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What’s in this session?

I Gaussian processes for regression;

I Functional data analysis;

I Other related topics.



6. Extensions

Approaches for modelling random functions (collections of random
functions):

Gaussian processes (GPs)

A Bayesian nonparametric model for function estimation in
regression.

Functional Data Analysis (FDA)

The analysis of information on functions or curves - interested in
the combined information over a set of functions.



6.1 Gaussian processes (GP)

Definition of a GP
A collection of random variables Yi = Y (xi ) (i = 1, 2, 3, . . .)
depending on covariates xi such that any finite subset of random
variables y = (Y1, . . . ,Yn) = (Y (x1), . . . ,Y (xn)) has a
multivariate Normal distribution.

Spatial context:

In geostatistics this model is
known as a kriging model.



6.1 Gaussian processes (GP)

y ∼ N
(
0,K + σ2I

)
with K =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)


Compare to earlier in the week:

Using Yi = fi + εi with fi = f (xi ) and εi ∼ N(0, σ2) we can rewrite
this as

y|f ∼ N(f, σ2I) f ∼ N (0,K) ,

i.e. Cov(fi , fj) = k(xi , xj)



6.1 Gaussian processes (GP)

Comparisons with GAMs

I GAMs are easy to fit and interpret;

I Computation can become challenging at higher dimensions;

I GPs allow the response to depend on all inputs simultaneously;

I The covariance function elements play a similar role to the
smoothing parameters in the classic GAM;

I The type of structure captured by a GP model is mainly
determined by its kernel;

I One of the difficulties can be in choosing a kernel which can
represent structure in the data.



6.1 GP: covariance functions

Covariance function
k(xi , xj) = Cov(fi , fj) is called the covariance function / kernel
function.

I k can be choosen freely as long as

I k needs to be symmetric , i.e. k(xi , xj) = k(xj , xi ), and

I the matrix

K =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)


is positive (semi-)definite.



6.1 GP: stationary processes

I k is called stationary if k(xi , xj) = k(xi − xj)

I “Only relative positions matter”

I Stationarity implies homogeneous variance.
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6.1 GP: isotropic processes

I k is called isotropic if k(xi , xj) = k(‖xi − xj‖)
I “Only distance, but not directions matter.”

I We will assume isotropy for the remainder of this session.
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6.1 GP: separable processes

I A process is called separable if

k(xi , xj) = k1(xi1 − xj1) · k2(xi2 − xj2) · · · kp(xip − xjp).

I If the covariance function is separable and the data are on a
regular grid, then

K = K1 ⊗K2 ⊗ . . .⊗Km,

(Kj is the covariance matrix constructed using the unique
values of the j-th block of covariate only)

I Separability can also be used as a model assumption.



6.1 GP: separable processes

Application: Spatio-temporal processes

I Data observed over space (si ) and time ti .
 xi = (si1, si2, ti ) = (si , ti )

I Spatio-temporal models are often assumed to be separable

k((si , ti ), (sj , tj)) = k1(si , sj)k2(ti , tj)



6.1.2 GP: predictions

Reminder: Conditional distributions for a Gaussian

Assume that(
y1
y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

Then the conditional distribution of y2 given y1 is

y2|y1 ∼ N
(
µ2 + Σ21Σ−111 (y1 − µ1),Σ22 −Σ21Σ−111 Σ12

)



6.1.2 GP: predictions

I New observation y0 with covariates x0.

I Look at joint distribution(
y
y0

)
∼ N

((
0
0

)
,

(
K + σ2I k0

k′0 k00 + σ2

))
,

with k0 = (k(x0, x1), . . . , k(x0, xn)) and k00 = k(x0, x0).

I Formula for the conditional distribution of a Gaussian yields

y0|y ∼ N

(
k′0

(
K + σ2I

)−1

y,

(
k00 − k′0

(
K + σ2I

)−1

k0

)
+σ2

)



6.1.3 GP: examples of covariance functions

Squared exponential (SE) / Gaussian kernel

k(xi , xj) = τ2 exp(−ρ‖xi − xj‖2)

Very smooth process: infinitely differentiable

Exponential / OU process

k(xi , xj) = τ2 exp(−ρ‖xi − xj‖)

Very rough process: continuous, but not diffferentiable
OU process is continuous equivalent of AR(1) process.

