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Part 1

Introduction, Motivation & Basics

Motivation Randomized Testing Bootstrap Methods

What is Computer Intensive Statistics

Computer, n. A device or machine for performing or facilitating
calculation.
Compare Middle French computeur person who

makes calculations (1578).

Intensive, adj. Of very high degree or force, vehement.
French intensif, -ive (14–15th cent. in Hatzfeld &

Darmesteter).

Statistics, n. The systematic collection and arrangement of
numerical facts or data of any kind; (also) the
branch of science or mathematics concerned with
the analysis and interpretation of numerical data and
appropriate ways of gathering such data.
In early use after French statistique and German

Statistik.
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What Makes Statistics Computer Intensive?

Some good reasons for using computer-intensive methods:

Complexity Complex models cannot often be dealt with
analytically.

Intractability Models which are not available analytically.

Laziness Computer time is cheap; human time isn’t.

Scale Large data sets bring fresh challenges.

We won’t address the bad reasons here. . .

4



Part 1— Section 1

Motivation

Motivation Randomized Testing Bootstrap Methods

Problems

Motivating Problem: Positron Emission Tomography I
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Problems

Motivating Problem: Positron Emission Tomography II
Dynamic model:

dCT
dt
(s) = ACT (s) + bCP (s)

CT (0) = 0

C̄T (s) = 1TCT (t),

with solution:

C̄T (t) =

Z
t

0
CP (t � s)HTP (s)ds (1)

HTP (t) =
mX

i=1

�ie
�✓i t ,

where the �i and ✓i are functions of A.
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Problems

Motivating Problem: Positron Emission Tomography III

Interested in the Volume of Distribution:

VD :=

Z 1

0
HTP (t)dt =

mX

i=1

�i
✓i
.

But have noisy measurements of C̄T (tj) for j = 1, . . . , n:

yj = C̄T (tj ;�1:m, ✓1:m) +

s
C̄T (tj ;�1:m, ✓1:m)

tj � tj�1
"j

C̄T (tj ;�1:m, ✓1:m) =
mX

i=1

�i

Z
tj

0
CP (tj � s)e�✓i sds.

What can we say?
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Problems

Motivating Problem: Hypothesis Testing

Testing Example: Chi-Squared Test

T =
P
k

i=1
(Ok�Ek)2
Ek

Asymptotic argument:

T
d

⇡ �2
k�1 under regularity conditions.

What if we don’t have many observations of every category?

What if we want to know whether the medians of two populations
are significantly di↵erent?

What if we don’t know the form of their distributions?
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Problems

Motivating Problem: Confidence Intervals

Constructing confidence intervals requires knowledge of sampling
distributions.

Confidence Interval: Medians

X1, X2, . . . , Xn
iid⇠ fX .

X[1]  X[2]  . . . X[n] are the associated order statistics.
T = X[(n+1)/2] is the sample median

How can we construct a confidence interval for the median
of fX?

What if we don’t even know the form of fX?
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Problems

Motivating Problem: Bayesian Inference

Bayesian statistics

Data y1, . . . , yn and model f (yi |✓) where ✓ is some
parameter of interest.

 Likelihood l(y1, . . . , yn|✓) =
nY

i=1

f (yi |✓)

In the Bayesian framework ✓ is a random variable with prior
distribution f prior(✓). After observing y1, . . . , yn the
posterior density of f is

f post(✓) = f (✓|y1, . . . , yn)

=
f prior(✓)l(y1, . . . , yn|✓)R

⇥ f
prior(#)l(y1, . . . , yn|#) d#

Often intractable  use of an approximation.
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Ideas

Simulation-based Methods

Doing statistics backwards:

Representing the solution of a problem as a

parameter of a hypothetical population, and using a

random sequence of numbers to construct a sample

of the population, from which statistical estimates

of the parameter p values, confidence intervals, or

other quantities of interest can be obtained.
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Ideas

Preliminary Example: Raindrop experiment for ⇡

Consider “uniform rain”
on the square
[�1, 1]⇥ [�1, 1], i.e. the
two coordinates
X, Y

iid⇠ U[�1, 1].

Probability that a rain
drop falls in the circle is

P(drop within circle) =
area of the unit circle

area of the square

=

R R

{x2+y21}
1 dxdy

R R

{�1x,y1}
1 dxdy

=
⇡

2 · 2 =
⇡

4
.

13

Motivation Randomized Testing Bootstrap Methods

Ideas

Preliminary Example: Raindrop experiment for ⇡

Given ⇡, we can compute P(drop within circle) =
⇡

4
.

Given n independent raindrops, the number of rain drops
falling in the circle, Zn is a binomial random variable:

Zn ⇠ Bin
⇣
n, p =

⇡

4

⌘
.

 we can estimate p with

bp =
Zn
n
.

and ⇡ by

b⇡ = 4bp = 4 ·
Zn
n
.
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Ideas

Preliminary Example: Raindrop experiment for ⇡

Result obtained for
n = 100 raindrops:
77 points inside the circle.

Resulting estimate of ⇡ is

b⇡ =
4 · Zn
n
=
4 · 77
100

= 3.08,

(rather poor estimate)
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However: the law or large numbers guarantees that

b⇡n =
4 · Zn
n
! ⇡

almost surely for n !1.
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Ideas

Preliminary Example: Raindrop experiment for ⇡
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Ideas

Preliminary Example: Raindrop experiment for ⇡

How fast does b⇡ converge to ⇡?
Central limit theorem gives the answer.

(1� 2↵) confidence interval for p (bpn = Zn/n):
"
bpn � z1�↵

r
bpn(1� bpn)
n

, bpn + z1�↵

r
bpn(1� bpn)
n

#

(1� 2↵) confidence interval for ⇡ (b⇡n = 4bpn):
"
b⇡n � z1�↵

r
b⇡n(4� b⇡n)

n
, b⇡n + z1�↵

r
b⇡n(4� b⇡n)

n

#

Width of the interval is O(n�1/2), thus speed of convergence
OP(n�1/2).
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Ideas

Preliminary Example: Raindrop experiment for ⇡

Recall the two core elements of this example:

1 Writing the quantity of interest (here ⇡) as an expectation:

⇡ = 4P(drop within circle) = E
�
4 · I{drop within circle}

�

2 Replaced this algebraic representation with a sample
approximation.

SLLN guarantees that the sample approximation converges to
the algebraic representation.
CLT gives information about the speed of convergence.
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Ideas

The Generalisation to Monte Carlo Integration

Z 1

0
f (x) dx

=

Z 1

0

Z
f (x)

0
1 dt dx

=

Z Z

{(x,t):tf (x)}

1dt dx

=

R R

{(x,t):tf (x)}
1 dt dx

R R

{0x,t1}
1dt dx
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Ideas

Comparison of the speed of convergence

Monte Carlo integration is OP(n�1/2).

Numerical integration of a one-dimensional function by
Riemann sums is O(n�1).

Monte Carlo does not compare favourably for
one-dimensional problems.

However:

Monte Carlo estimates are often unbiased.
Order of convergence of Monte Carlo integration is
independent of dimension.
Order of convergence of numerical integration techniqes
deteriorates with increasing dimension.

 Monte Carlo methods can be a good choice for
high-dimensional integrals.
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Ideas

Views of Simulation-based Inference

Direct approximation of a quantity of interest.

Careful construction of random experiment for
particular task at hand.
Justify with a dedicated argument in each case.

Approximation of integrals of interest.

Represent quantity of interest as expectation wrt
some f .
Use sample average to approximate expectation.
Appeal to SLLN and CLT.

Approximation of distributions of interest.

Represent quantity of interest as a function of
distribution f .
Use empirical measure of sample to approximate f .
Appeal to Glivenko-Cantelli theorem.
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Ideas

Theoretical Motivation of Sample Approximation

Theorem (Strong Law of Large Numbers)

Let X1, X2, . . .
iid⇠ f , and let ' : E ! R with E [|'(X1)|] <1

then:

1

n

nX

i=1

'(Xi)
a.s.! Ef ['(X1)] .

Theorem (Central Limit Theorem)

Let X1, . . .
iid⇠ fX and let ' : E ! Rk with ⌃ = Var ['(X)] <1,

then as n !1:

p
n

"
1

n

nX

i=1

'(Xi)� E ['(X1)]
#
D! N (0,⌃) .
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Ideas

Theoretical Motivation of Sample Approximation

Theorem (Glivenko-Cantelli)

Let X1, . . .
iid⇠ fX have cdf FX .

Let

Fn(x) =
1

n

nX

i=1

I(�1,Xi ](x)

then as n !1
sup
x

|Fn(x)� F (x)|
a.s.! 0.

23
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Randomized Tests

Randomized Testing

One simple example of computer intensive statistics.

We’ll revisit how we can implement these things later.

Art of testing: find a set R↵ such that

P (T 2 R↵;H0) = ↵

and
P (T 2 R↵;H1) > ↵

.

What if we don’t know fT ?

25
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Randomized Tests

Is a Die Fair?

Given n rolls of a die, we want to establish whether it’s fair.

Canonical first-year example of a �-squared test. . .

Compute

T =
KX

k=1

(Ok � Ek)2

Ek

T
approx⇠ �2

k�1 by asymptotic arguments.

What if the asymptotics don’t hold?

26
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Randomized Tests

A Randomized Goodness of Fit Test

Imagine we have 9 measured rolls (and can’t easily obtain
more):

Value 1 2 3 4 5 6
Count 0 1 0 2 2 4

If the die is fair we expect 1.5 observations of each value.

The test statistic is:

T =
1.52 + 0.52 + 1.52 + 0.52 + 0.52 + 2.52

1.5
= 7
2

3

The asymptotics certainly don’t hold:

(Ok � Ek)2 2 {0.52, 1.52, 2.52, 3.52, 4.52, 5.52, 6.52, 7.52}.

But we can simulate from H0.
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Randomized Tests

An R Implementation

Randomized Goodness of Fit Testing: Setup

p <� 1/6 ⇤ c(1,1,1,1,1,1)
n <� 9
r <� 10000
ob <� rmultinom(r,n,p)
ex <� n⇤p
T <� colSums ((ob - ex)ˆ2/ex)

How many elements in T are larger than the observed value?

Randomized Goodness of Fit Testing: Comparison

t <� 7.66
m <� sum(T ¿= ( t - 1E-9)) #T discrete
p r i n t (m/r)
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Randomized Tests

A Startling (Anti)climax

Empirical p-value:
0.1848

Asymptotic p-value:
0.1860
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Randomized Tests

Randomized Test in General

Given a hypothesis, H0 and an alternative, H1, and data x
which realises X under H0:

Obtain a realisation u of U
(U|X ⇠ fU|X from some known distribution).
Compute R↵ such that P ((X,U) 2 R↵;H0) = ↵.
Reject H0 if (x , u) 2 R↵.

