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Assessment Questions

The intention of these exercises is to provide an opportunity for you to demonstrate what you can do.
They are intended to include many of the disparate aspects of Computer Intensive Statistics and it is
not envisaged that anyone should be asked to answer all of them (although, of course, you’re welcome
to do so if you find it interesting). Discuss which questions you should attempt with your supervisor.
It’s anticipated that most students will attempt about two of these questions and won’t expend much
more than one day of effort on the task.

1. Consider the application of bootstrap methods to a simple random sample of size n = 100 obtained
from a standard normal population:

X1, . . . , Xn
iid∼ N (0, 1) .

(a) Simulate such a sample, let us call it x? = x?1, . . . , x
?
n.

(b) We know that the most immediately intuitive estimator of the population variance,

σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2 where X̄ =
1

n

n∑
i=1

Xi

is biased.

i. What is the bias in this case.

ii. Use a bootstrap method to estimate the bias of this estimator using x? as the real sample.

iii. Repeat ii. a number of times to assess the bootstrap method in this case.

(c) Population kurtosis is another quantity which we might wish to estimate from sample data. One
simple estimator of this quantity might be:

k̂ =

∑n
i=1(Xi − X̄)4

n(σ̂2)2

i. Estimate k̂ for x?.

ii. Estimate the bias of k̂ using a bootstrap method.

iii. Obtain a 95% confidence interval (try a bootstrap percentile interval, or a more sophisticated
method if you prefer) for the population kurtosis.

2. Choose a multimodal univariate probability density and:

(a) Implement an exact slice sampler for this density. You’ll need to identify the level sets either
analytically or numerically and to sample from these level sets.

(b) Implement a random walk Metropolis algorithm for which your chosen density is the invariant
distribution.

(c) Implement a Metropolised slice sampler for this density.

(d) Compare the three algorithms which you have implemented, taking into account the quality of
the approximation and the computational cost of the various approaches.



3. Simulated Annealing.

(a) Implement a simulated annealing algorithm to minimize the function:

f(x1, x2) = (4− 2.1x21 + x41/3) · x21 + x1 · x2 + 4(x22 − 1) · x22

within the bounded region defined by −3 ≤ x1 ≤ 3 and −2 ≤ x2 ≤ 2.

(b) Investigate the performance of your algorithm with various annealing schedules and proposal
scales. What’s the lowest value you can locate for f and at what value of x1, x2 is it found?

(c) Consider the more challenging function

f(x1, x2) = exp(sin(50x1)) + sin(60 exp(x2)) + sin(70 sin(x1)) + sin(sin(80x2))

− sin(10(x1 + x2)) +
1

4
(x21 + x22)

for |x1| ≤ π/2, |x2| ≤ π/2. What’s the smallest value of f you can identify, and at what
coordinates (x1, x2) is this achieved?

4. Consider the Ising model on a graph with vertex set V and edge set E which was briefly mentioned
in lectures. Let m = |V|. Recall that the distribution over the ±1-valued binary variables attached
to each vertex has probability mass function:

p(x1, . . . , xm) =
1

Z
exp

J ∑
(i,j)∈E

xixj


where Z is a normalising constant and the sum is over all adjacent vertices with the graph. Consider
the ferromagnetic case in which the coupling strength J > 0.

This question concerns the relationship between the Ising model and a related bond percolation
model and a data augmentation strategy which allows a very efficient algorithm to be implemented
for this model.

Consider adding a Bernoulli variable to every edge in the graph such that there is a Ui,j associated
with every (i, j) ∈ E . Conditional upon the value of X = X1, . . . , Xm, these variables are mutually
independent. If Xi 6= Xj then Ui,j = 0, otherwise Ui,j ∼ Ber (1− exp(−2J)). This may seem rather
a peculiar thing to do at first, but the interpretation is that bonds are introduced at random between
those adjacent vertices which take common values; the stronger the coupling strength the greater
the probability that adjacent like vertices are bonded.

(a) Write down the joint distribution of X and U where U = {ui,j : (i, j) ∈ E}.

(b) Simplify your expression to express the probability distribution (up to a constant of proportion-
ality) in terms of: the number of unlike adjacent vertices, the number of bonded like adjacent
vertices and the number of unbonded like adjacent vertices implied by X and U .

(c) What is the conditional distribution of X given U?

(d) Identify a Gibbs Sampling algorithm in which one iteratively updates first the entirety X and
then the entirety of U .

(e) Why might the Gibbs Sampler described here be expected to outperform the Näıve Gibbs
sampling strategy for the Ising model?

5. If your PhD involves a model1 for which you’ve been conducting inference by other means, try
implementing one or two simple Markov chain Monte Carlo algorithms in order to obtain Bayesian
estimates of the unknown parameters (you’ll need to choose some prior distributions if you don’t
already have these). Contrast these estimates with those obtained with whatever other methods
you’ve been using.

1If it’s a complicated model you might want to consider a simplification of that model, this exercise isn’t intended to
take a very long time and implementing good MCMC algorithms for complex models can be very time consuming.


