Flexible Regression

Session 3 - GAMs
Notes:https://warwick.ac.uk/fac/sci/statistics/ apts/students/resources/

Slides:www.stats.gla.ac.uk/~claire/APTS_FR_session_
3.pdf

Claire Miller \& Tereza Neocleous

Session 1 - nonparametric regression summary

Slides:www.stats.gla.ac.uk/~claire/APTS_FR_session_1.pdf

$$
Y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)
$$

- Estimate $f()$ using a regression framework: $\hat{\mathbf{y}}=\mathbf{B} \hat{\boldsymbol{\beta}}$;
- Regression splines fit: $\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{y}
$$

- Penalised regression splines fit: $\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda\|\mathbf{D} \boldsymbol{\beta}\|^{2}$

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{B}^{\top} \mathbf{B}+\lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{B}^{\top} \mathbf{y}
$$

Session 1 - nonparametric regression summary

$$
Y_{i}=f\left(x_{i}\right)+\varepsilon_{i}
$$

- Estimate $f()$ using a regression framework: $\hat{\mathbf{y}}=\mathbf{B} \hat{\boldsymbol{\beta}}$
- Regression splines fit: $\hat{\boldsymbol{\beta}}=\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{y}$
- Level of smoothing determined by number of basis functions (number of knots and degree (3))
- Penalised regression splines fit: $\hat{\boldsymbol{\beta}}=\left(\mathbf{B}^{\top} \mathbf{B}+\lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{B}^{\top} \mathbf{y}$
- Level of smoothing determined by using 'too many' basis functions (number of knots and degree (3)) and smoothing through λ.

Session 1 - nonparametric regression

library (mgcv)
model <- gam(Rc.age~s(Cal.age), data=radiocarbon)
model
plot(model, residuals=TRUE)

What's in this session?

- How much to smooth?
- How to select smoothing parameters?
- Nonparametric regression in higher dimensions
- (Generalised) Additive Models

4.1 How much to smooth?

Fitted values can be expressed as:

$$
\hat{\mathbf{y}}=\hat{f}=\mathbf{S} \mathbf{y}
$$

Define: degrees of freedom for model:

$$
\mathrm{df}_{\mathrm{mod}}=\operatorname{tr}\{\mathbf{S}\} .
$$

4.1 How much to smooth?

Regression spline

$$
\mathbf{S}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1} \mathbf{B}^{\top}
$$

Penalised regression splines

$$
\mathbf{S}_{\lambda}=\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{B}+\lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{B}^{\top}
$$

Define effective degrees of freedom:

$$
\operatorname{edf}_{\bmod (\lambda)}=\operatorname{tr}\left(\mathbf{S}_{\lambda}\right)
$$

4.1 How much to smooth?

Figure: Radiocarbon data with fit from local linear regression with four different degrees of freedom

4.1 How much to smooth?

Figure: Radiocarbon data with fit from local linear regression with four different degrees of freedom

4.1 How much to smooth?

Figure: Radiocarbon data with fit from local linear regression with four different degrees of freedom

4.1 How much to smooth?

Figure: Radiocarbon data with fit from local linear regression with four different degrees of freedom

4.1 How much to smooth?

Error variance

$$
\begin{gathered}
\mathrm{RSS}=\sum\left\{y_{i}-\hat{f}\left(x_{i}\right)\right\}^{2} \\
\hat{\sigma}^{2}=\mathrm{RSS} / \mathrm{df}_{\mathrm{err}}
\end{gathered}
$$

$$
\mathrm{df}_{\mathrm{err}}=n-\operatorname{tr}(\mathbf{S}) \text { if } \mathbf{S}^{\top}=\mathbf{S} \text { and } \mathbf{S}^{2}=\mathbf{S}
$$

4.1 How much to smooth?

Standard errors

$$
\operatorname{Var}\{\hat{f}\}=\operatorname{Var}\{\mathbf{S} \mathbf{y}\}=\mathbf{S S}^{\top} \sigma^{2}
$$

and so, by plugging in $\sqrt{\mathbf{S S}^{\top} \hat{\sigma}^{2}}{ }_{i i}$ the standard errors at each evaluation point are obtained.

4.2 Automatic methods for smoothing

- We can use the criteria (AIC, AICc, BIC, GCV, CV, ...) to automatically select smoothing parameters.
- General tendencies:
- AIC and cross-validation tend to overfit.
- BIC tends to underfit.
- For penalised regression spline models a mixed-model approach or a Bayesian approach for estimating / averaging over the smoothing parameter (to follow....).