Goodness of Fit Test in General Form

Let fU|X(u|x) =
Q
r

i=1 fT (ui ;H0).

By sampling Zi
iid⇠ fX(·;H0) and setting Ui = g(Zi).

Let R↵ = {(x , u) : g(x) > u[r(1�↵)]}.
Where g is such that T = g(X); u[i ] is the i

th order statistic.
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Randomized Tests

Are Those Medians Di↵erent (Part I)?
Consider testing for di↵erent medians:

H0 : X1, . . . , XnX
iid⇠fX(·;m) Y1, . . . , YnY

iid⇠fY (·;m)

H1 : X1, . . . , XnX
iid⇠fX(·;m) Y1, . . . , YnY

iid⇠fY (·;m0)
Here, lets consider the two-sided version: m0 6= m.
And we’ll assume that we know the form of the two
distributions:

fX(x ;m) = fY (x ;m) =
1

2
exp(�|x �m|)

Letting eX = X[(nX+1)/2] and eY = Y[(nY+1)/2]:
eX � eY =( eX �m)� (eY �m)

=(X �m)[(nX+1)/2] � (Y �m)[(nY+1)/2]
So the distribution of eX � eY is independent of m|H0.
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Randomized Tests

A Randomized test:

Let T = eX � eY .
Draw i = 1 : r copies of X and Y with m = 0:

X 0,j1,...,nX
iid⇠fX(·; 0),

Y 0,j1,...,nY
iid⇠fY (·; 0).

Compute the di↵erence between their medians:

i = 1, . . . , r : T 0i = X
0,i
[(nX+1)/2]

� Y 0,i[(nY+1)/2].

Let p = (1 + |{i : T 0
i
� T}|)/(r + 1).

Reject H0 if p < ↵.

But surely this is cheating: what if we don’t know so much?
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Permutation Tests

Permutation Tests

Consider the hypotheses:

H0 : X1, . . . , XnX
iid⇠fX(·) Y1, . . . , YnY

iid⇠fX(·)
F�1
X
(0.5) =F�1

Y
(0.5)

H1 : X1, . . . , XnX
iid⇠fX(·) Y1, . . . , YnY

iid⇠fY (·)
F�1
X
(0.5) 6=F�1

Y
(0.5)

where fX and fY are unknown.

Here, F�1
X
and F�1

Y
are assumed to exist.

Sample medians are a natural test statistics, but:

We don’t know their distribution under H0.
And can’t sample from that distribution.

What can we do?
33
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Permutation Tests

The Permutation Approach

If 9m s.t. P (Xi  m) = P (Yi  m) = 0.5,
and F�1x and F�1

Y
both exist,

then F�1
X
(0.5) = F�1

Y
(0.5) = m

and FX(m) = FY (m) = 0.5

so ↵FX(m) + (1� ↵)FY (m) = 0.5.
In fact, under H0, the distribution of X̃ and Ỹ should be
invariant under label permutations.

34
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Permutation Tests

Let Z = (X1, . . . , XnX , Y1, . . . , YnY ) be an n = nX + nY
vector.

Now let

T (Z) =median(Z1, . . . , ZnX )�median(ZnX+1, . . . , Zn)

And let ⇡ 2 P ⇢ {1, . . . , n}n denote a permutation, writing:

⇡Z := (Z⇡1 , Z⇡2 , . . . , Z⇡n)

Now, under H0:

8⇡ 2P : T (⇡Z)
D
= T (Z)

So if T (Z) > T (⇡Z) for 100(1�↵)% of ⇡ we can reject H0.
We just need to compute T (⇡Z) for every ⇡ 2 P. . .
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Permutation Tests

A Randomized Permutation Test

We can sample elements uniformly from P:
Sample ⇡1 ⇠ U (1, . . . , n).
Sample ⇡2 ⇠ U ({1, . . . , n} \ {⇡1}).

...
Sample ⇡n ⇠ U ({1, . . . , n} \ {⇡1, . . . ,⇡n�1}).

We can do this many times to approximate the law of T (⇡z)
when ⇡ ⇠ U(P):

Sample ⇡1, . . . ,⇡k
iid⇠ U(P).

Compute T1 = T (⇡1z), . . . , Tk = T (⇡kz).
Use the empirical distribution of (T1, . . . , Tk) to approximate
the law of T (⇡z).

This provides a general strategy for nonparametric testing.
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Bootstrap Basics

Bootstrap Methods

Randomized tests: use empirical distribution of T .

Permutation tests: use resampling-based empirical
distribution of T .

Bootstrap methods: use resampling-based empirical
distribution of ✓̂ to characterise the sampling distribution of
✓̂.

The Bootstrap Ansatz

If X1, . . . , Xn
iid⇠ FX and n is large then “F̂ nX ⇡ F”

=) sampling from F̂N
X
is “close” to sampling from F

=) samples from F̂N
X
might be suitable for approximating F !
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Bootstrap Basics

The Basis of the Bootstrap

Given a simple random sample X1, . . . , Xn
Repeat the following for b = 1 : B:

Sample n times from F̂ n
X
(x) i.e. sample n times uniformly

with replacement from X1, . . . , Xn to obtain X̂b1 , . . . , X̂
b
n .

Given a function g : En ! R approximate the distribution of
g under F using the sample
g(X̂11 , . . . , X̂

1
n), . . . , g(X̂

B
1 , . . . , X̂

B
n ).

Glivenko-Cantelli (and extensions) tells us that
F̂ n
X
(x)

a.s.! FX(x).

NB Regularity conditions must hold in order for this to work.
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Bootstrap Basics

Approximating the Sampling Distribution of the Median

Given X1, . . . , Xn a simple random sample:

Compute T = median(X1, . . . , Xn).

For b = 1 : B

Sample n times with replacement from X1, . . . , Xn to obtain
X̂b1 , . . . , X̂

b
n .

Compute T̂ b = median(X̂b1 , . . . , X̂
b
n ).

Treat the empirical distribution of T̂ 1, . . . , T̂B as a proxy for
the sampling distribution of T .
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Bootstrap Basics

Bootstrap Bias Correction

Given x1, . . . , xn and,

estimator T : En ! R of ✓
computer t = T (x1, . . . , xn).

For b = 1 : B
Sample n times with replacement from X1, . . . , Xn to obtain
X̂b1 , . . . , X̂

b
n .

Compute T̂ b = T (X̂b1 , . . . , X̂
b
n ).

Treat the empirical distribution of T̂ 1 � t, . . . , T̂B � t as a
proxy for the sampling distribution of T (X1, . . . , Xn)� ✓.
Obtain bias-corrected estimate:

t �
1

B

BX

b=1

(T̂ b � t) = 2t �
1

B

BX

b=1

T̂ b.
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Bootstrap Confidence Intervals

Näıve Bootstrap Confidence Intervals 1:
The Asymptotic Approach

For some T we might expect T to have an asymptotically
normal distribution.

So, estimate it’s variance:

�̂2T =
1

B � 1

BX

b=1

 

T̂ b �
1

B

BX

b=1

T̂ b

!2

And use the normal confidence interval:
⇥
T � z↵/2�̂T , T + z↵/2�̂T

⇤

with approximate coverage ↵.

Depends on asymptotic normality.

Further approximation for finite samples.
42
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Bootstrap Confidence Intervals

Näıve Bootstrap Confidence Intervals 2:
Bootstrap Percentile Confidence Intervals

We could use the bootstrap distribution of T directly:

[T̂ [B(↵/2)], T̂ [B(1�↵/2)]]

These are known as bootstrap percentile confidence intervals.

Depend on the bootstrap approximation; no additional
approximations.
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Bootstrap Confidence Intervals

Bootstrap “pivotal” Confidence Intervals
Using bootstrap approximations of (approximate) pivots
can be more elegant.
Assume that T is an estimator of some real population
parameter, ✓.
Define R = T � ✓.
Let FR denote the cdf of R, then:

P(L  ✓  U) =P(L� T  ✓ � T  U � T )
=P(T � U  R  T � L)
=FR(T � L)� FR(T � U).

Suggests using:

[T � F�1
R
(1� ↵/2), T � F�1

R
(↵/2)]

We can’t use this interval directly because we don’t know FR
and we certainly don’t know F�1

R
.
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Bootstrap Confidence Intervals

Bootstrap “pivotal” Confidence Intervals

We can invoke the bootstrap idea again:

Compute T = g(X1, . . . , Xn).

For b = 1 : B

Sample n times with replacement from X1, . . . , Xn to obtain
X̂b1 , . . . , X̂

b
n .

Compute T̂ b = g(X̂b1 , . . . , X̂
b
n ).

Claim that “T̂ 1, . . . , T̂B are to T as T is to ✓”.

Set R̂b = T̂ b � T .
Use the empirical distribution, F̂R, of R̂

1, . . . , R̂B instead of
FR:

[T � F̂�1
R
(1� ↵/2), T � F̂�1

R
(↵/2)]
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Bootstrap Confidence Intervals

Summary of Part 1

Motivation: Bayesian inference, Fisherian inference, . . .

Towards simulation-based inference (see later).

Randomized Tests

Permutation Tests

Boostrap Characterisation of Estimators.

Bootstrap Confidence Intervals.

Young, G. A. (1994) Bootstrap: More than a stab in the
dark? Statistical Science, 9, 382–395.

Davison, A. C., Hinkley, D. V. and Young, G. A. (2003)
Recent developments in bootstrap methodology. Statistical
Science, 18, 141–157.
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Part 2

Simulation and the Monte Carlo Method

Monte Carlo Methods PRNGs Sampling

Simulation

We’ve seen motivation of simulation for inference.

We’ve seen examples of simulation-based methods.

We need methods for addressing broad classes of problems.

We need methods for obtaining the necessary samples.
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The Monte Carlo Method

Monte Carlo Methods PRNGs Sampling

Monte Carlo Method

A generic scheme for approximating expectations.

To approximate I = Ef ['(X)],

Draw X1, . . . , Xn
iid⇠ f ,

Use Îmc =
1
n

P
n

i=1 '(Xi).

Convergence follows from SLLN, CLT, . . .
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Monte Carlo Methods PRNGs Sampling

Recall: The Three Views of the Monte Carlo Method

Direct Approximation Design an experiment such that:

'(X) ⇠ f'(X)
constructed such that it has the expectation of
interest.

Integral Approximation We’re interested in

Ef ['(X)]

and know how to approximate such.

