and partial autocorrelation function (right) of resid-
uals after fitting Model 4.2.

It is clear from the acf and pacf (Figure 4.15) that there is autocorrelation remaining

in the residuals after we have removed a long-term trend component and smooth seasonal

pattern.

Instead of assuming ε ∼ N(0, σ2), we have that, ε ∼ N(0, Σ), and one approach to

incorporating the correlation is to specify this as, ε ∼ N(0, V σ2) for a correlation matrix

V , with V specified using a time series model.

We will not go into the different types of time series model here that can be used

to account for correlation. However, Auto-Regressive Moving Average (ARMA) models

are a wide class of models that can be used. Here we will consider how to incorporate

an AR(1) correlation structure for the errors into the modelling. In such a situation,

we do not wish to model the autocorrelation explicitly - it is essentially a nuisance

parameter. Therefore, very often a simple ARMA model will ‘mop up’ a large amount

of the correlation in the errors. It is generally considered that when autocorrelation is

present it is better to account for it ‘wrongly’ than not at all.

Why do we want to do this? Well, our standard assumption is that the observations

we are working with are independent. When autocorrelation is present, it has the effect of

reducing our sample size. Our effective sample size is, therefore, smaller than the actual
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sample size. This has the effect, that if we do not account for the autocorrelation then

our standard errors are underestimated and hence we are more likely to find statistical

significance, when it is not truly present.

Therefore, here we will fit:

εi = φεi−1 + εi,

with εi ∼ N(0, σ2).

This can be fitted in R by using the function gamm which gives access to the correlation

structures available in the package lme.

gam.corr<-gamm(log(Flow)~s(Year,bs="cr")+s(doy, bs="cc"),correlation=corAR1(form=~1))

summary(gam.corr$gam)

##

## Family: gaussian

## Link function: identity

##

## Formula:

## log(Flow) ~ s(Year, bs = "cr") + s(doy, bs = "cc")

##

## Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.35934 0.04968 27.36 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Approximate significance of smooth terms:

## edf Ref.df F p-value

## s(Year) 6.493 6.493 3.921 0.00742 **

## s(doy) 3.997 8.000 5.678 5.57e-14 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## R-sq.(adj) = 0.414

## Scale est. = 0.35879 n = 1461

The fitted model is shown in Figure 4.16 and residuals after accounting for the cor-

relation can be assessed, as shown in Figure 4.17.

If we compare the two fitted models using the plots in Figure 4.18 below we can see

that the standard errors for the model incorporating the correlation are now much wider

than from the model which assumes independent errors.

A variety of correlation structures can be incorporated in this way. (Additionally,

random effects can be incorporated in smooths by using bs="re")
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plot(gam.corr$gam,residuals=TRUE,pages=1, se=TRUE, shade=TRUE, shade.col="light blue")
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Figure 4.16. Fitted smooth components for Model 4.2 after accounting for correlated
errors

par(mfrow=c(1,2))
acf(resid(gam.corr$lme,type="normalized"),main="")
pacf(resid(gam.corr$lme,type="normalized"),main="")
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Figure 4.17. Autocorrelation (left) and partial autocorrelation function (right) of resid-
uals after fitting model 4.2 accounting for correlation
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par(mfrow=c(2,2))
plot(gam.ind, se=TRUE, shade=TRUE, shade.col="light blue", main="Independent case")
plot(gam.corr$gam, se=TRUE, shade=TRUE, shade.col="light blue", main="AR(1)", ylim=c(-1.5,1))
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Figure 4.18. Fitted smooth components for Model 4.2 (top) and after accounting for
correlation (bottom)
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4.8.3 Bayesian additive models

The penalised spline approach to fitting flexible regression curves and surfaces, and

additive models, is strongly suggestive of a Bayesian approach. Expression (4.1) can be

viewed as the combination of a log-likelihood (quantifying how well the model fits the

data) and a prior for the parameters β (expressing correlation between neighbouring

values). This can be developed into a fully Bayesian approach, including priors for

the unknown hyperparameter λ. For example, we could use the R2BayesX package to

experiment with this approach. Figure 4.19 and Figure 4.20 show two models for the

Reef data which are (reassuringly) very similar to the models produced earlier.

library(R2BayesX)
model1 <- bayesx(Score1 ~ sx(Longitude), data = trawl)
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Figure 4.19. Flexible regression models for the Reef data, using a fully Bayesian ap-
proach implemented in the BayesX package - a model for longitude alone
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model2 <- bayesx(Score1 ~ sx(Longitude) + sx(Latitude), data = trawl)
plot(model2, term = 1)
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plot(model2, term = 2)

Latitude

sx
(L

at
itu

de
)

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

−11.8 −11.6 −11.4 −11.2

Figure 4.20. Flexible regression models for the Reef data, using a fully Bayesian ap-
proach implemented in the BayesX package - components of an additive model for lon-
gitude and latitude.
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Quantile regression extensions

In this chapter we will look at extensions and alternatives to the quantile regression

methods introduced in Chapter 3. Sections 5.1 and 5.2 introduce alternative methods for

computing conditional quantile functions. Section 5.3 describes how quantile regression

can be applied to censored data. For more information on recent extensions to quantile

regression models see Koenker et al. (2017).

5.1 Generalised Additive Models for Location, Scale and

Shape

Generalised Additive Models for Location, Scale and Shape or GAMLSS (Rigby and

Stasinopoulos, 2005) are an extension to generalised additive models (GAMs, see Chap-

ter 4). They allow us to focus not just on the conditional mean, but also on how the

spread and the shape of the distribution of the response depend on explanatory variables.

GAMLSS have up to four parameters which can be influenced by explanatory vari-

ables. The µ parameter controls the location, the σ parameter controls the spread, the

τ parameter controls the skewness and the ν parameter controls the kurtosis.

The gamlss package implements a very large number of distributions. One such

distribution is the so-called Box-Cox Cole and Green distribution (BCCG) given by

f(y|µ, σ, ν) =
1√
2πσ

yν−1

µν
exp

(
−z

2

2

)
where

z =


(y/µ)ν−1

νσ
if ν 6= 0

log(y/µ)
σ

if ν = 0.