Selecting λ by GCV - Radiocarbon dating

$\lambda=0.07$ selected as the smoothing parameter in a penalised regression fit.

4.2.1 Random effects interpretation

- We can interpret the penalised regression spline model (2.2) as a random effects model

$$
\begin{gathered}
\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda\|\mathbf{D} \boldsymbol{\beta}\|^{2} \\
\|\mathbf{y}-\mathbf{B} \boldsymbol{\beta}\|^{2}+\lambda\|\mathbf{D} \boldsymbol{\beta}\|^{2}
\end{gathered}
$$

- We need to "split" $\boldsymbol{\beta}$ into an unpenalised fixed effect and a penalised random effect.
- Benefit: We can use mixed-model (REML) to estimate $\lambda=\frac{\sigma^{2}}{\tau^{2}}$.

4.2.1 Random effects interpretation

library (mgcv)
model <- gam(Rc.age~s(Cal.age), method="REML")

Comparison of automatic smoothing methods

Method	GCV	REML	ML
edf	7.56	7.44	7.42

4.2.2 Bayesian point-of-view

- Alternatively treat as a fully Bayesian model with priors on σ^{2} and τ^{2} :

$$
\begin{aligned}
\mathbf{D} \boldsymbol{\beta} \mid \tau^{2} & \sim \mathrm{~N}\left(\mathbf{0}, \tau^{2} \mathbf{I}\right) \\
\mathbf{y} \mid \boldsymbol{\beta}, \sigma^{2} & \sim \mathrm{~N}\left(\mathbf{B} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}\right) \\
\sigma^{2} & \sim \mathrm{IG}\left(a_{\sigma^{2}}, b_{\sigma^{2}}\right) \\
\tau^{2} & \sim \mathrm{IG}\left(a_{\tau^{2}}, b_{\tau^{2}}\right)
\end{aligned}
$$

- Inference can be done by a Gibbs sampler (BayesX)

4.3 Nonparametric regression in higher dimensions

We want to develop a spline basis for a model of the form

$$
\mathbb{E}\left(Y_{i}\right)=f\left(x_{i 1}, x_{i 2}\right)
$$

4.3.2 Tensor-product splines

- We will use the following strategy.
- Place a basis on each dimension separately. \rightsquigarrow Two bases

$$
\left(B_{1}^{(1)}\left(x_{1}\right), \ldots, B_{l_{1}+r-1}^{(1)}\right) \text { and }\left(B_{1}^{(2)}\left(x_{1}\right), \ldots, B_{l_{2}+r-1}^{(1)}\right)
$$

- Define bivariate-basis functions as

$$
B_{j k}\left(x_{1}, x_{2}\right)=B_{j}^{(1)}\left(x_{1}\right) \cdot B_{k}^{(2)}\left(x_{2}\right)
$$

for $j \in 1, \ldots, l_{1}+r-1$ and $k \in 1, \ldots, l_{2}+r-1$.
4.3.2 Tensor-product splines: basis degree 0

4.3.2 Tensor-product splines: basis degree 1

4.3.2 Tensor-product splines: basis degree 2

4.3.2 Tensor-product splines: basis degree 3

4.3.2 Tensor-product splines: entire basis

6 basis functions for each dimension
$\rightsquigarrow 36=6^{2}$ basis functions for the bivariate surface

4.3.2 Tensor-product splines: model fitting

- We will now use the basis expansion

$$
f\left(x_{i 1}, x_{i 2}\right)=\sum_{j=1}^{l_{1}+r-1} \beta_{j k} B_{j k}\left(x_{1}, x_{2}\right)
$$

- This corresponds to the design matrix
$\mathbf{B}=\left(\begin{array}{cccccc}B_{11}\left(x_{11}, x_{12}\right) & \ldots & B_{1, l_{2}+r-1}\left(x_{11}, x_{12}\right) & B_{21}\left(x_{11}, x_{12}\right) & \ldots & B_{l_{1}+r-1, l+2+r-1}\left(x_{11}, x_{12}\right) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ B_{11}\left(x_{n 1}, x_{n 2}\right) & \ldots & B_{1, l_{2}+r-1}\left(x_{n 1}, x_{n 1}\right) & B_{21}\left(x_{11}, x_{12}\right) & \ldots & B_{l_{1}+r-1, l+2+r-1}\left(x_{n 1}, x_{n 2}\right)\end{array}\right)$
- We apply univariate penalties to the "rows" and "columns" of the bivariate basis.