Distributional Approximation We’re interested in

Ef ['(X)]

so obtain an approximation of f which we can
compute expectationts with respect to.
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Contrasting Views of Monte Carlo

Usual explanation of the Monte Carlo Method, with

X1, . . .
iid⇠ f approximate the integral:

1

n

nX

i=1

'(Xi)
a.s.! Ef ['(X)]

Another perspective, approximate the distribution:

let f̂ n = 1
n

P
n

i=1 �Xi
if f̂ n ) f
then we automatically have that

E
f̂ n
['(X)]! Ef ['(X)]

for every continuous bounded '.
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PRNGs

Monte Carlo Methods PRNGs Sampling

Pseudorandom Number Generators

Problem: (how) can computers produce random
numbers?

von Neumann’s perspective

Any one who considers artithmetical methods of

reproducing random digits is, of course, in a state of sin.

. . . there is no such thing as a random number — there

are only methods of producing random numbers, and a

strict arithmetic procedure is of course not such a

method.

As in so many other areas, von Neumann was completely correct.
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Pseudorandom Number Generators

Three Resolutions of this Philosophical Paradox

1 Use Exogeneous Randomness (TRNGs)
See www.random.org or
http://en.wikipedia.org/wiki/Hardware˙random˙

number˙generator.

2 Pseudorandom Number Generators (PRNGs; cf. Statistical
Computing module)
Sacrifice randomness whilst mimicking its relevant statistical
properties.

3 Quasirandom Number Sequences (QRNSs)
Sacrifice randomness in exchange for minimising discrepancy.

All have advantages and disadvantages; we’ll focus on PRNGs.
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Monte Carlo Methods PRNGs Sampling

Transformation

Transformation Methods

Assume we have a good PRNG.

How can we obtain (pseudo)samples from other
distributions?

General framework:

Treat output of PRNG as a stream of iid U[0, 1] RVs.
Use laws of probability to transform these to obtain RVs with
other distributions.
Treat transformed PRNG output as RVs of the target
distribution.

But, how?
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Transformation

Inversion Sampling

The Inversion method

Let U ⇠ U[0, 1] and
let F be an invertible CDF.
Then F�1(U) has the CDF F . ●
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●
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Transformation

Inversion Sampling

The Inversion method

Let U ⇠ U[0, 1] and F be an invertible CDF.
Then F�1(U) has the CDF F .

Inversion Sampling: A simple algorithm for drawing X ⇠ F
1 Draw U ⇠ U[0, 1].

2 Set X = F�1(U).
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Transformation

Example: Exponential distribution

The exponential distribution with rate � > 0 has the CDF (x � 0)

F�(x) = 1� exp(��x)
F�1
�
(u) = � log(1� u)/�.

So we have a simple algorithm for drawing X ⇠ Exp (�):
1 Draw U ⇠ U[0, 1].

2 Set X = �
log(1� U)

�
.

Actually, setting X = �
log(U)

�
makes more sense.
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Transformation

The Generalised Inverse of the CDF

Generalised inverse of the CDF

F�(u) := inf{x : F (x) � u}

F�(u) x

1

u

F (x)

Replacing F�1 with F� yields a generally-applicable inversion
sampling algorithm — key is F�(u)  x , u  F (x).
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Transformation

Box-Muller: Fast Normally-Distributed Random
Variables

Consider (X1, X2) their polar representation (R, ✓):

X1 = R · cos(✓), X2 = R · sin(✓)

The following equivalence holds (with ✓, R independent):

X1, X2
iid⇠ N(0, 1) () ✓ ⇠ U[0, 2⇡] and R2 ⇠ Expo(1/2)

Given U1, U2
iid⇠ U[0, 1] set

R =
p
�2 log(U1), ✓ = 2⇡U2,

By substitution

X1 =
p
�2 log(U1) · cos(2⇡U2)

X2 =
p
�2 log(U1) · sin(2⇡U2)
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Transformation

The Geometry of Box-Muller Transformation
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Transformation

Box-Muller: Algorithm

Box-Muller method
1 Draw

U1, U2
iid⇠ U[0, 1].

2 Set

X1 =
p
�2 log(U1) · cos(2⇡U2),

X2 =
p
�2 log(U1) · sin(2⇡U2).

3 Output X1, X2
iid⇠ N(0, 1).
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Transformation

The Limitations of Simple Transformations. . .

When F� is available and cheap to evaluate, inversion
sampling is very e�cient. But:

We often don’t have access to F ;
if we do F� may be di�cult/impossible to obtain.
The multivariate case can be even harder.

Clever custom transformations:

are costly to develop
require considerable ingenuity
are completely infeasible in complicated scenarios

We need alternatives.

65

Monte Carlo Methods PRNGs Sampling

Rejection

The Fundamental Theorem of simulation

Fundamental Theorem of Simulation

Sampling from a density f is equivalent to sampling uniformly
from the area between f and the ordinal axes and discarding the
“vertical” component.

Follows from the identity

f (x) =

Z
f (x)

0
1 du =

Z 1

0
10<u<f (x)| {z }
=f (x,u)

du.

i.e. f (x) can be interpreted as the marginal density of a
uniform distribution on the area under the density f (x):

{(x, u) : 0  u  f (x)}.
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Rejection

First element of rejection sampling

We can sample from f by sampling from the area under the
density.

u

x

If (X,U) ⇠ U ({(x, u) : 0  u  f (x)}) then X ⇠ f .
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Rejection

Second Element of Rejection Sampling

Generally G = {(x, u) : 0  u  f (x)} is complicated: we
can’t sample uniformly from it — at least not directly.

Idea: Instead:

Sample from some A � G.
Keep only those points which lie within G.
Reject the rest.
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Rejection

Example: Sampling from a Beta(3, 5) distribution (1)
1 Draw (X,U) from the dark rectangle, i.e.:

X ⇠ U(0, 1) U ⇠ U(0, 2.4) X ? U.

2 Accept X as a sample from f if (X,U) lies under the density.

10

2.4

u

x

Step 2 is equivalent to: Accept X if U < f (X),
i.e. accept X with probability P(U < f (X)|X = x) = f (X)/2.4.
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Rejection

Example: Sampling from a Beta(3, 5) distribution (2)

Algorithm:
1 Draw X ⇠ U(0, 1).
2 Accept X as a sample from Beta(3, 5) w.p. f (X)/2.4.

Not every density can be bounded by a box.

Natural generalisation: replace M times U[0, 1] with M times
another density g.

1 2 3 4 5 6�1�2�3�4�5�6

M · g(x)
f (x)
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Rejection

A General Algorithm

Algorithm: Rejection sampling

Given two densities f , g with f (x) < M · g(x) for all x , we can
generate a sample from f by

1. Draw X ⇠ g.
2. Accept X as a sample from f with probability

f (X)

M · g(X) ,

otherwise go back to step 1.

For f (x) < M · g(x) to hold f cannot have heavier tails than g.
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Rejection

A Useful Trick

Avoiding Unknown Constants

If we know only f̃ (x) and g̃(x), where f (x) = C · f̃ (x), and
g(x) = D · g̃(x)we can carry out rejection sampling using
acceptance probability

f̃ (X)

M · g̃(X)

provided f̃ (x) < M · g̃(x) for all x .

Can be useful in Bayesian statistics:

f post(✓) =
f prior(✓)l(y1, . . . , yn|✓)R

⇥ f
prior(#)l(y1, . . . , yn|#) d#

= C·f prior(✓)l(y1, . . . , yn|✓)
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Rejection

Example: Sampling from N(0, 1)

Recall the following densities:

N(0, 1) f (x) =
1p
2⇡
exp

✓
�
x2

2

◆
Cauchy g(x) =

1

⇡(1 + x2)

For M =
p
2⇡ · exp(�1/2) we have that f (x)  Mg(x).

 We can use rejection sampling targetting f using g as
proposal.

1 2 3 4 5 6�1�2�3�4�5�6

M · g(x)
f (x)
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Rejection

Non-example: Sampling from a Cauchy Distribution

We cannot sample from a Cauchy distribution (g) using a
Normal (f ) as instrumental distribution.

The Cauchy distribution has heavier tails than the Normal
distribution: there is no M 2 R such that

1

⇡(1 + x2)
< M ·

1p
2⇡�2

exp

✓
�
x2

2

◆
.
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Importance Sampling

An Alternative to Rejection

Rejection sampling discards many samples.

This seems wasteful.

Couldn’t we, instead, weight samples based on the
acceptance probability?
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Importance Sampling

The fundamental identities behind importance sampling

Assume that g(x) > 0 for (almost) all x with f (x) > 0:

P(X 2 X ) =
R
X f (x) dx =

R
X g(x)

f (x)

g(x)| {z }
=:w(x)

dx =
R
X g(x)w(x) dx

Assume that g(x) > 0 for (almost) all x with
f (x) · '(x) 6= 0

Ef ('(X)) =
Z
f (x)'(x) dx =

Z
g(x)

f (x)

g(x)| {z }
=:w(x)

'(x) dx

=

Z
g(x)w(x)'(x) dx = Eg(w(X) · '(X)),
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Importance Sampling

The fundamental identities behind importance sampling

Consider X1, . . . , Xn ⇠ g and Eg|w(X) · '(X)| < +1. Then

1

n

nX

i=1

w(Xi)'(Xi)
a.s.
n!1�! Eg(w(X) · '(X))

)
1

n

nX

i=1

w(Xi)'(Xi)
a.s.
n!1�! Ef ('(X)).

Thus we can estimate µ := Ef ('(X)) by
1 Sample X1, . . . , Xn ⇠ g
2 µ̃ := 1

n

P
n

i=1 w(Xi)'(Xi)
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Importance Sampling

The importance sampling algorithm

Algorithm: Importance Sampling

Choose g such that supp(g) � supp(f · ').
1 For i = 1, . . . , n:

1 Generate Xi ⇠ g.
2 Set w(Xi) =

f (Xi )
g(Xi )
.

2 Return

µ̃ =

P
n

i=1 w(Wi)'(Xi)

n

as an estimate of Ef ('(X)).

Importance sampling does not yield realisations from f ,
 but a weighted sample (Xi ,Wi),

 which can be used for estimating expectations Ef ('(X)),
 or approximating f itself.
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Importance Sampling

Basic properties of the importance sampling estimate

We have already seen that µ̃ is consistent if
supp(g) � supp(f · ') and Eg|w(X) · '(X)| < +1, as

µ̃ :=
1

n

nX

i=1

w(Xi)'(Xi)
a.s.
n!1�! Ef ('(X))

The expected value of the weights is Eg(w(X)) = 1.
µ̃ is unbiased (see theorem below)

Theorem 2.2: Bias and Variance of Importance Sampling

Eg(µ̃) = µ

Varg(µ̃) =
Varg(w(X) · '(X))

n
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Importance Sampling

Optimal proposals

Theorem (Optimal proposal)

The proposal distribution g that minimises the variance of µ̃ is

g⇤(x) =
|'(x)|f (x)R
|'(t)|f (t) dt

.