For a tutorial on GAMLSS see Stasinopoulos et al. (2018).
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In this section we will see how GAMLSS models can be used to obtain conditional

quantile functions. Note that in contrast to the quantile regression methods we studied

in Chapter 3, these models make distributional assumptions. We will illustrate the use

of GAMLSS for quantile regression through an example.

Example 5.1 (Effect of age on obesity in the US). The National Health and Nutrition Ex-

amination Survey (NHANES) is a program of studies designed to assess the health and

nutritional status of adults and children in the United States. As part of the NHANES

data (available in the R package NHANES) both the age and the body mass index (BMI)

are collected.

Suppose we want to study the effect of age on obesity. If the objective of our inves-

tigation is obesity, we may be more interested in how large quantiles, rather than mean

BMI, change with age. This requires modelling the effect of age on all aspects of the

distribution of the BMI and not just its mean.

The function gamlss from the package gamlss lets us fit such a model. In the R

code that follows, we fit P-splines to each of the GAMLSS parameters. The left panel

of Figure 5.1 shows the fitted centile curves. The R code for fitting this model is given

below.

model <- gamlss(BMI~ps(Age), sigma.formula=~ps(Age),

tau.formula=~ps(Age), data=NHANES, family="BCCG")

When the quantity of interest is just one quantile it is easiest to fit a quantile re-

gression model, as discussed in Chapter 3. To find the 0.9th and 0.98th quantile of the

conditional distribution of the BMI given age using the function rq from quantreg we

need to fit two separate quantile regression models. The fitted quantile curves are shown

in the right panel of Figure 5.1. The R code for the fits is given below.

library(quantreg)

model.90 <- rq(BMI~bs(Age, df=10), data=NHANES, tau=0.9)

model.98 <- rq(BMI~bs(Age, df=10), data=NHANES, tau=0.98)

/

As we saw in Chapter 3, quantile regression models are run separately for each quan-

tile which can sometimes lead to problems with quantile crossing, especially with extreme

quantiles such as the above. This can be avoided by estimating the entire conditional

distribution in one go, which is what GAMLSS does. But this again comes at a cost as

we are making distributional assumptions which may or may not hold.
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Figure 5.1. Left panel: Conditional centile functions obtained using GAMLSS. Right
panel: Conditional quantile functions using rq() for τ = 0.9 and τ = 0.98.

5.2 Bayesian quantile regression

Another way to estimate conditional quantile functions is by using Bayesian computa-

tion. This has the advantage that it computes point estimates and confidence intervals

simultaneously from the posterior sequences, and that it takes advantage of Markov

chain Monte Carlo methods for computation. But how can Bayesian methods be im-

plemented in the absence of a likelihood? A working likelihood is necessary. The most

commonly used one is that proposed by Yu and Moyeed (2001) which utilises the asym-

metric Laplace distribution. This approach uses a parametric working likelihood,while

others have utilised a nonparametric/semiparametric working likelihood, e.g. Kottas and

Krnjajić (2009), Reich et al. (2010) or an empirical likelihood Lancaster and Jun (2010);

Otis (2008); Yang and He (2012). In what follows we will describe the approach of Yu

and Moyeed (2001).

5.2.1 Asymmetric Laplace (AL) likelihood

You may have encountered the Laplace distribution with density f(z) = 1
2σ

exp
(
− |z−µ|

σ

)
,

and may remember that the maximum likelihood estimator (MLE) of µ is the sample

median. The asymmetric Laplace (AL) distribution is a generalisation of the Laplace

distribution. A random variable Z is said to follow an asymmetric Laplace distribution

AL(µ, σ, τ) if its density is given by

f(z) =
τ(1− τ)

σ
exp

{
−ρτ

(
z − µ
σ

)}
.
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Therefore, assuming τ is known, the MLE of µ is

argmin
µ

n∑
i=1

ρτ

(
zi − µ
σ

)
= argmin

µ

n∑
i=1

ρτ (zi − µ) .

That is, the MLE of µ is just the sample quantile of (z1, · · · , zn).

Yu and Moyeed (2001) developed a Bayesian quantile regression method assuming

an AL likelihood for y = (y1, · · · , yn):

L(y|β) = {τ(1− τ)}n exp

{
−

n∑
i=1

ρτ{yi − xT
i β)

}
,

that is, assuming Y |xi ∼ AL(xT
i β, 1, τ). The posterior distribution of β = β(τ) is

π(β|y) ∝ L(y|β)π(β),

where π(β) is the prior distribution of β. This is a clever way to create a likelihood

which makes Bayesian computation possible, in order to obtain conditional quantiles.

To differentiate from other Bayesian methods for density regression, this method is

sometimes also called Laplace quantile regression. The R package bayesQR implements

this method.

Example 5.2. Here we illustrate the use of function bayesQR() from library(bayesQR)

by fitting a quantile regression model to the data we simulated in Example 3.4. In

addition to the usual arguments (formula, data and tau) we also have to specify the

number of MCMC draws. The option to use adaptive lasso variable selection is also

available. The R code to fit the model is shown below with the resulting quantile fits

in Figure 5.2. The OLS fit is plotted alongside the conditional quantile functions for

comparison.

fit.b <- bayesQR(y~x, quantile=c(.1,.25,.5,.75,.9), ndraw=5000)

/

Although this method is attractive due to its conceptual simplicity and implemen-

tation in R , a word of caution is needed. Wang et al. (2016) show that the posterior

variance is not the right approximation to the sampling variance of β̂(τ) and propose an

adjusted posterior variance which can be used to construct asymptotically valid posterior

intervals using a normal approximation.
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Figure 5.2. Fitted conditional quantile curves using bayesQR along with the OLS re-
gression line for the data introduced in Example 3.4.