τ2 controls prior variance, ρ controls (inverse) correlation
length



6.1.3 GP: examples of covariance functions

γ-exponential

k(xi , xj) = τ2 · exp(−ρ‖xi − xj‖γ)

with 0 < γ ≤ 2.

Matérn class

k(xi , xj) = τ2 · 1

Γ(κ)2κ−1
(2
√
κρ‖xi − xj‖)κKκ

(
2
√
κρ‖xi − xj‖

)
,

Special cases: OU process (κ = 1
2) and the squared exponential

(κ→ +∞).



6.1.3 GP: examples of covariance functions

Matérn: κ = 0.5 (OU process)
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6.1.3 GP: examples of covariance functions

Matérn: κ = 1.5
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6.1.3 GP: examples of covariance functions

Matérn: κ = +∞ (SE/Gaussian)
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6.1.5 Gaussian processes in R

Great Barrier Reef data

library(mlegp)

fit <- mlegp(trawl$Longitude , trawl$Score1)

newdata <- data.frame(Longitude = seq(min(trawl$Longitude),

max(trawl$Longitude), len=50))

predictions <- predict(fit, newdata)

plot(Score1~Longitude, data=trawl)

lines(newdata$Longitude, predictions)



6.1.5 Gaussian processes in R
Great Barrier Reef data
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6.1 Gaussian processes

mlss2011.comp.nus.edu.sg/uploads/Site/lect1gp.pdf

mlss2011.comp.nus.edu.sg/uploads/Site/lect1gp.pdf


6.1 Gaussian processes - additional references

Neal, R. M. (1996) Bayesian learning for neural networks. Springer
Verlag.

Rasmussen, C.E. and Williams, C.K.I. (2006) Gaussian Processes
for Machine Learning. MIT Press

Rasmussen CE (2011) ”The Gaussian Process Website”
www.gaussianprocess.org

www.gaussianprocess.org


6.2 Functional Data Analysis (FDA) - example

Extending the previous approaches to summarise temperature
across multiple seasonal patterns.



6.2 Functional Data Analysis (FDA) - example

Extending the previous approaches to summarise temperature
across multiple seasonal functions.



6.2 Functional data analysis (FDA)

For example, a response might be in the form of a function
collected by a monitoring device which effectively collects data
continuously over time at several different locations.

I An application monitoring air pollution at 40 points over a
city;

I The sensor records every 15 mins;

I For each sensor/location we have a time series, and hence we
have 40 time series’;

Although in practice the data may be discretised on a grid of time
points for each location, it can be helpful to think of this as
representing a function.

For this example, we would have 40 curves to analyse (one at each
location).



6.2 FDA

I The functions are smooth, usually meaning that one or more
derivatives can be estimated and are useful.

I No assumptions, such as stationarity, low dimensionality,
equally spaced sampling points, etc, are made about the
functions or the data.



6.2.1 Functional data methods

There are functional counterparts to standard statistial approaches:

I summary statistics;

I analysis of variance;

I multiple regression analysis;

I principal components analysis;

I canonical correlation analysis;

I cluster and classification analysis;

one way to think of functional data analysis is that it combines
ideas of smoothing and multivariate statistics.



6.2.1 FDA methods: example 6.2.1

Mediterranean fruit flies
I We want to predict the future life time of flies.

I Data available: the record of number of eggs laid in the last
25 days for 50 flies.

I Can we use these to predict life time of flies?



6.2.1 FDA methods: example 6.2.1



6.2.1 FDA methods: example 6.2.1



6.2.1 FDA methods: example 6.2.1



6.2.1 FDA methods: example 6.2.1



6.2.1 FDA methods: example 6.2.1



6.2.1 FDA methods: example 6.2.1



6.2.1 FDA methods: example 6.2.1

In this example the covariate is functional. Rather than having a
single egg count we have a time series of 25 counts, i.e. our
covariate is a function of time xi (t) for each of fifty fruit flies.