Theorem of little practical use: the optimal proposal involvesR
|'(t)|f (t) dt, which is the integral we want to estimate!
Practical relevance:
Choose g such that it is close to |'(x)| · f (x)
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Importance Sampling

Super-e�ciency of importance sampling

For the optimal g⇤ we have that

Varf

✓
'(X1) + . . .+ '(Xn)

n

◆
> Varg?(µ̃),

if ' is not almost surely constant.

Supere�ciency of importance sampling

The variance of the importance sampling estimate can be less
than the variance obtained when sampling directly from the target
f .

Intuition: Importance sampling allows us to choose a g that
focuses on areas which contribute most to

R
'(x)f (x) dx .

Even sub-optimal proposals can be super-e�cient.

81

Monte Carlo Methods PRNGs Sampling

Importance Sampling

Importance Sampling Example 1: Setup

Compute Ef |X| for X ⇠ t3 by . . .

(a) sampling directly from t3.

(b) using a t1 distribution as instrumental distribution.

(c) using a N(0, 1) distribution as instrumental distribution.
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Importance Sampling

IS Example: Densities
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gN(0,1)(x) (IS N(0, 1))
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Importance Sampling

IS Example: Estimates obtained
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Importance Sampling

IS Example: Weights
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Importance Sampling

Another Example: Rare Events (1)
Consider

f (x, y) = N

✓✓
x
y

◆
;µ,⌃

◆

where

µ =

✓
0
0

◆

and

⌃ =


1 0.7
0.7 1

�

For

'(x, y) = I[4,1)(x)I[4,1)(y) 86
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Importance Sampling

Another Example: Rare Events (2)
Using simple Monte Carlo with 1,000,000 samples from f :
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Importance Sampling

Another Example: Rare Events (3)
Using simple Monte Carlo with 10,000,000 samples from f :
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Importance Sampling

Another Example: Rare Events (4)
Using importance sampling with 1,000,000 samples from
g(x, y) = exp(�(x � 4)� (y � 4))Ix�4Iy�4:
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Importance Sampling

Another Example: Rare Events (5)
Using importance sampling with 1,000 samples from
g(x, y) = exp(�(x � 4)� (y � 4))Ix�4Iy�4:
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Importance Sampling

Another Example: Rare Events (6)
Using importance sampling with 1,000,000 samples from

g(x, y) = 4N

✓✓
x
y

◆
;

✓
4
4

◆
,⌃

◆
Ix�4Iy�4 :
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Importance Sampling

Another Example: Rare Events (7)
Using importance sampling with 1,000 samples from

g(x, y) = 4N

✓✓
x
y

◆
;

✓
4
4

◆
,⌃

◆
Ix�4Iy�4 :
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Importance Sampling

We only need f up to a multiplicative constant.
Assume f (x) = Cf̃ (x). Then

µ̃ =
1

n

nX

i=1

w(Xi)'(Xi) =
1

n

nX

i=1

Cf̃ (Xi)

g(Xi)
'(Xi)

 C does not cancel out  knowing f̃ (·) is not enough.
Idea: Estimate C using the sample, via

P
n

i=1 w(Xi), i.e.
consider the self-normalised estimator

µ̂ =
1

n

nX

i=1

w(Xi)'(Xi)
�1
n

nX

i=1

w(Xi)1

Now we have that

µ̂ =

P
n

i=1 w(Xi)'(Xi)P
n

i=1 w(Xi)
=

P
n

i=1
⇡(Xi )
g(Xi )

'(Xi)
P
n

i=1
⇡(Xi )
g(Xi )

w(Xi)
,

 µ̂ does not depend on C
 enough to know f up to a multiplicative constant
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Importance Sampling

The importance sampling algorithm (2)

Algorithm: Importance Sampling using self-normalised
weights

Choose g such that supp(g) � supp(f ).
1 For i = 1, . . . , n:

1 Generate Xi ⇠ g.
2 Set w(Xi) =

f (Xi )
g(Xi )
.

2 Return

µ̂ =

P
n

i=1 w(Xi)'(Xi)P
n

i=1 w(Xi)

as an estimate of Ef ('(X)).
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Importance Sampling

Basic properties of the self-normalised estimate

µ̂ is consistent as

µ̂ =

P
n

i=1 w(Xi)'(Xi)

n| {z }
=µ̃�!Ef ('(X))

nP
n

i=1 w(Xi)| {z }
�!1

a.s.
n!1�! Ef ('(X)),

(provided supp(g) � supp(f ) and Eg|w(X) · '(X)| < +1)

Theorem: Bias and Variance (ctd.)

Eg(µ̂) = µ+
µVarg(w(X))� Covg [w(X), w(X) · '(X)]

n
+O(n�2)

Varg(µ̂) =
Varg(w(X) · '(X))� 2µCovg [w(X), w(X) · '(X)]

n

+
µ2Varg(w(X))

n
+O(n�2)
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Importance Sampling

Finite variance estimators

Importance sampling estimate consistent for large choice of
g.

More important in practice: finite variance estimators, i.e.

Var(µ̃) = Var

✓Pn
i=1 w(Xi)'(Xi)

n

◆
< +1

Su�cient (albeit restrictive) conditions for finite variance of
µ̃:

f (x) < M · g(x) and Varf ('(X)) <1, or
E is compact, f is bounded above on E, and g is bounded
below on E.

Note: If f has heavier tails then g, then the weights may
have infinite variance!
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Importance Sampling

Summary of Part 2

Pseudorandom Number Generators (and alternatives)

Transformation: Inversion Methods, Box-Muller

Rejection Sampling

Importance Sampling

97

Part 3

Markov chain Monte Carlo

Part 3— Section 7

Motivation and Basics

Motivation Gibbs Samplers Metropolis-Hastings Simulated Annealing

Motivating MCMC

Why do we need other, more complicated methods?

Transformation’s great when it works.

Rejection sampling’s good when M is small.

Importance sampling works well with good proposals.

What do we do when we can’t meet any of these
requirements?
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Motivating MCMC

One Approach

Markov Chain Monte Carlo methods (MCMC)

Key idea: Create a dependent sample, i.e. X(t) depends on
the previous value X(t�1).
 allows for “local” updates.
Yields an “approximate sample” from the target
distribution?.

More mathematically speaking: yields a Markov chain with
the target distribution f as stationary distribution.

Under conditions, the realised chain provides approximations
of Ef ['(X)] and of f itself.

? I don’t think this is the right way to think, but it’s pervasive
terminology and so I mention it here.
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Motivating MCMC

Markov Chains

Markov Chain (NB Terminology varies)

A discrete time Markov process taking values in a general space:

X(0) ⇠µ0 Initial Dist.

X(t)|X(0) = x (0), . . . , X(t�1) = x (t�1) ⇠K(x (t�1), ·) Kernel

Stationary Distribution

f is a stationary or invariant distribution for a Markov Chain on E
with kernel K if

Z

A

Z

E

f (x)K(x, y)dxdy =

Z

A

f (y)dy

for all measurable sets A [or
R
f (x)K(x, y)dx = f (y)].
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Motivating MCMC

Heuristically Motivating MCMC

If X(0), . . . is an f -invariant Markov chain and X(t) ⇠ f for
some t then X(t+s) ⇠ f 8s 2 N.
So if X(t) is “approximately independent” of X(t+s) for large
enough s then

X(t), X(t+s), . . . , X(t+ks), . . . is approximately
iid⇠ f ,

X(t+1), X(t+s+1), . . . , X(t+ks+1), . . . is approximately
iid⇠ f ,

...
X(t+s�1), X(t+2s�1), . . . , X(t+ks�1), . . . is approximately

iid⇠ f .
We might conjecture that for such a chain, for some large s:

1

n

nX

k=1

'(X(t+ks))! Ef ['(X)] and
1

n

nX

k=1

'(X(k))! Ef ['(X)]
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Motivating MCMC

Some Questions to Answer

Can we formalise this heuristic argument?
 ergodic theory

How can we construct f -invariant Markov kernels?
 various types of sampler

What properties of these kernels are important?
 more ergodic theory

How do we initialise the chain?
 transient phases and burning

How do we know if it’s working?
 ergodic theory and convergence diagnostics
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Important Properties

Aperiodicity

Definition: Period

A Markov chain has a period d if there exists some partition of
the state space, E1, . . . , Ed with the properties that:

8i 6= j : Ei \ Ej = ;
dS
i=1
Ei = E

The chain moves deterministically between elements of the
partition:

8i , j, t, s : P
�
Xt+s 2 Ej |Xt 2 Ei

�
=

⇢
1 j = i + s mod d
0 otherwise.

A Markov chain is aperiodic if its period is 1.
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Important Properties

Irreducibility

Definition: Irreducibility

Given a distribution, f , over E, a Markov chain is said to be
f -irreducible if for all points x 2 E and all measurable sets A such
that f (A) > 0 there exists some t such that:

Z

A

Kt(x, y)dy > 0.

If this condition holds with t = 1, then the chain is said to be
strongly f -irreducible.

Kt(x, y) :=

Z
K(x, z)Kt�1(z, y)dz K1(x, y) = K(x, y)
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Important Properties

Transience and Recurrence I

Consider sets A ⇢ E for f -irreducible Markov chains.
Let ⌘A :=

P1
k=1 IA(X(k)).

Transience and Recurrence of Sets

A set A is recurrent if:

8x 2 A : Ex [⌘A] =1.

A set is uniformly transient if there exists some M <1 such that:

8x 2 A : Ex [⌘A]  M.

A set, A ⇢ E, is transient if it may be expressed as a countable
union of uniformly transient sets.
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Important Properties

Transience and Recurrence II

Transience Recurrence of Markov Chains

A Markov chain is recurrent if the following hold:

The chain is f -irreducible for some distribution f .

For every measurable set A ⇢ E such that
R
A
f (y)dy > 0,

Ex [⌘A] =1 for every x 2 A.
It is transient if it is f -irreducible for some distribution f and the
entire space is transient.

In the case of irreducible chains, transience and recurrence are
properties of the chain rather than individual states.
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Important Properties

A Motivating Convergence Result

Theorem (A Simple Ergodic Theorem)

If (Xi)i2N is an f -irreducible, f -invariant, recurrent Rd -valued
Markov chain then the following strong law of large numbers

holds for any integrable function ' : Rd ! R:

lim
t!1

1

t

tX

i=1

'(⇠i)
a.s.
=

Z
'(x)f (x)dx.

for almost every starting value x .