The asymmetric Laplace distribution has been used by others in various implemen-

tations of quantile regression. For example, Geraci and Bottai (2014) estimate linear

quantile mixed models, which allow for random effects, by optimising an asymmetric

Laplace distribution. Their method is implemented in library(lqmm) in R .

5.2.2 Other Bayesian approaches

In recent years several other Bayesian approaches to quantile regression have been pro-

posed. We have discussed that of Yu and Moyeed (2001), which is implemented in the

package bayesQR and which relies on the asymmetric Laplace distribution as an auxiliary

distribution to facilitate computation. Other approaches are less restrictive in terms of

distribution assumptions. For instance Yang and He (2012) propose a Bayesian empiri-

cal likelihood approach which allows joint modelling of multiple quantiles, while Kottas

and Krnjajić (2009) use mixtures with Dirichlet process priors. Reich et al. (2010) also

use mixtures in their approach for independent and clustered data (R code available

from https://blogs.gwu.edu/judywang/software/). Finally the Bayesian density re-

gression approach of Dunson et al. (2007), based on Dirichlet process mixtures, is also

worth mentioning.
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5.3 Quantile regression for censored and survival data

In survival analysis we are interested in questions such as how long patients with a certain

condition will live with or without treatment, or in estimating unemployment duration

according to various predictors. Here the quantiles (e.g. median duration) provide a very

natural way to answer such questions, but most of the methods widely used for analysis

of such data do not model the quantiles directly. Instead, a transformation model is

typically used.

A wide variety of survival analysis models such as the Cox proportional hazards

model may be written as

h(Ti) = xT
i β + ui,

where Ti is an observed survival time, h is a monotone transformation, xi is a vector of

covariates, β is an unknown parameter vector, and {ui} are i.i.d. ∼ F .

Example 5.3 (Accelerated failure time model). This model can be written as log(Ti) =

xT
i β + ui, which is clearly of the above form. /

Example 5.4 (Cox proportional hazards model). For the proportional hazards model with

log λ(t|x) = log λ0(t)− xTβ

the conditional survival function in terms of the integrated baseline hazard

Λ0(t) =

∫ T

0

λ0(s)ds = log{S(t)}

as,

log[− log (S(t|x))] = logΛ0(t)− xTβ

so, evaluating at t = Ti, we have the model

logΛ0(T ) = xTβ + u

for ui iid with distribution function F0(u) = 1− e−eu . /

Example 5.5 (Bennett proportional odds model). For the proportional odds model, where

the conditional odds of death
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Γ (t|x) = F (t|x)/(1− F (t|x))

are written as

logΓ (t|x) = logΓ0(t)− xTβ,

we have, similarly,

logΓ0(T ) = xTβ + u

for u i.i.d. logistic with F0(u) = (1 + e−u)−1. /

The common feature of all these transformation models is that after transformation

of the observed survival times we have a pure location-shift, iid-error regression model,

where the effect of the explanatory variables is to shift the centre of the distribution

of h(T ). However, the explanatory variables cannot affect the scale or shape of this

distribution.

Consider, in contrast, the quantile regression model

Qτ{h(Ti)|xi} = xT
i β(τ),

where h(·) is a monotone transformation. By the equivariance property of quantile re-

gression to monotone transformation (suppose h is increasing),

Qτ (Ti|xi) = h−1
(
xT
i β(τ)

)
.

Quantile regression allows the explanatory variable to influence not only the location

but also the scale and shape of the conditional distribution. What’s more, interpretation

is simpler as we can directly interpret the effect of a predictor on the median survival

time etc.

A common feature of survival or duration data is the presence of censoring. Without

loss of generality assume that Ti is the transformed survival/duration and suppose we

have data (xi, Yi, δi), i = 1, · · · , n, where

Yi = min(Ti, Ci), δi = I(Ti ≤ Ci).

The equation for censored quantile regression then is

Qτ (Ti|xi) = xT
i β0(τ).
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Example 5.6 (Student earnings against study hours). Figure 5.3 shows the weekly earnings

(in dollars) of US college students plotted against the number of hours of study. The

points in red are censored at 200 dollars, meaning that the students earn at least this

much, but we don’t know the exact amount. The green lines show the conditional quar-

tiles estimated by ignoring censoring, while the blue lines are estimated by taking censor-

ing into account. We see that ignoring censoring underestimates the students’ earnings.
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Figure 5.3. Average weekly earnings against study hours for US college students.

/

While the conditional mean E(T |X) is not identifiable in the presence of censoring,

the conditional quantiles QT (τ |x) are identifiable for some τ .

Taking censoring into account is important to avoid biasing the results of survival

analysis. There are various types of censoring that could be encountered:

1. Fixed censoring: the censoring times Ci are known for all observations, even for

those subjects that are not censored. Without log of generality assume Ci = C. In

Example 5.6 we have fixed censoring at C = 200 dollars. This type of censoring is

quite common in survey data.

2. Random censoring: censoring points are unknown for uncensored observations.

This is more common in biomedical studies.

In the case of random censoring, censoring points are unobserved for uncensored

observations. Two different assumptions can be made, either that C is independent of T
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and x (Assumption A) or that C and T are independent conditional on x (Assumption

B).

A common approach under Assumption A involves re-weighting the quantile esti-

mating equation to take censoring into account. For instance Ying et al. (1995) propose

using the estimating equation

n∑
i=1

xi

{
I(Yi > xT

i β)

Ĝ(xT
i β)

− (1− τ)

}
≈ 0,

where G is the Kaplan-Meier estimate of the survival function of Ci. The idea behind

this is that

P{Yi > xT
i β0(τ)|xi}

= P{min(Ti, Ci) > xT
i β0(τ)|xi}

= P{Ti > xT
i β0(τ)|xi}P{Ci > xT

i β0(τ)|xi}

= (1− τ)G{xT
i β0(τ)},

thus the estimating function in the equation above is unbiased if G is known.

Bang et al. (2002) use

n∑
i=1

δi

Ĝ(Yi)
xi{I(Yi < xT

i β)− τ} ≈ 0.