This suggests using a regression model of the form

E(Yi ) =

∫ 25

0
xi (t)β(t) dt

to predict the future lifetime of the fly.



6.2.1 FDA methods

I estimate smooth functions from discrete noisy data;

I use basis function expansions to model functions, and impose
smoothness using roughness penalties;

I  a set of curves, one for each ‘individual’ in your study.

I derivatives can be used to investigate velocity and
acceleration;

I often interested in separating phase and amplitude.



6.2.2 FDA: curve fitting

The usual starting poing is to estimate a smooth curve for each
‘individual’ using basis functions. Earlier we had that:

f (x) =
∑
j

βjBj(x).

with basis functions B and basis coeffcients β.

The main choices of basis functions are B-splines (introduced in
chapter 2 and the basis of choice for most non-periodic data) and
Fourier series (best for periodic data).



6.2.2 FDA: curve fitting
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Figure: Examples of a Fourier basis and a B-spline basis.



6.2.2 FDA: curve fitting

Fourier basis

f (xi ) ≈
a0
2

+
r∑

j=1

aj cos

(
2πjxi
P

)
+ bj sin

(
2πjxi
P

)
,

where xi ∈ (0,P). This approximation corresponds to using the
design matrix

B =


1
2 cos

(
2πx1
P

)
sin
(
2πx1
P

)
. . . cos

(
2πrx1
P

)
sin
(
2πrx1
P

)
...

...
...

. . .
...

...
1
2 cos

(
2πxn
P

)
sin
(
2πxn
P

)
. . . cos

(
2πrx1
P

)
sin
(
2πrx1
P

)


with β = (a0, a1, b1, . . . , ar , br ).



6.2.3 FDA: summary statistics

Functional mean and covariance

mean x̄(t) = 1
n

∑
xi (t)

covariance σ(s, t) = 1
n

∑
(xi (s)− x̄(s))(xi (t)− x̄(t))



6.2.3 Functional PCA

Instead of a covariance matrix Σ we have a surface σ(x , t) for
functions and the eigendecomposition is re-interpreted through the
Karhunen-Loève decomposition:

σ(s, t) =
∞∑
i=1

diξi (s)ξi (t)

with the ξi orthonormal, and providing the principal components,
and the di providing the variance.



6.2.3 Functional PCA

The principal component scores are:

fij =

∫
ξi (t)[xj(t)− x̄(t)]dt.

The best way to obtain an idea of the variation for each
component is to plot:

x̄(t)± 2
√
diξi (t).



6.2.3 Functional PCA

Functional regression models

There are three types of model to consider:

1. Response is a function; covariates are multivariate.

2. Response is scalar or multivariate; covariates are functional.

3. Both response and covariates are functional.



6.2.4 FDA in R
The fda packages in R can be used to implement functional
summary statistics, functional pca and functional regression.

Smooth curves for number of eggs laid by each fly



6.2.4 FDA in R

Functional principal components



6.2.4 FDA in R

Functional regression

Finally we fit the functional regression model. Note that the
regression coefficient is now itself a function (represented as a
B-spline). In this example, the response lifetime is a scalar and the
covariate is functional and so we have a model of the form:

Yi = β0 +

∫ t

0
β(t)xi (t)dt + εi



6.2.4 FDA in R

Coefficients from a functional regression model

Regression coefficients are positive before around 15 days.



6.3 Other flexible regression models

For example, spatial data

I point processes or discrete/areal units - the latter of which are
very often investigated using CAR models.

I connected network data e.g. from a river.



6.3 Other flexible regression models

Mixture models

In the preliminary material we introduced estimation using density
functions, this can be extended along with work on Dirichlet
processes to provide a nonparametric representation for mixture
models.



6.3 Other flexible regression models

Neural networks

From a computational viewpoint the artifical intelligence approach
of neural networks can be seen as an alternative (similar and
sometimes more flexible) approach to fitting additive models.

Neural networks are basically nonlinear models.



6.3 Other flexible regression models

Therefore, there is very much more to explore and develop in this
field for those of you that are interested..............

Enjoy lunch!! .....................

Safe journey home!! .....................