Note: this gives no rate of convergence.
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The Gibbs Sampler

Motivation Gibbs Samplers Metropolis-Hastings Simulated Annealing

A Motivating Example

Example: Poisson change point model I

rate � for y1 . . . rate � for yM rate � for yM+1 . . . . . . rate � for yn

�

0
1

2
3

4
5

6
7

Yi ⇠ Poi(�1) for i = 1, . . . ,M

Yi ⇠ Poi(�2) for i = M + 1, . . . , n

Objective: (Bayesian) inference about the parameters �1, �2, and
M given observed data Y1, . . . , Yn.
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A Motivating Example

Example: Poisson change point model II

Prior distributions: �j ⇠ Gamma(↵j ,�j) (j = 1, 2), i.e.

f (�j) =
1

�(↵j)
�
↵j�1
j

�
↵j

j
exp(��j�j).

(discrete uniform prior on M, i.e. p(M) / 1).
Likelihood: l(y1, . . . , yn|�1,�2,M)

=

 
MY

i=1

exp(��1)�yi1
yi !

!

·

 
nY

i=M+1

exp(��2)�yi2
yi !

!
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A Motivating Example

Example: Poisson change point model III

Joint distribution f (y1, . . . , yn,�1,�2,M)

= l(y1, . . . , yn|�1,�2,M) · f (�1) · f (�2) · p(M)

/

 
MY

i=1

exp(��1)�yi1
yi !

!

·

 
nY

i=M+1

exp(��2)�yi2
yi !

!

·
1

�(↵1)
�↵1�11 �↵11 exp(��1�1) ·

1

�(↵2)
�↵2�12 �↵22 exp(��2�2)

Joint posterior distribution f (�1,�2,M|y1, . . . , yn)

/ �
↵1�1+

P
M

i=1 yi

1 exp(�(�1 +M)�1)

·�↵2�1+
P
n

i=M+1 yi

2 exp(�(�2 + n �M)�2)
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A Motivating Example

Example: Poisson change point model IV
Conditional on M (i.e. if M was known) we have

f (�1|y1, . . . , yn,M) / �
↵1�1+

P
M

i=1 yi

1 exp(�(�1 +M)�1),

i.e.

�1|Y1, . . . Yn,M ⇠ Gamma

 

↵1 +
MX

i=1

yi ,�1 +M

!

�2|Y1, . . . Yn,M ⇠ Gamma

 

↵2 +
nX

i=M+1

yi ,�2 + n �M

!

.

p(M| . . .) / �
P
M

i=1 yi

1 · �
P
n

i=M+1 yi

2 · exp((�2 � �1) ·M)
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A Motivating Example

Example: Poisson change point model V
This suggests an iterative algorithm:

1 Draw �1 from �1|Y1, . . . , Yn,M, i.e. draw

�1 ⇠ Gamma

 

↵1 +
MX

i=1

yi ,�1 +M

!

2 Draw �2 from �2|Y1, . . . , Yn,M, i.e. draw

�2 ⇠ Gamma

 

↵2 +
nX

i=M+1

yi ,�2 + n �M

!

3 Draw M from M|Y1, . . . , Yn,�1,�2, i.e. draw

p(M) / �
P
M

i=1 yi

1 · �
P
n

i=M+1 yi

2 · exp((�2 � �1) ·M)
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The Algorithm

The systematic scan Gibbs sampler

Algorithm: (Systematic scan) Gibbs sampler

Starting with (X(0)1 , . . . , X
(0)
p ) iterate for t = 1, 2, . . .

1. Draw X(t)1 ⇠ fX1|X�1(·|X
(t�1)
2 , . . . , X(t�1)p ).

. . .

j. Draw X(t)
j
⇠ fXj |X�j (·|X

(t)
1 , . . . , X

(t)
j�1, X

(t�1)
j+1 , . . . , X

(t�1)
p ).

. . .

p. Draw X(t)p ⇠ fXp|X�p(·|X
(t)
1 , . . . , X

(t)
p�1).
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The Algorithm

Illustration of the systematic scan Gibbs sampler

X
(t)
1

X
(t
)

2

(X(0)
1 , X

(0)
2 )

(X(1)
1 , X

(0)
2 )

(X(1)
1 , X

(1)
2 )

(X(2)
1 , X

(1)
2 )

(X(2)
1 , X

(2)
2 )(X(3)

1 , X
(2)
2 )

(X(3)
1 , X

(3)
2 ) (X(4)

1 , X
(3)
2 )

(X(4)
1 , X

(4)
2 ) (X(5)

1 , X
(4)
2 )

(X(5)
1 , X

(5)
2 )(X(6)

1 , X
(5)
2 )

(X(6)
1 , X

(6)
2 )
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The Algorithm

The random scan Gibbs sampler

Algorithm: (Random scan) Gibbs sampler

Starting with (X(0)1 , . . . , X
(0)
p ) iterate for t = 1, 2, . . .

1 Draw an index j from a distribution on {1, . . . , p} (e.g.
uniform)

2 Draw
X(t)
j
⇠ fXj |X�j (·|X

(t�1)
1 , . . . , X(t�1)

j�1 , X
(t�1)
j+1 , . . . , X

(t�1)
p ), and

set X(t)◆ := X
(t�1)
◆ for all ◆ 6= j .
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The Algorithm

Invariant distribution

Lemma (Kernel)

The transition kernel of the systematic scan Gibbs sampler is

K(x(t�1), x(t)) = fX1|X�1(x
(t)
1 |x

(t�1)
2 , . . . , x (t�1)p )

·fX2|X�2(x
(t)
2 |x

(t)
1 , x

(t�1)
3 , . . . , x (t�1)p )

· . . .
·fXp|X�p(x

(t)
p |x (t)1 , . . . , x

(t)
p�1)

Proposition (Invariance)

The joint distribution f (x1, . . . , xp) is indeed the invariant
distribution of the Markov chain (X(0),X(1), . . .) generated by the
Gibbs sampler.
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The Algorithm

Proof (outline) I

Assume that X(t�1) ⇠ f , then

P(X(t) 2 X ) =
Z

X

Z
f (x(t�1))K(x(t�1), x(t)) dx(t�1) dx(t)

We can expand the K(x(t�1), x(t)) of the integrand, and compute the
x (t�1)1 -integral:

Z
f (x (t�1)1 , . . . , x (t�1)p ) dx (t�1)1

| {z }
=f (x (t�1)2 ,...,x

(t�1)
p )

fX1|X�1(x
(t)
1 |x

(t�1)
2 , . . . , x (t�1)p )

| {z }
=f (x (t)1 ,x

(t�1)
2 ,...,x

(t�1)
p )

·

fX2|X�2(x
(t)
2 |x

(t)
1 , . . . , x

(t�1)
p ) · · · fXp |X�p(x (t)p |x

(t)
1 , . . . , x

(t)
p�1)
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The Algorithm

Proof (outline) II
And we can then compute the x (t�1)2 integral:

Z Z
f (x (t)1 , x

(t�1)
2 , . . . , x (t�1)p ) dx (t�1)2

| {z }
=f (x (t)1 ,x

(t�1)
3 ,...,x

(t�1)
p )

fX2|X�2(x
(t)
2 |x

(t)
1 , x

(t�1)
3 , . . . , x (t�1)p )

| {z }
=f (x (t)1 ,x

(t)
2 ,x

(t�1)
3 ,...,x

(t�1)
p )

fX3|X�3(x
(t)
3 |x

(t)
1 , . . . , x

(t�1)
p ) · · · fXp |X�p(x (t)p |x

(t)
1 , . . . , x

(t)
p�1)

And so on until the x (t�1)p -integral:

Z
f (x (t)1 , . . . , x

(t)
p�1, x

(t�1)
p ) dx (t�1)p

| {z }
=f (x (t)1 ,...,x

(t)
p�1)

fXp |X�p(x
(t)
p |x

(t)
1 , . . . , x

(t)
p�1)

| {z }
=f (x (t)1 ,...,x

(t)
p )
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The Algorithm

Proof (outline) III

This just leaves the x(t)-integrals:

P(X(t) 2 X ) =
Z

X
f (x (t)1 , . . . , x

(t)
p ) dx

(t)

Thus f is the density of X(t) (if X(t�1) ⇠ f ).
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Examples

Recall our Poisson Changepoint Model

Joint posterior distribution f (�1,�2,M|y1, . . . , yn)

/ �
↵1�1+

P
M

i=1 yi

1 exp(�(�1 +M)�1)

·�↵2�1+
P
n

i=M+1 yi

2 exp(�(�2 + n �M)�2)

Full Posterior Distributions

�1|Y1, . . . Yn,M ⇠ Gamma

 

↵1 +
MX

i=1

yi ,�1 +M

!

�2|Y1, . . . Yn,M ⇠ Gamma

 

↵2 +
nX

i=M+1

yi ,�2 + n �M

!

.

and p(M| . . .) / �
P
M

i=1 yi

1 · �
P
n

i=M+1 yi

2 · exp((�2 � �1) ·M)
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Examples

An R Implementation
cdist.M <� f u n c t i o n (lambda1 ,lambda2) –

dist.M. l og <� cumsum(y[1:n-1]) ⇤ l og (lambda1) +
(sum(y)-cumsum(y[1:n-1]))⇤ l og (lambda2) +
(lambda2 -lambda1) ⇤ (1:(n-1))

dist.M <� exp(dist.M. l og - mean(dist.M. l og ))
dist.M <� dist.M / sum(dist.M)

˝

pmix.gibbs <� f u n c t i o n (M,lambda1 ,lambda2 , t ) –
r <� a r r a y (NA ,c( t +1,3))
r[1,] <� c(M,lambda1 ,lambda2)
f o r (i in 1: t ) –
#lambda1
r[i+1,2] <� rgamma(1,a1+sum(y[1:r[i,1]]) , b1+r[i,1])
#lambda2
r[i+1,3] <� rgamma(1,a2+sum(y[(r[i ,1]+1):n]), b2+n-r[i,1])
#M
r[i+1,1] <� sample.int(n-1,1,prob=cdist.M(r[i+1,2],r[i+1 ,3]))
˝

r

˝
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Examples

Traces and Estimates: M

0 200 400 600 800 1000

1
2

3
4

5

Two Traces of M

iteration t

M
^(

t)

Consider two
di↵erently-initialised
chains.
Chain 1:
(M,�1,�2)(0) =
(3, 1, 2)
Chain 2:
(M,�1,�2)(0) =
(6, 4, 12)
Estimated Posterior
Modes:
Chain 1: 3
Chain 2: 3
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Traces and Estimates: �1

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Two Traces of lambda_1

iteration t

la
m

bd
a_

1^
(t)