The idea behind this is that

E

[
δi

G(Yi)
{I(Yi < xT

i β)− τ}|xi
]

= E

(
E

[
I(Ti < Ci)

G(Ti)
{I(Ti < xT

i β)− τ}|xi, Ti
])

= 0

when β = β0(τ).

A common approach under Assumption B is to distribute the mass of censored ob-

servations to the right (e.g. Portnoy (2003), Wang and Wang (2009)):

min
n∑
i=1

[
wiρτ (Yi − xT

i β) + (1− wi)ρτ (+∞− xT
i β)

]
,

where each right censored observation is split into two points

– at Yi with mass point wi;

– at infinity with mass 1− wi.
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So how does redistribution of mass work?

When there is no censoring, Yi = Ti and β0(τ) can be estimated by minimising

Sn(β) = n−1

n∑
i=1

ρτ (Ti − xT
i β), (5.1)

where ρτ (u) = u (τ − I(u < 0)). The minimizer of Sn(β) is a root of the estimating

equation

Dn(β) = n−1

n∑
i=1

xi
{
τ − I(Ti − xT

i β ≤ 0)
}
≈ 0. (5.2)

Here Dn(β) is the gradient function.

Note that the gradient depends only on the signs of Ti−xT
i β0(τ). So the weights are

as follows:

– Uncensored: wi = 1.

– Censored and not yet crossed (above the τth quantile): i.e., Yi = Ci > xT
i β0(τ).

Treat it as uncensored: wi = 1.

– Censored and crossed: δi = 0 and Yi = Ci < xT
i β0(τ), i.e. τ̃i

.
= F (Ci|xi) < τ,

E
{
I(Ti − xT

i β0(τ) < 0)|Ti > Ci, Ci,xi
}

=
τ − τ̃i
1− τ̃i

.
= wi.

How to estimate τ̃i = P (Ti ≤ Ci|xi), the quantile level at which the conditional

quantile crosses Ci?

Portnoy (2003) proposes estimating quantiles at a fine grid starting from τ = 0 and

then moving up step by step.

Example 5.7 (Portnoy’s reweighting-to-the-right algorithm). Figures 5.4 shows a graphical

illustration of the reweighting-to-the-right algorithm of Portnoy (2003) using the earn-

ings data from Example 5.6. The process starts at τ = 0 and it continues until all

observations have been crossed or until only censored observations remain.

/

Portnoy’s approach relies on redistribution-of-mass idea of Efron (1967): all obser-

vations are assigned weights depending on whether they are uncensored, censored but

not yet crossed, or censored and crossed. It reduces to Kaplan Meier’s estimator for the

univariate case (if X has finitely many distinct values) and it also allows more general

censoring. In this algorithm each update is a weighted quantile regression problem which
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(a) Start at τ = 0.05. No censored observations
crossed at this point.
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(b) τ = 0.05, 0.15, 0.25: still no censored observations
crossed.
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(c) τ = 0.05, 0.15, 0.25, 0.35. For the left two censored
and crossed points the weights are calculated as τ̃i =

0.35, wi =
τ − 0.35

1− 0.35
for τ > 0.35.
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(d) τ = 0.05, 0.15, 0.25, 0.35, 0.45. For the third cen-
sored and crossed point the weight is calculated as

τ̃i = 0.45, wi =
τ − 0.45

1− 0.45
for τ > 0.45.

Figure 5.4. Illustration of the reweighting-to-the-right algorithm of Portnoy (2003) using
the earnings data from Example 5.6.
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has to estimate all the quantiles below τ and assumes all the quantile functions are linear

in covariates.

Wang and Wang (2009) provide an alternative method to estimate τ̃i = F (Ci|xi)
by using a local Kaplan-Meier estimator of F (·|x). In contrast to the Portnoy method,

no recursive fitting is required and linearity of quantile function is needed only at the

quantile level of interest. However, computation is challenging for high dimensional

data. An implementation of this method in R can be found at https://blogs.gwu.

edu/judywang/software/.

Peng and Huang (2008) extend the martingale representation of the Nelson-Aalen

estimator of the cumulative hazard function to produce an “estimating equation” for

conditional quantiles. Consider ΛT (t|x) = − log{1 − FT (t|x)}, the cumulative hazard

function of T conditional on x. Let Ni(t) = I(Yi ≤ t, δi = 1) be a counting process and

Mi(t) = Ni(t) − ΛT{t ∧ Yi|xi) be a martingale process so that E{Mi(t)|xi} = 0 for all

t ≥ 0.

So

E
[
Ni{xT

i β0(τ)} − ΛT{xT
i β0(τ) ∧ Yi}|xi

]
= 0.

The following connection exists between ΛT and the quantile functions:

ΛT{xT
i β0(τ) ∧ Yi|xi} = H(τ) ∧H{FT (Yi|xi)}

=

∫ τ

0

I{Yi ≥ xT
i β0(u)}dH(u),

where H(u) = − log(1− u) for 0 ≤ u ≤ 1.

The estimating equation becomes

n−1/2

n∑
i=1

xi

[
Ni(x

T
i β)−

∫ τ

0

I{Yi ≥ xT
i β(u)}dH(u)

]
= 0.

Approximating the integral on a grid, 0 = τ0 < τ1 < · · · < τJ < 1, yields a simple

linear programming formulation to be solved at the gridpoints,

αi(τj) =

j−1∑
k=0

I{Yi ≥ xT
i β̂(τk)}{H(τk+1)−H(τk)},

yielding Peng and Huang’s final estimating equation,

n−1/2
∑

xi
[
Ni(x

T
i β(τ))− αi(τ)

]
= 0.

Setting ri(b) = Yi − xT
i b, this convex function for the Peng and Huang problem takes

the form
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R(b, τj) =
n∑
i=1

ri(b) [αi(τj)− I{ri(b) < 0}δi] = min!

The estimation procedure estimates the quantile coefficients sequentially from the lower

quantiles to upper quantiles. The resulting estimator is closely related to Nelson-Aalen

estimator in the univariate case.