4.3.2 Tensor-product splines: Great Barrier Reef

4.3.2 Thin-plate splines - an alternative

Advantage: only one smoothing parameter is estimated (isotrophic smoothness assumption).

Thin-plate splines are the default in mgcv's function gam.
model <- gam(Score1~s(Latitude, Longitude), data=trawl) vis.gam(model, plot.type="contour")

4.3.2 Thin-plate splines: Great Barrier Reef

linear predictor

4.3.2 Thin plate splines (typo) page 88

In fact, we need to minimise the objective function

$$
\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i 1}, x_{i 2}\right)\right)^{2}+\lambda \boldsymbol{\beta}^{\prime} \mathbf{R} \boldsymbol{\beta}
$$

subject to the constraints that
$\sum_{i=1}^{n} \beta_{2+i}=\sum_{i=1}^{n} x_{i 1} \beta_{2+i}=\sum_{i=1}^{n} x_{i 2} \beta_{2+i}=0$, where

$$
\mathbf{R}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \kappa\left(\left(x_{11}, x_{12}\right),\left(x_{11}, x_{12}\right)\right) & \cdots & \kappa\left(\left(x_{11}, x_{12}\right),\left(x_{n 1}, x_{n 2}\right)\right) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \kappa\left(\left(x_{n 11}, x_{n 2}\right),\left(x_{11}, x_{12}\right)\right) & \cdots & \kappa\left(\left(\left(x_{n 1} 1, x_{n 2}\right),\left(x_{n 1}, x_{n 2}\right)\right)\right.
\end{array}\right)
$$

4.4 Additive models

$$
Y_{i}=\beta_{0}+f_{1}\left(x_{1 i}\right)+\ldots+f_{p}\left(x_{p i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n,
$$

where the f_{i} are functions whose shapes are unrestricted, apart from an assumption of smoothness.

We can have:

- More than one covariate;
- Smooth functions can be univariate, bivariate,......;
- Computational challenges can arise for higher dimensions.

Consider the case of only two covariates,

$$
Y_{i}=\beta_{0}+f_{1}\left(x_{1 i}\right)+f_{2}\left(x_{2 i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n
$$

4.4 Additive models

A rearrangement of this as:

$$
y_{i}-\beta_{0}-f_{2}\left(x_{2 i}\right)=f_{1}\left(x_{1 i}\right)+\varepsilon_{i}
$$

suggests that an estimate of component f_{1} can then be obtained by smoothing the residuals of the data after fitting \hat{f}_{2},

$$
\hat{f}_{1}=S_{1}\left(\mathbf{y}-\overline{\mathbf{y}}-\hat{f}_{2}\right)
$$

and that, similarly, subsequent estimates of f_{2} can be obtained.
\rightsquigarrow the backfitting algorithm.

4.4 Additive models

If a spline basis is used, then the backfitting algorithm is not required as we have a form of linear model with a penalty term

$$
Y_{i}=\mathbf{B} \boldsymbol{\beta}+\varepsilon_{i}
$$

The model is fitted by choosing the vector of weights $\boldsymbol{\beta}$ to minimise

$$
(\mathbf{y}-\mathbf{B} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{B} \boldsymbol{\beta})+\boldsymbol{\beta}^{\top} P \boldsymbol{\beta}
$$

where the penalty matrix P is of block-diagonal form, constructed from the penalties from the individual model components, with the j th component $\lambda_{j} \mathbf{D}_{j}^{\top} \mathbf{D}_{j}$, where \mathbf{D}_{j} is a differencing matrix.

4.4 Additive models

This leads to the direct solution

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{B}^{\top} \mathbf{B}+P\right)^{-1} \mathbf{B}^{\top} \mathbf{y}
$$

Constraint for identifiability:

$$
\sum_{i=1}^{n} f_{j}\left(x_{i j}\right)=0
$$

for each component j.

All of the fitting methods above can be extended for more than 2 covariates (section 4.5).