Estimated Posterior
Means:
Chain 1: 0.76
Chain 2: 0.78
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Traces and Estimates: �2

0 200 400 600 800 1000

2
3

4
5

6
7

8
9

Two Traces of lambda_2

iteration t

la
m

bd
a_

2^
(t)

Estimated Posterior
Means:
Chain 1: 4.51
Chain 2: 4.47
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Examples

Histograms: Approximations of the Posterior
Histogram of M from chain 1

M
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Poisson Change-Point Model: More Challenging Data I
Consider the more realistic data:
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Another Data Set
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Poisson Change-Point Model: More Challenging Data II

From a chain of length 100,000 we obtain the following
histograms:

Estimated Posterior Distribution of M

M

D
en
si
ty

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10
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Poisson Change-Point Model: More Challenging Data III

Data was generated with: y ¡- c(rpois(40,7),rpois(70,5))
Estimated Posterior Distribution of lambda_1

lambda1

D
en
si
ty
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0.
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Estimated Posterior Distribution of lambda_2
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Poisson Change-Point Model: More Challenging Data IV

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
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Trace of M

iteration t

M
^(

t)
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Poisson Change-Point Model: More Challenging Data V
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Poisson Change-Point Model: More Challenging Data VI
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The Ising Model
The Ising model on (V, E) each vi 2 V has an associated xi 2 {�1,+1}:

⇡(x1, . . . , xm)

=
1

Z
exp

0

@J
X

(i ,j)2E

xi · xj

1

A

=
1

Z
exp(�J|E|) exp

0

@2J
X

(i ,j)2E

I(xi = xj)

1

A

=
1

Z0
exp

0

@2J
X

(i ,j)2E

I(xi = xj)

1

A

⇡(xj |x�j) = exp

0

@J
X

i :(i ,j)2E

xixj

1

A�
2

4exp

0

@�J
X

i :(i ,j)2E

xi

1

A+ exp

0

@J
X

i :(i ,j)2E

xi

1

A

3

5
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Examples

The Core Logic in R
tr <� l i s t ()
tr [[1]] <� x <� a r r a y (0,c(m,n))

f o r ( t in 1:100) –
f o r (i in 1:m) –

f o r (j in 1:n) –
ns <� neighbours(m,n,i,j)
p1 <� 0
f o r (k in 1: l e ng th (ns)) –

p1 <� p1 + x[(ns[[k]])[1] ,(ns[[k]])[2]]
˝

p0 <� l e ng th (ns) - p1
pp <� c(exp(J⇤p0),exp(J⇤p1))
pp <� pp / sum(pp)
x[i,j] <� sample(c(0,1),1,prob=pp)

˝

˝

tr[[ t +1]] <� x
˝

136



Motivation Gibbs Samplers Metropolis-Hastings Simulated Annealing

Examples

The Gibbs Sampler for Ising Models I

Samples 1, 10 and 100 with J = 0.05:

0.0 0.2 0.4 0.6 0.8 1.0
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Initial Configuration, J=1/20

0.0 0.2 0.4 0.6 0.8 1.0

0.
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Iteration 10, J=1/20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration 100, J=1/20
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The Gibbs Sampler for Ising Models II

Samples 1, 10 and 100 with J = 0.50:
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iteration 10, J=1/2
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Iteration 100, J=1/2
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The Gibbs Sampler for Ising Models III

Samples 1, 10 and 100 with J = 1.00:
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Initial Configuration, J=2
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Iteration 100, J=2

Solutions include the Swendsen-Wang algorithm (cf. assessment)
or perfect simulation. . .
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The Ising Model and Image Reconstruction
The Ising Model is widely used in statistics as a prior distribution.

Consider image denoising: x an m⇥ n image on V ⇢ Z2 with
obvious neighbourhood structure E :
Observe y where yv = xv wp 1-✏.

Prior: X ⇠ Ising(J,V, E).
Likelihood: l(y ; x) =

Q
v2V [(1� ✏)I{yv = xv}+ ✏I{yv 6= xv}]

Posterior:

p(x |y) / exp

0

@2J
X

(i ,j)2E
I(xi = xj)

1

A ·

Y

v2V
[(1� ✏)I{yv = xv}+ ✏I{yv 6= xv}]
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Ludolphus’ Zebra

https://upload.wikimedia.org/wikipedia/commons/a/af/ZebraLudolphus.jpg

Noisy Image / Samples Ground Truth
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A Pathological Example: The Reducible Gibbs sampler

Consider Gibbs sampling from the
uniform distribution

f (x1, x2) =
1

2⇡
IC1[C2(x1, x2),

C1 := {(x1, x2) : k(x1, x2)� (1, 1)k  1}
C2 := {(x1, x2) : k(x1, x2) + (1, 1)k  1}

-2

-2

-1

-1

0

0

1

1

2

2

X
(t)
1

X
(t
)

2

The resulting Markov chain is reducible:
It stays forever in either C1 or C2.
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The Metropolis-Hastings algorithm

Algorithm: Metropolis-Hastings

Starting with X(0) := (X(0)1 , . . . , X
(0)
p ) iterate for t = 1, 2, . . .

1 Draw X ⇠ q(·|X(t�1)).
2 Compute

↵(X|X(t�1)) = min

(

1,
f (X) · q(X(t�1)|X)

f (X(t�1)) · q(X|X(t�1))

)

.

3 With probability ↵(X|X(t�1)) set X(t) = X, otherwise set
X(t) = X(t�1).

144



Motivation Gibbs Samplers Metropolis-Hastings Simulated Annealing

The Algorithm

Illustration of the Metropolis-Hastings method

X
(t)
1

X
(t
)

2

x
(0)=x

(1)=x
(2)

x
(3)=x

(4)=x
(5)=x

(6)=x
(7)

x
(8)

x
(9)

x
(10)

x
(11)=x

(12)=x
(13)=x

(14)

x
(15)
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Basic properties of the Metropolis-Hastings algorithm

The probability that a newly proposed value is accepted given
X(t�1) = x(t�1) is

a(x(t�1)) =

Z
↵(x|x(t�1))q(x|x(t�1)) dx.

The probability of remaining in state X(t�1) is

P(X(t) = X(t�1)|X(t�1) = x(t�1)) = 1� a(x(t�1)).

The probability of acceptance does not depend on the
normalisation constant:
If f (x) = C · f̃ (x), then

↵(X|X(t�1)) = min

 

1,
f̃ (X) · q(X(t�1)|X)

f̃ (X(t�1)) · q(X|X(t�1))

!
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Transition Kernel

Lemma (Transition Kernel of Metropolis-Hastings)

The transition kernel of the Metropolis-Hastings algorithm is

K(x(t�1), x(t)) = ↵(x(t)|x(t�1))q(x(t)|x(t�1))
+(1� a(x(t�1)))�x(t�1)(x(t)),

Lemma (Detailed Balance and Metropolis Hastings)

The Metropolis-Hastings kernel satisfies the detailed balance

condition

K(x(t�1), x(t))f (x(t�1)) = K(x(t), x(t�1))f (x(t)).
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f -invariance of Metropolis-Hastings

Proposition (Detailed Balanced implies Invariance)

Any K which satisfies the detailed balance condition with respect
to f ,

K(x(t�1), x(t))f (x(t�1)) = K(x(t), x(t�1))f (x(t)),

is f -invariant.

Proof

Integrate both sides wrt x(t�1).

Hence the Metropolis-Hastings algorithm is f -invariant.
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Random-walk Metropolis: Idea
In the Metropolis-Hastings algorithm the proposal is from
X ⇠ q(·|X(t�1)).
A popular choice for the proposal is
q(x|x(t�1)) = g(x� x(t�1)) with g being a symmetric
distribution, thus

X = X(t�1) + ", " ⇠ g.

Probability of acceptance becomes

min

(

1,
f (X) · g(X� X(t�1))

f (X(t�1)) · g(X(t�1) � X)

)

= min

⇢
1,

f (X)

f (X(t�1))

�
,

We accept . . .
every move to a more probable state with probability 1.
moves to less probable states with a probability
f (X)/f (x(t�1)) < 1.
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Random-walk Metropolis: Algorithm

Random-Walk Metropolis

Starting with X(0) := (X(0)1 , . . . , X
(0)
p ) and using a symmetric

random walk proposal g, iterate for t = 1, 2, . . .

1 Draw " ⇠ g and set X = X(t�1) + ".
2 Compute

↵(X|X(t�1)) = min
⇢
1,

f (X)

f (X(t�1))

�
.

3 With probability ↵(X|X(t�1)) set X(t) = X, otherwise set
X(t) = X(t�1).

Popular choices for g are (multivariate) Gaussians or
t-distributions (the latter having heavier tails)
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Example 3.4: Bayesian probit model (1)
Medical study on infections resulting from birth by Cæsarean
section
3 influence factors:

indicator whether the Cæsarian was planned or not (zi1),
indicator of whether additional risk factors were present at
the time of birth (zi2), and
indicator of whether antibiotics were given as a prophylaxis
(zi3).

Response variable: number of infections Yi that were
observed amongst ni patients having the same covariates.

# births planned risk factors antibiotics
infection total
yi ni zi1 zi2 zi3
11 98 1 1 1
1 18 0 1 1
0 2 0 0 1
23 26 1 1 0
28 58 0 1 0
0 9 1 0 0
8 40 0 0 0
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Example 3.4: Bayesian probit model (2)

Model for Yi :

Yi ⇠ Bin(ni ,⇡i), ⇡ = �(z0i�),

where zi = (1, zi1, zi2, zi3) and �(·) being the CDF of a
N(0, 1).

Prior on the parameter of interest �: � ⇠ N(0, I/�).
The posterior density of � is

f (�|y1, . . . , yn) /

 
NY

i=1

�(z0i�)
yi · (1��(z0i�))ni�yi

!

· exp

0

@�
�

2

3X

j=0

�2j

1

A
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Example 3.4: Bayesian probit model (3)

Use the following “random walk Metropolis” algorithm.
Starting with any �(0) iterate for t = 1, 2, . . .:

1. Draw " ⇠ N(0,⌃) and set � = �(t�1) + ".
2. Compute

↵(�|�(t�1)) = min
⇢
1,

f (�|Y1, . . . , Yn)
f (�(t�1)|Y1, . . . , Yn)

�
.