Simulation evidence from Koenker (2008) confirms that the Portnoy and Peng-Huang

estimators are asymptotically similar. Both methods require estimation of all the quan-

tiles below τ , and they assume global linearity of quantile functions.

Example 5.8 (Censored quantile regression in R ). The function crq() from the package

quantreg fits the Portnoy and Peng-Huang estimators for censored data. A third method

(method="powell") for fixed censoring exists, but even for fixed censoring where the Ci

are observed, it is better to use the Portnoy or Peng-Huang estimators than the Powell

estimator. We will illustrate the use of this function with the uis data example of

Hosmer and Lemeshow following Koenker (2008). The response is the logarithm of time

to relapse of subjects in a drug treatment program. The explanatory variables are the

number of prior treatments, ND1 and ND2; the treatment indicator, TREAT taking

the value 1 for subjects taking the “long” course, and 0 for subjects taking the “short”

course; an indicator for prior intravenous drug use, IV3; a compliance variable, FRAC;

subject’s race; and the main and interaction effects of age and site of treatment. To allow

a comparison with the Cox proportional hazards model, we use function coxph from

library(survival) with the same formula argument. The results are plotted in Figure

5.5. The quantile coefficients are shown in blue, with a pointwise 95% confidence band

estimated using bootstrap. The red line corresponds to the quantile effect according to

the Cox proportional hazards model. A feature of the Cox model is that all of the red lines

are proportional to one another as they are forced to have the same shape determined

by the estimate of the baseline hazard function. There is agreement between the Cox

estimates and some of the quantile regression coefficient estimates, but for TREAT and

FRAC the estimates differ quite a bit. Another feature of the Cox estimates is that they

must lie entirely above the horizontal axis or entirely below it, while quantile regression

allows for the possibility that treatments may increase hazard and then decrease it or

vice versa.

The R code for fitting the models is given below.

library(quantreg)

library(survival)

data(uis)

fit <- crq(Surv(log(TIME), CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE,
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method = "Portnoy", data = uis) # crq using Portnoy method

Sfit <- summary(fit,1:19/20)

PHfit <- coxph(Surv(TIME, CENSOR) ~ ND1 + ND2 + IV3 +

TREAT + FRAC + RACE + AGE * SITE, data = uis) # Cox PH model
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Figure 5.5. Censored quantile regression coefficients (solid blue lines) for the uis data
with pointwise 95% confidence band (light blue). The red curve is an estimate of the
conditional quantile effect from the Cox proportional hazards model.

/



6

Flexible regression extensions

In previous chapters we have introduced a broad class of models that enable us to have

flexibility in both the nature of the response and the mean regression function, and

we’ve considered both frequentist and Bayesian approaches.

In this section we will introduce 2 further topics which provide alternative approaches

to modelling random functions (and, in particular, collections of random functions):

– the Bayesian nonparametric method of Gaussian processes;

– and functional data analysis.

Gaussian processes are a Bayesian model for function estimation. A Gaussian pro-

cess defines a distribution over functions and the object for which we want to perform

inference is an infinite-dimensional object rather than a finite-dimensional vector of

parameters.

Functional data analysis is about the analysis of information on functions or curves.

We are usually interested in saying something about the combined information over a

set of functions.

After briefly introducing these approaches we’ll finish with a brief mention of other

related approaches that the methods we have developed are related to.

6.1 Gaussian processes

6.1.1 Definition of a Gaussian process

We start by defining what a Gaussian process actually is. We define a Gaussian process

to be a collection of random variables indexed by a continuous variable Yi = Y (xi)

(i = 1, 2, 3, . . .) depending on covariates xi such that any finite subset of random vari-
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ables y = (y1, . . . , yn) = (Y (x1), . . . , Y (xn)) has a multivariate normal distribution. In

geostatistics, this model is known as a kriging model1.

We assume that we can only make observations subject to noise and assume (without

any loss of generality) a mean of 0, i.e.

y ∼ N
(
0,K + σ2I

)
. (6.1)

with

K =


k(x1,x1) . . . k(x1,xn)

...
. . .

...

k(xn,x1) . . . k(xn,xn)

 . (6.2)

If we write Yi = fi + εi with fi = f(xi) and εi ∼ N(0, σ2) then (6.1) is equivalent to

y|f ∼ N(f , σ2I) f ∼ N (0,K) .

i.e. Cov(fi, fj) = k(xi,xj)

The function k(·, ·) is called covariance function or kernel function i.e. here the

smoothness is specified through the covariance matrix. We are free to choose any k(·, ·)
as long as it is symmetric in its arguments and the matrix K from (6.2) is positive

semi-definite.

Note that the Bayesian linear model (revised in the preliminary material) is a special

case of a Gaussian process with covariance function k(xi,xj) = τ 2 · x>i xj.

We often make the assumption that the Gaussian process is stationary, which is the

case if and only if

k(xi,xj) = k(xi − xj).

Figure 6.1 shows a draw from a non-stationary Gaussian process.

An additional simplifying assumption is that the process is isotropic, which is the

case if and only if

k(xi,xj) = k(‖xi − xj‖),

i.e. only distance, but not direction matters. For the remainder we will assume that

the Gaussian process is stationary and isotropic. Figure 6.2 shows a draw from a non-

isotropic Gaussian process.

Furthermore, a process is called separable if

k(xi,xj) = k1(xi1 − xj1) · k2(xi2 − xj2) · · · kp(xp1 − xp2).

1 named after Daniel Gerhardus Krige, a South African mining engineer and professor at the University of the
Witwatersrand, who first suggested kriging to model mineral deposits.
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(b) The variance of f(·) is smaller at the bottom-left.

Figure 6.1. Draw from a one-dimensional and two-dimensional non-stationary Gaussian
process.
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Figure 6.2. Draw from a non-isotropic two-dimensional Gaussian process. The variabil-
ity in the horizontal direction is less than the one in the vertical direction.
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If the covariance function is separable and the data are observed on a regular grid then

we can write the covariance matrix K of the process as a Kronecker product

K = K1 ⊗K2 ⊗ . . .⊗Km,

where Km is the covariance matrix constructed using the unique values of the m-th

block of covariance only. In this case one can evaluate the posterior distribution without

ever having to compute K, which is a rather large matrix. The matrices Kj are of much

smaller dimensions allowing for very efficient computations.