4.4 Additive models - example

Two models fitted to the Reef data:

$$
Y_{i}=f\left(\text { lat }_{i}, \operatorname{long}_{i}\right)+\varepsilon_{i}
$$

$$
Y_{i}=\beta_{0}+f\left(\text { lat }_{i}\right)+f\left(\text { long }_{i}\right)+\varepsilon_{i}
$$

4.4 Additive models - example

4.6 Fitting GAMs

As illustrated previously, one way to fit (Generalised) Additive Models is to use the mgcv library in R.
$\operatorname{gam}\left(y^{\sim} s(x)+s(z)+s(t)\right)$

- bam
- plot(model)
- many options for different smoothers including cyclic, bs='cc'
- multiple family items for non-normal response distributions e.g. ziP - zero-inflated poisson
- the default basis functions can be altered, $\mathrm{s}(\mathrm{x}, \mathrm{k}=15)$
- basis dimension can be assessed, gam. check()

4.7 Inference - comparing additive models

One approach - approximate F-test:

$$
F=\frac{\left(\mathrm{RSS}_{2}-\mathrm{RSS}_{1}\right) /\left(\mathrm{df}_{2}-\mathrm{df}_{1}\right)}{\mathrm{RSS}_{1} / \mathrm{df}_{1}}
$$

RSS: $\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}, \mathrm{df}=$ degrees of freedom for error
No general expression for the distribution of this test statistic is available.

Approximate guidance can be given by referring F to an F distribution $\left(\left(\mathrm{df}_{2}-\mathrm{df}_{1}\right), \mathrm{df}_{1}\right)$.

4.8 Example - Mackerel eggs

A multi-country survey of mackerel eggs in the Eastern Atlantic:

$$
\log \left(\text { density }_{i}\right)=\beta_{0}+f_{1}(\text { depth })+f_{2}(\text { temp })+f_{34}\left(\text { lat }_{i}, \operatorname{long}_{i}\right)+\varepsilon_{i}
$$

$$
\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

$$
\begin{aligned}
\text { model1 <- gam(log(Density) } & \sim s(l o g(\text { mack.depth)) } \\
+ & \mathrm{s}(\text { Temperature }) \\
& +\mathrm{s}(\text { mack.lat, mack.long) })
\end{aligned}
$$

4.8 Example - Mackerel eggs

Figure: Depth (left), Temperature (middle), and spatial location (right longitude (y-axis), latitude (x-axis))

4.8 Example - Mackerel eggs

Approximate significance of smooth terms:

	edf	Ref.df	F	p-value
s(log(mack.depth))	2.815	3.538	18.055	$9.55 \mathrm{e}-12$
s(Temperature)	2.316	2.904	3.872	0.0147
s(mack.lat,mack.long)	20.197	24.788	5.060	$1.03 \mathrm{e}-12$

4.8.2 Correlation in GAMs

The random effects framework introduced earlier can also be used in order to incorporate, and account for, correlation in GAMs.

(Example 4.5)

- Daily river flow data were collected for a Scottish river between 1997 and 2001.
- It was of interest to investigate the long-term trend and any cyclical patterns in the data.

4.8.2 Correlation in GAMs

Flow data:

4.8.2 Correlation in GAMs

$$
\begin{aligned}
\log \left(\text { (low }_{i}\right)=\beta_{0}+s\left(\text { Year }_{i}\right)+s\left({\text { Day of } \left.\text { Year }_{i}\right)}\right) & \varepsilon_{i} \\
\varepsilon_{i} & \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

4.8.2 Correlation in GAMs

ACF/PACF of residuals:

4.8.2 Correlation in GAMs

Incoporating correlated errors:

Take, $\varepsilon \sim N\left(0, V \sigma^{2}\right)$ for a correlation matrix V.
Therefore, here we will fit:

$$
\varepsilon_{i}=\phi \varepsilon_{i-1}+\epsilon_{i}
$$

with $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$.

Fitting in R:
$\operatorname{gamm}(\log ($ Flow $) \sim s($ Year, $b s=" c r ")+s($ doy, $b s=" c c "), ~ c o r r e l a t i o n=c o r A R 1(f o r m=\sim 1)) ~$

4.8.2 Correlation in GAMs

Fitted models after incoporating correlated errors:

4.8.2 Correlation in GAMs

ACF/PACF of residuals after incorporating correlated errors:

4.8.2 Correlation in GAMs

Fitted models:

4.8.3 Bayesian additive models

A fully Bayesian approach can be used extending the ideas in section 4.2.2, including priors for the unknown hyperparameter λ.

The R2BayesX package can be used to experiment with this approach.

Reef data example, Fig 4.20:
model2 <- bayesx(Score1 ~ sx(Longitude) + sx(Latitude))

Summary

What have we covered?

- How much to smooth?
- How to select smoothing parameters?
- random effect and fully Bayesian implementations
- Nonparametric regression in higher dimensions
- (Generalised) Additive Models

Tea time......