3. With probability ↵(�|�(t�1)) set �(t) = �, otherwise set
�(t) = �(t�1).

(for the moment we use ⌃ = 0.08 · I, and � = 10).
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Example 3.4: Bayesian probit model (4)

Convergence of the �(t)
j
is to a distribution, not a value!
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Example 3.4: Bayesian probit model (5)

Convergence of cumulative averages
P
t

⌧=1 �
(⌧)
j
/t is to a value.
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Example 3.4: Bayesian probit model (6)

156



Motivation Gibbs Samplers Metropolis-Hastings Simulated Annealing

Random-walk Metropolis with Examples

Example 3.4: Bayesian probit model (7)

Posterior mean 95% credible interval
intercept �0 -1.0952 -1.4646 -0.7333
planned �1 0.6201 0.2029 1.0413
risk factors �2 1.2000 0.7783 1.6296
antibiotics �3 -1.8993 -2.3636 -1.471
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Choosing a good proposal distribution

Ideally: Markov chain with small correlation ⇢(X(t�1),X(t))
between subsequent values.
 fast exploration of the support of the target f .
Two sources for this correlation:

the correlation between the current state X(t�1) and the
newly proposed value X ⇠ q(·|X(t�1))
(can be reduced using a proposal with high variance)
the correlation introduced by retaining a value X(t) = X(t�1)

because the newly generated value X has been rejected
(can be reduced using a proposal with small variance)

Trade-o↵ for finding the ideal compromise between:
fast exploration of the space (good mixing behaviour)
obtaining a large probability of acceptance

For multivariate distributions: covariance of proposal should
reflect the covariance structure of the target.
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Example: Choice of proposal (1)

Target distribution, we want to sample from: N(0, 1) (i.e.
f (·) = �(0,1)(·))
We want to use a random walk Metropolis algorithm with

" ⇠ N(0,�2)

What is the optimal choice of �2?

We consider four choices �2 = 0.12, 1, 2.382, 102.
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Example 5.3: Choice of proposal (2)

-6
-6

-4
-4

-2
-2

0
0

2
2

4
4

6
6

�
2
=

0.
12

�
2
=

1
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Example 5.3: Choice of proposal (3)
-6

-6
-4

-4
-2

-2
0

0
2

2
4

4
6

6
�
2
=

2.
38

2
�
2
=

10
2
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Example 5.3: Choice of proposal (4)

Autocorrelation Probability of acceptance

⇢(X(t�1), X(t)) ↵(X,X(t�1))
Mean 95% CI Mean 95% CI

�2 = 0.12 0.9901 (0.9891,0.9910) 0.9694 (0.9677,0.9710)
�2 = 1 0.7733 (0.7676,0.7791) 0.7038 (0.7014,0.7061)
�2 = 2.382 0.6225 (0.6162,0.6289) 0.4426 (0.4401,0.4452)
�2 = 102 0.8360 (0.8303,0.8418) 0.1255 (0.1237,0.1274)

Suggests: Optimal choice is 2.382 > 1.
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Example 5.4: Bayesian probit model (revisited)

So far we used: Var(") = 0.08 · I).
Better choice: Let Var(") reflect the covariance structure

Frequentist asymptotic theory: Var(�̂m.l.e) = (Z0DZ)�1

D is a suitable diagonal matrix

Better choice: Var(") = 2 · (Z0DZ)�1

Increases rate of acceptance from 13.9% to 20.0% and
reduces autocorrelation:

⌃ = 0.08 · I �0 �1 �2 �3

Autocorrelation ⇢(�(t�1)
j
,�(t)
j
) 0.9496 0.9503 0.9562 0.9532

⌃ = 2 · (Z0DZ)�1 �0 �1 �2 �3

Autocorrelation ⇢(�(t�1)
j
,�(t)
j
) 0.8726 0.8765 0.8741 0.8792

(in this example det(0.08 · I) = det(2 · (Z0DZ)�1))
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Positron Emission Tomography I

Positron Emission Tomography

Inject radioactive tracer into subject’s bloodstream.

Record tracer concentration in blood (at high speed).

Record numbers of emissions from each volume element (voxel).

Reconstruct brain activity from measurements.

Compartmental Modelling of Each Voxel Model each site as:

A system of compartments. . .

into which tracer flows from the blood

between which tracer flows

and from which tracer can flow back into the blood.
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Positron Emission Tomography II
Consider a linear m-compartment model.
Vector f(t): element i element corresponds to concentration in
compartment i at time t.
Similarly, b(t) describe all flow into the system from outside.
These models yields a set of ODEs:

ḟ(t) = Af(t) + b(t),

f(0) = ⇠,

where ⇠ is the vector of initial concentrations and ḟ denotes the
time derivative of f .
The solution is:

f(t) = eAt⇠ +

Z
t

0
eA(t�s)b(s)ds,
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Positron Emission Tomography III

We also have the measure input signal:

Time t (sec)
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35
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A plasma input model with m tissue compartments:

ĊT (t) = ACT (t) + bCP (t) CT (0) = 0,

CT (t) = 1TCT (t)

where:
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Positron Emission Tomography IV

CT (t) are the
compartmental “activities”

CP (t) is the input signal

A is an m ⇥m rate matrix

b = (K1, 0, . . . , 0)T

1 and 0 are m-vectors of
ones and zeroes.

The solution to this set of ODES is:

CT (t) =

Z
t

0
CP (t � s)HTP (s)ds

HTP (t) =
mX

i=1

�ie
�✓i t ,

where the �i and ✓i parameters are functions of the rate
constants.
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Positron Emission Tomography V
The macro parameter of interest is the volume of distribution,

VD :=

Z 1

0
HTP (t)dt =

mX

i=1

�i
✓i
.

Combining this deterministic model with a measurement model:

CT (tj ;�1:m, ✓1:m) =
mX

i=1

�i

Z
tj

0
CP (s)e

�✓i (tj�s)ds

yj = CT (tj ;�1:m, ✓1:m) +

s
CT (tj ;�1:m, ✓1:m)

tj � tj�1
"j ,

With normally-distributed errors, choosing an inverse gamma prior
for �2 and uniform priors for the other parameters:
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Positron Emission Tomography VI

p(�1:m, ✓1:m,�|y) /
nY

j=1

p
� exp

⇢
�
�

2


tj � tj�1

CT (tj ;�1:m, ✓1:m)

�

(yj � CT (tj ;�1:m, ✓1:m))2
 

⇥ �↵�1e��� ⇥
mY

i=1

I[�a
i
,�b
i
](�i)I[✓a

i
,✓b
i
](✓i),
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Positron Emission Tomography VII
Some information is available from biology and physics: the
following prior distributions are used to encode this information:

�1 ⇠ T N
[10�5,.01]

�
·; 3⇥ 10�3, 10�3

�
✓1|�1 ⇠ T N

[2⇥10�4,.01]

✓
·;
�1
15
, .01

◆

�2 ⇠ T N
[10�5,.01]

�
·; 10�3, 10�3

�
✓2|�2, ✓1 ⇠ T N

[✓1,6⇥.01]

✓
·;
�2
4
, .01

◆

�3 ⇠ T N
[10�5,.01]

�
·; 10�3, 10�3

�
✓1|�3, ✓2 ⇠ T N

[✓2,6⇥.01]
(·;�3, .01)

� ⇠ Gamma
�
·, 10�3

�
10�3
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Positron Emission Tomography VIII

Algorithmically, a valid procedure is simply, let
 = (�1, . . . ,�3, ✓1, . . . , ✓3,�):

1 Initialize  with  (0) =  0, set t = 0.  0 can be any value
within the boundaries of the priors.

2 Generate Ut according to p-dimensional uniform distribution
on

Q
p

i=1[�si , si ]. Where si is the step size for  i . Set
⌘t =  (t) +Ut .

3 Calculate rt = f (⌘t)/f ( (t)). Generate ut according to
uniform distribution on [0, 1]. If ut  rt , Set  (t+1) = ⌘t ,
otherwise set  (t+1) =  (t). Increment t. If t < N for some
preset positive integer N, go to step (b), otherwise stop.
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Positron Emission Tomography IX

The following estimates of VD were obtained using MCMC (three
slices through the brain volume are shown):

Bayesian

5

10

15

20

25

30

35

See: Y. Zhou, J. A. D. Aston, and A. M. Johansen. Bayesian model comparison for compartmental models
with applications in positron emission tomography. Journal of Applied Statistics, 40(5):993–1016, May 2013.
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Pathological Example: Reducible Metropolis-Hastings
Consider the target distribution

f (x) = (I[0,1](x) + I[2,3](x))/2.

and the proposal distribution q(·|x(t�1)):

X|X(t�1) = x (t�1) ⇠ U[x (t�1) � �, x (t�1) + �]

x (t�1)

1/(2�) q(·|x (t�1))
��

f (·)

1 2 3

1/2

Reducible if �  1: the chain stays either in [0, 1] or [2, 3].
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The Metropolis-Adjusted Langevin Algorithm

Based on the Langevin di↵usion:

dXt = �
1

2
r log(f (Xt))dt + dBt

which is f -invariant in continuous time.

Given target f the MALA proposal mechanism samples:

X X(t�1) + ✏

✏ ⇠N
✓
�
�2

2
r log f (X(t�1)),�2Ip

◆

at time t.

Accepts X with the usual MH acceptance probability.
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The Metropolised Independence Sampler

Independent proposals: choose q(·|x) = q(·).

Algorithm 5.3 The Independence Sampler

Starting with X(0) := (X(0)1 , . . . , X
(0)
p ) iterate for t = 1, 2, . . .

1. Draw X ⇠ q(·).
2. Compute

↵(X|X(t�1)) = min

(

1,
f (X) · q(X(t�1))
f (X(t�1)) · q(X)

)

.

3. With probability ↵(X|X(t�1)) set X(t) = X, otherwise set
X(t) = X(t�1).
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Acceptance Rate

Proposition (Acceptance Rate of Independence Sampler)

If f (x)/q(x)  M <1 the acceptance rate of the independence
sampler is at least as high as that of the corresponding rejection

sampler.
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Gibbs Samplers Revisited

What about full conditionals as MH proposals?

For X = (X1, . . . , Xp):

Consider q(X|x(t�1)) = �
x
(t�1)
�p
(X�p)fXp|X�p(Xp|X�p).

Remark

A Gibbs sampler step is a special case of the Metropolis-Hastings
algorithm.
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Finding the mode of a distribution

Our objective so far: estimate E(h(X)).
A new objective: estimate (global) mode(s) of a distribution:

{⇠ : f (⇠) � f (x) 8x}

Näıvely: Choose the X(t) with maximal density f (X(t)).
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Example: Näıvely Finding The Mode of a Normal
Density

Consider f (x) = �(x)
Use a Random Walk proposal X ⇠ N(X(t�1),�2) with
�2 = 0.12, 1, 2.382, 102.
Run chains for various T , and pick for each:
Xmax = argmaxX2(X(t))T

t=1
f (X)

N|�2 0.12 1.02 2.382 102

10 0.906 0.091 0.609 0.623
100 0.315 0.020 -0.063 -0.033
100b -0.033 0.007 0.065 0.005
1000 0.001 0.001 -0.002 -0.002
1000b 0.015 0.001 -0.001 -0.001

This approach seems to work here. . .
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More E�ciently Finding the Mode

Idea: Transform distribution such that it is more
concentrated around the mode(s).