The idea of separability can also be used to define a covariance function by multiplying

different covariance functions acting on separate sub-vectors of xi. Separability is often

assumed in spatio-temporal models, where data is observed over time in space. In this

case xi = (si1, si2, ti) = (si, ti), the covariates consist of the spatial coordinates si =

(si1, si2) and time ti. Such models often make the separability assumption that

k((si, ti), (sj, tj)) = k1(si, sj)k2(ti, tj)

with k1(·, ·) being a covariance function for space and k2(·, ·) being a covariance function

for time.

We will discuss different choices of k(·, ·) later on in section 6.1.3. In geostatistics it

is quite common to use a different parametrisation and work with the so-called (semi-

)variogram

γ(xi,xj) =
1

2
Var (mi −mj) =

1

2
(k(xi,xi) + k(xj,xj))− k(xi,xj)

instead of the covariance function. There is a one-to-one mapping between the two, so

you can either work with the (semi-)variogram or the covariance function.

6.1.2 Predictions for Gaussian processes

Conditionals of Gaussian distributions

Assume that (
y1

y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Then the conditional distribution of y2 given y1 is

y2|y1 ∼ N
(
µ2 +Σ21Σ

−1
11 (y1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12

)
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We can compute predictions for a new observation with covariates x0 by looking at

the joint distribution(
y

y0

)
∼ N

((
0

0

)
,

(
K + σ2I k0

k>0 k00 + σ2

))
,

where K is as defined in the preceding section, k0 = (k(x0,x1), . . . , k(x0,xn)) is the

covariance between the training data and the test case, and k00 = k(x0,x0). Then using

the formula for the conditional distribution of a Gaussian we obtain

y0|y ∼ N
(
k>0
(
K + σ2I

)−1
y,
(
k00 − k>0

(
K + σ2I

)−1
k0

)
+ σ2

)
The mean of the posterior distribution of y0 can be shown to be the best linear unbiased

predictor (BLUP). The formula above gives the variance to be used for a prediction

interval for a new observation. If we want to get the variance for a confidence interval

for its mean we have to omit the “+σ2” term accounting for the error on the unseen

data, i.e. the variance of the predicted mean is
(
k00 − k>0 (K + σ2I)

−1
k0

)
.

Figure 6.3 shows five draws each from the prior distribution (panel (a)) and the

posterior distribution (panel (b)) from a simple Gaussian process fitted to data.
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(b) Samples from the posterior distribution.

Figure 6.3. Draws from the prior distribution and the posterior distribution of a simple
Gaussian process (Matérn covariance with κ = 2.5). The bold line corresponds to the
mean, the shaded area corresponds to pointwise 95% credible intervals.
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6.1.3 Covariance functions (kernel functions)

Squared exponential (SE) The squared exponential (or, Gaussian) covariance function is

defined as

k(xi,xj) = τ 2 · exp(−ρ‖xi − xj‖2).

The squared exponential covariance function generates very smooth processes: their

paths are infinitely differentiable, which is often unrealistically smooth.

Exponential covariance function – Ornstein-Uhlenbeck (OU) process The exponential co-

variance function is defined as

k(xi,xj) = τ 2 · exp(−ρ‖xi − xj‖).

It leads to a continuous, but not a differentiable process, which is often unrealistically

rough. The OU process is the continuous equivalent of an AR(1) process.

γ-exponential One can generalise the above two covariance functions by considering

k(xi,xj) = τ 2 · exp(−ρ‖xi − xj‖γ)

with 0 < γ ≤ 2, which allows choosing any model between the rough OU process

and the squared exponential. However it is less flexible than the Matérn class.

Matérn class The Matérn covariance function2 is more flexible than the γ-exponential

covariance function, however also much more complex.

k(xi,xj) = τ 2 · 1

Γ (κ)2κ−1
(2
√
κρ‖xi − xj‖)κKκ

(
2
√
κρ‖xi − xj‖

)
,

where Kκ(·) is the modified Bessel function of the second kind. Special cases of the

Matérn covariance function are the OU process (κ = 1
2
) and the squared exponential

(κ→ +∞).

Figure 6.4 shows functions drawn from the Matérn class for different values of κ.

For all of the above covariance functions, the parameter ρ controls how fast the

correlation decays. The larger ρ the quicker the decay of the correlation. The parameter

τ 2 controls the prior variance of the signal. All of the above covariance functions are

stationary and isotropic, as all are based only on ‖xi − xj‖.

6.1.4 Estimation of hyperparameters

We have so far assumed that the hyperparameters (σ2 and parameters of the kernel

function) are known. In practice however, these need to be estimated from the data.

2 named after Bertil Matén, a Swedish statistician.
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(e) κ = +∞ (SE)
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Figure 6.4. Samples drawn from the prior distribution of a Gaussian process with a
Matérn covariance function for of κ ∈ {0.5, 1.5,+∞}. The parameter ρ was chosen so
that the covariance at lag 1

2
is the same for all plots.
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This is best done using the marginal log-density of y,

log f(y) = −n
2

log(2π)− 1

2
log det(K + σI)− 1

2
y>(K + σ2I)−1y

We could use an empirical Bayes strategy (sometimes also referred to as maximum-

likelihood) and maximise the density with respect to the hyperparameters.

However, a Gaussian process can use many hyperparameters and there is often little

information in the data about the hyperparameters. This is especially true for the pa-

rameter κ of the Matérn covariance function. Full Bayesian models thus typically fare

better as they take into account the uncertainty about the values of the hyperparam-

eters. However, with the possible exception of σ2, none of the hyperparameters can be

integrated out in closed form, thus one has to resort to either using a discrete grid or

sampling techniques such as Markov Chain Monte Carlo (MCMC).

6.1.5 Gaussian processes in R

Gaussian processes (with maximum-likelihood estimation of the hyperparameters) can

be fitted using the packages GPfit or mlegp. The example below uses the latter.

We fit a GP to the Great Barrier Reef data (of Chapters 2 & 4), initially using one

covariate only.

library(mlegp)
fit <- mlegp(trawl$Longitude , trawl$Score1)
newdata <- data.frame(Longitude = seq(min(trawl$Longitude), max(trawl$Longitude), len=50))
predictions <- predict(fit, newdata)
plot(Score1~Longitude, data=trawl)
lines(newdata$Longitude, predictions)
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Figure 6.5. Gaussian process fit to Reef data.
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A Gaussian process smooth can also be used in the mgcv function in R to fit a spatially

smooth term. See Wood (2017) for examples.

6.2 Functional data analysis

The type of data which are now routinely collected can have quite complex structures,

rather than simply having single measurements of a response variable. For example,

a response might be in the form of a function collected by a monitoring device which

effectively collects data continuously over time at several different locations. Although in

practice the data may be discretised on a grid of time points for each location, it can be

helpful to think of this as representing a function. This leads to the concept of functional

data analysis which has attracted considerable interest over the last couple of decades.

There are strong links here with the techniques we have been discussing, as methods

of flexible regression provide curve descriptions which reduce noise or have compact

representations through basis functions. For further details on FDA see the following

references: Ramsay and Silverman (1997), Ramsay and Silverman (2002), Ramsay and

Silverman (2005), Ramsay et al. (2009).

The data to be analysed are assumed to come from a smooth function and are mod-

elled using a smooth function. There are two central ideas:

– The functions are smooth, usually meaning that one or more derivatives can be

estimated and are useful.

– No assumptions, such as stationarity, low dimensionality, equally spaced sampling

points, etc, are made about the functions or the data.

6.2.1 Functional data methods

There are functional counterparts to standard statistical approaches:

– summary statistics;

– analysis of variance;

– multiple regression analysis;

– principal components analysis;

– canonical correlation analysis;

– cluster and classification analysis;

and one way to think of functional data analysis is that it combines ideas of smoothing

and multivariate statistics. Because the functions we estimate are assumed smooth, we

can model the dynamic behaviour of the data. This means using differential equations
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to model how the output of an input/output system changes in response to changes in

the input. Let’s consider an example:

Example 6.1 (Mediterranean fruit flies). A dataset containing the number of eggs laid

from fifty Mediterranean fruit flies (“medflies”, Ceratitis capitata) during the first 25

days of their lives is of interest here 3. In addition to the number of eggs laid, the dataset

also contains the lifespan of each fly. Our objective is to investigate whether fecundity

can predict the future lifespan of a fly.

In this example the covariate is functional. Rather than having a single egg count we

have a time series of 25 counts, i.e. our covariate is a function of time xi(t) for each of

fifty fruit flies.

This suggests using a regression model of the form

E(Yi) =

∫ 25

0

xi(t)β(t) dt

to predict the future lifetime of the fly. Because the covariate is functional we also have

to use a functional regression coefficient. /

The starting point is to estimate smooth functions from discrete noisy data. To do

this, we use basis function expansions to model functions, and we impose smoothness

using roughness penalties. This is all using similar ideas to those seen in earlier parts of

the course. This produces a set of curves, one for each ‘individual’ in your study.

Because most functional data show variation in both phase and amplitude, the next

step is often to learn how to separate phase from amplitude variation and then we can

use functional versions of standard multivariate data analyses to reduce dimensionalty

further and summarise key features in the data.

Every function, whether directly fit to data, or estimated from non-functional data,

is assumed to have one or more derivatives available for an analysis. These derivatives

themselves can then be analysed to investigate e.g. velocity and acceleration.

6.2.2 Curve fitting

The usual starting poing is to estimate a smooth cuve for each ‘individual’ using basis

functions. Earlier we had that:

f(x) =
∑
j

βjBj(x).

3 Available from http://faculty.bscb.cornell.edu/~hooker/FDA2008/medfly.Rdata"
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with basis functions B and basis coeffcients β.

The main choices of basis functions are B-splines (introduced in Chapter 2 and the

basis of choice for most non-periodic data) and Fourier series (best for periodic data).

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

B
j(x

)

(a) Fourier basis

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

B
j(x

)

(b) B-spline basis

Figure 6.6. Examples of a Fourier basis and a B-spline basis.

Fourier series was one of the first basis approaches to approximating a smooth func-

tion, which is based on the expansion

f(xi) ≈
a0

2
+

r∑
j=1

aj cos

(
2πjxi
P

)
+ bj sin

(
2πjxi
P

)
,

where xi ∈ (0, P ). This approximation corresponds to using the design matrix

B =


1
2

cos
(

2πx1
P

)
sin
(

2πx1
P

)
. . . cos
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)
sin
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)
...
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1
2
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)
sin
(

2πxn
P

)
. . . cos

(
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)
sin
(

2πrx1
P

)


with β = (a0, a1, b1, . . . , ar, br).

Panel (a) in Figure 6.6 shows the basis functions of a Fourier basis with r = 3, with

a B-spline basis in panel (b) for comparison.

Each basis function in a Fourier expansion has effects across the entire range of the

data.
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6.2.3 FDA

Summary statistics The functional mean and functional standard deviation can be

computed as follows:

mean x̄ = 1
n

∑
xi(t)

covariance σ(s, t) = 1
n

∑
(xi(s)− x̄(s))(xi(t)− x̄(t))

For functional PCA, instead of a covariance matrix Σ we have a surface σ(x, t)

for functions and the eigendecomposition is re-interpreted through the Karhunen-Loève

decomposition:

σ(s, t) =
∞∑
i=1

diξi(s)ξi(t)

with the ξi orthonormal, and providing the principal components, and the di providing

the variance. The principal component scores are:

fij =

∫
ξi(t)[xj(t)− x̄(t)]dt.

The best way to obtain an idea of the variation for each component is to plot:

x̄(t)± 2
√
diξi(t).

This can then be followed up by fitting functional regression models. There are three

types of model to consider:

– Response is a function; covariates are multivariate.

– Response is scalar or multivariate; covariates are functional.

– Both response and covariates are functional.

6.2.4 An example of FDA in R

Let’s explore an appropriate functional data analysis for the fruit flies example. The

package fda can be used to generate appropriate basis functions, explore the data using

functional principal components analysis and to fit a functional regression model.

We start by creating a set of 10 basis functions which are then used to represent the

data. From this we then create an fd object to hold the functional data.
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basisfd <- create.bspline.basis(rangeval=c(0, 25), 10)
xfd <- Data2fd(medfly$eggcount, argval=0:25, basisobj=basisfd)
lifetime <- as.numeric(medfly$lifetime)
plot(xfd)
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Figure 6.7. Created functions for the medfly data

To further explore the data, we can compute the functional principal components.

par(mfrow=1:2)
plot(pca.fd(xfd),pointplot=FALSE)
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Figure 6.8. Functional PCA for medfly data

Finally we fit the functional regression model. Note that the regression coefficient is

now itself a function (represented as a B-spline). In this example, the response lifetime

is a scalar and the covariate is functional and so we have a model of the form:

Yi = β0 +

∫ t

0

β(t)xi(t)dt+ εi
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basisfd <- create.bspline.basis(rangeval=c(0, 25), 10)
xfd <- Data2fd(medfly$eggcount, argval=0:25, basisobj=basisfd)
lifetime <- as.numeric(medfly$lifetime)
model <- fRegress(lifetime ~ xfd)
plot(model$betaestlist[[2]])
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Figure 6.9. Plotted functional coefficients for medfly data.

Since the coefficients before around 15 days are positive, the number of eggs laid

towards the beginning of the 25 day period is positively related to the further survival

of the fly.

6.3 Other flexible regression models

We have come to the end of our treatment of flexible regression models for this course.

However, there are several other extensions here that we have not introduced.

Spatial data We have seen how we can use bivariate smooths and Gaussian processes

to develop smooth functions for geostatistical data. We may also have data collected

as point processes or discrete/areal units and this opens up two other broad classes of

models, the latter of which are very often investigated using CAR models. Additionally,

data may be obtained from a connected network e.g. from a river and it can be important

to account for the flow strength, direction and connectedness of the river.

Mixture models In the preliminary material we introduced estimation using density

functions, this can be extended along with work on Dirichlet processes to provide a

nonparametric representation for mixture models.

Neural networks From a computational viewpoint the artifical intelligence approach

of neural networks can be seen as an alternative (similar and sometimes more flexible)
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approach to fitting additive models. Neural networks are basically nonlinear models 4. A

neural network 5 is a two-stage regression or classification model, typically represented

by a network diagram that takes nonlinear functions of linear combinations of the inputs.

They can approximate any nonlinear function.

Example 6.2. For example, if we consider the simple case of linear regression. Suppose

we are interested in predicting a response (Y ) at data point i (the output layer with one

node). We will do this using the covariates x1, . . . xp (p nodes in the input layer), and

we will combine them using a weighted sum with coefficients βj (as the weights).

This is an example of a very simple neural network with no hidden layer and no

non-linear computations.

/

In neural networks, in general, non-linear computations can be applied in different

layers, and we have additional hidden layers between the inputs and outputs that apply

non-linear computations to provide a flexible response.

The approach is most useful when prediction rather than interpretation is the goal

(hence a key difference from the additive models, and our approach here, where our goal

has been to describe and interpret the nature of relationships).

Therefore, there is very much more to explore and develop in this field for those of

you that are interested.

4 see Hastie et al. (2001) for more details here, this text also pulls together well the smoothing/additive model
ideas covered in this course along with unsupervised and supervised learning approaches

5 first developed as models for the human brain to illustrate electrical signals passing from one layer to another
but then later recognised as useful tools to provide nonlinear models



136 6. Flexible regression extensions Flexible Regression



References

Andrews, D. and Buchinsky, M. (2000). A three-step method for choosing the number

of bootstrap repetitions. Econometrica 68, 23–51.

Andrews, D. and Buchinsky, M. (2001). Evaluation of a three-step method for choosing

the number of bootstrap repetitions. Journal of Econometrics 103, 345–386.

Bang, O., Krolikowski, W., Wyller, J., and Rasmussen, J. (2002). Collapse arrest and

soliton stabilization in nonlocal nonlinear media. Physical Review E 66, 046619.

Barney, W., Powell, J., and Tauchen, G. (1991). Nonparametric ad Semiparametric

Methods in Econometrics. Cambridge: Cambridge University Press.

Barrodale, I. and Roberts, F. (1974). Solution of an overdetermined system of equations

in the l1 norm. Communications of the ACM 17, 319–320.

Bowman, A. and Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis.

Oxford: Oxford University Press.

Cook, B. L. and Manning, W. G. (2013). Thinking beyond the mean: a practical guide

for using quantile regression methods for health services research. Shanghai Arch

Psychiatry 25, 55–59.

De Angelis, D., Hall, P., and Young, G. (1993). Analytical and bootstrap approxima-

tions to estimator distributions in l1 regression. Journal of the American Statistical

Association 88, 1310–1316.

de Boor, C. (1978). A Practical Guide to Splines. New York: Springer-Verlag.

Dunson, D., Pillai, N., and J-H., P. (2007). Bayesian density regression. Journal of the

Royal Statistical Society: Series B 69, 163–183.

Efron, B. (1967). The two sample problem with censored data. Proceedings of the Fifth

Berkeley Symposium on Mathematical Statistics and Probability 4, 831–853.

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. London:

Chapman and Hall.



138 REFERENCES Flexible Regression

Feng, X., He, X., and Hu, J. (2011). Wild bootstrap for quantile regression.

Biometrika 98, 995–999.

Geraci, M. and Bottai, M. (2014). Linear quantile mixed models. Statistics & Comput-

ing 24, 461–479.
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