Consider
f(�)(x) / (f (x))�

for very large values of �.

For � ! +1 the distribution f(�)(·) will be concentrated on
the (global) modes.
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Example: Normal distribution (1)

Consider the N(µ,�2) distribution with density

f(µ,�2)(x) =
1p
2⇡�2

exp

✓
�
(x � µ)2

2�2

◆
/ exp

✓
�
(x � µ)2

2�2

◆
.

Mode of the N(µ,�2) distribution is µ.

For increasing � the distribution is more and more
concentrated around its mode µ, as

�
f(µ,�2)(x)

�� /
✓
exp

✓
�
(x � µ)2

2�2

◆◆�

= exp

✓
�
(x � µ)2

2�2/�

◆
/ f(µ,�2/�)(x).

Increasing � corresponds to reducing the variance.
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Example: Normal distribution (2)
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Another example

-2-2-2-2 -1-1-1-1 1111 0000 2222

f(x) (f(x))3 (f(x))9 (f(x))27

xxxx

184



Motivation Gibbs Samplers Metropolis-Hastings Simulated Annealing

Finding the mode of a distribution

Sampling from f(�)(·)
We can sample from f(�)(·) using a random walk Metropolis
algorithm.

Probability of acceptance becomes

min

(

1,
f(�)(X)

f(�)(X(t�1))

)

= min

(

1,

✓
f (X)

f (X(t�1))

◆�)

.

For � ! +1 the probability of acceptance converges to . . .
1 if f (X) � f (X(t�1)), and
0 if f (X) < f (X(t�1)).

For large � the chain (X(t))t converges to a local maximum
of f (·).
Whether the chain can escape from local maxima of the
density depends on whether it can reach the (global) mode
within a single step.
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Finding the mode of a distribution

Another Example

Assume we want to find the mode of

p(x) =

8
<

:

0.4 for x = 2
0.3 for x = 4
0.1 for x = 1, 3, 5.

using a random walk Metropolis
algorithm that can only move one to
the left or one to the right. 1 2 3 4 5

0.1

0.3

0.4

x

p(x)

For � ! +1 the probability for accepting a move from 4 to 3
converges to 0, as p(4) > p(3), thus the chain cannot escape
from the local maximum at 4.
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Finding the mode of a distribution

Sampling from f(�)(·) is di�cult

For large � the distribution f(�)(·) is increasingly
concentrated around its modes.

For large � sampling from f(�) gets increasingly di�cult.

Remedy: Start with a small �0 and let �t slowly increase.

The sequence �t determines whether local extrema are
escaped.
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Simulated Annealing: Minimising an arbitrary function

More general objective: find global minima of a function
H : E ! R+.
Idea: Consider a distribution

f (x) / exp(�H(x)) for x 2 E,

yielding

f(�t)(x) = (f (x))
�t / exp(��t ·H(x)) for x 2 E.

 back to the framework of the previous slides.
In this context �t is often referred to as inverse temperature.
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Simulated Annealing: Algorithm

Algorithm: Simulated Annealing

Starting with X(0) := (X(0)1 , . . . , X
(0)
p ) and �

(0) > 0 iterate for
t = 1, 2, . . .

1. Increase �t�1 to �t .

2. Draw X ⇠ q(·|X(t�1)).
3. Compute

↵(X|X(t�1)) = min
n
1, exp

⇣
��t

⇣
H((X)�H(X(t�1))

⌘⌘
·

q(X(t�1)|X)
q(X|X(t�1))

)

.

4. With probability ↵(X|X(t�1)) set X(t) = X,
otherwise set X(t) = X(t�1).
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Annealing schedules

As before X(t) converges for �t !1 to a local minimum of
H(·).
Convergence to a global minimum depends on annealing
schedule:

Logarithmic tempering �t =
log(1+t)
�0
.

Good theoretical properties; practically
irrelevant.

Geometric tempering �t = ↵t · �0 for some ↵ > 1 . Popular
choice, no theoretical convergence results.

In practise: expect simulated annealing to find a “good” local
minimum, but don’t expect it to find the global minimum!
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SA Example (1)
Minimise

H(x) =
�
(x � 1)2 � 1

�2
+ 3 · s(11.56 · x2)

with

s(x) =

⇢
|x | mod 2 for 2k  |x |  2k + 1, k 2 N0
2� |x | mod 2 for 2k + 1  |x |  2(k + 1), k 2 N0

-1 1 3

0

0

2

2

4
6

8
10

x

H
(x
)
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SA Example (2)
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X
(t
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t

H
(X

(t
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A More Challenging Example

Consider:

f (x1, x2) =

exp(sin(50x1)) + sin(60 exp(x2))+

sin(70 sin(x1)) + sin(sin(80x2))�

sin(10(x1 + x2)) +
1

4
(x21 + x

2
2 )

What is its minimum?

-1
.5

-1.5

-1
.0

-1.0

-0
.5

-0.5

0.
0

0.0

0.
5

0.5

1.
0

1.
5

x1

x
2

This question was part of SIAM’s 2002 hundred-dollar,
hundred-digit challenge (SIAM News, Volume 35, Number 1).

It is on the assessment.
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Summary of Part 3

Motivation

MCMC

Gibbs Samplers

Metropolis-Hastings-type Algorithms

Simulated Annealing
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Augmentation

Composition Sampling Data Augmentation Recent Innovations

Augmentation

“Making the space bigger to make the problem easier.”

To target a distribution fX(x):

Construct some fX,Z(x , z) on X ⌦ Z
such that

fX(x) =

Z

Z
fX,Z(x , z)dz

and fX,Z is easy to sample from (when fX is not).

Versatile technique with many applications.
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Composition Sampling

Composition Sampling

Given a mixture distribution,

fX(x) =
nX

i=1

wi fi(x)

Define
fX,Z(x , z) = wz · fz(x)

on X ⌦ {1, . . . , n}.
Sample Z ⇠

P
n

i=1 wi�{i}(·)
Sample X ⇠ fZ(·)
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Composition Sampling

Normal Mixture: Composition Sampling in Detail I

Example of Composition Sampling: Normal Mixture

For f (x) = 0.4N(x ;�2, 1) + 0.2N(x ; 0, 1) + 0.4N(x ; 3, 1)
Sample U ⇠ U[0, 1]; set I = 1 if U < 0.4, I = 2 if
U 2 [0.4, 0.6) I = 3 otherwise.
Sample X ⇠ fI where fI = N(µI , 1) and µ = {�2, 0, 3}.
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Composition Sampling

Normal Mixture: Composition Sampling in Detail II
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Composition Sampling

Normal Mixture: Composition Sampling in Detail III

● ●
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Rejection Sampling Again

A Generic Augmentation Scheme

Given any density f (x), define

f̄ (x, u) := f (x) · f̄U|X(u|x)

with

f̄U|X(u|x) =
1

f (x)
I[0,f (x)](u)

Then
f̄ (x, u) = I[0,f (x)](u).
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Rejection Sampling Again

Rejection Sampling Revisited

Proposition (Rejection Sampling Equivalence)

Given f (x), define

f̄ (x, u) = I[0,f (x)](u).

Given proposal g(x) and M � supx f (x)/g(x), define

ḡ(x, u) =
1

M
I[0,M·g(x)].

Let w(x, u) = c · f̄ (x, u)/ḡ(x, u)
The associated self-normalised importance sampling

estimator of E
f̄
['(X)] ⌘ Ef ['(X)] is the rejection sampling

estimator.
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Rejection Sampling Again

1 2 3 4 5 6�1�2�3�4�5�6

M · g(x)

f (x)

Sample uniformly and weight. . .
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Slice Sampling

Rejection sampling can be viewed as importance sampling
with an extended target distribution. . .

so can we apply other algorithms to that extended
distribution?

Algorithm: The Slice Sampler

Starting with (X(0), U(0)) iterate for t = 1, 2, . . .

1 Draw X(t) ⇠ f̄X|U(·|U(t�1)).
2 Draw U(t) ⇠ f̄U|X(·|X(t)).
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Slice Sampling

An Illustration of the Conditional Distributions

x

(x, u)

f(x)

U
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Slice Sampling

A Slice-Sampler Trajectory

0.2 0.4 0.6 0.8

0.
0

0.0

0.
5

1.
0

1.0

1.
5

2.
0

X(t)

U
(t
)

Example: Sampling from a Beta(3, 5) distribution

208



Composition Sampling Data Augmentation Recent Innovations

Slice Sampling

How Practical Is This?

Sampling U ⇠ U[0, f (X)] is easy.

Sampling X ⇠ U(L(U)) where

L(u) := {x : f (x) � u}

can be easy. . .

but it might not be.

Consider the bivariate density:

f2(x1, x2) = c1 ·sin2(x1 ·x2) ·cos2(x1+x2) ·exp(�
1

2
(|x1|+ |x2|))
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The Trouble with Slice Sampling
Level sets of:

f2(x1, x2) = c1 · sin2(x1 · x2) · cos2(x1 + x2) · exp(�
1

2
(|x1|+ |x2|))
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here we could use rejection.
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Slice Sampling

Algorithm: The Co-ordinate-wise Slice Sampler

Starting with (X(0)1 , . . . , X
(0)
p , U

(0)) iterate for t = 1, 2, . . .

1. Draw X(t)1 ⇠ f̄X1|X�1,U(·|X
(t�1)
�1 , U(t�1)).

2. Draw X(t)2 ⇠ f̄X2|X�2,U(·|X
(t)
1 , X

(t�1)
3 , . . . , X(t�1)p , U(t�1)).
...

p. Draw X(t)p ⇠ f̄Xp|X�p,U(·|X
(t)
�p , U

(t�1)).

p+1. Draw U(t) ⇠ f̄U|X(·|X(t)).
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Slice Sampling

Algorithm: The Metropolised Slice Sampler

Starting with (X(0), U(0)) iterate for t = 1, 2, . . .

1. Draw X ⇠ q̄(·|X(t�1), U(t�1)).
2. With probability

min

 

1,
f̄ (X, U(t�1))q(X(t�1)|X, U(t�1))

f̄ (X(t�1), U(t�1))q(X|X(t�1), U(t�1))

!

accept and set X(t) = X.
Otherwise, set X(t) = X(t�1).

2. Draw U(t) ⇠ f̄U|X(·|X(t)).
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Data Augmentation

Data Augmentation I

Latent variable models are common: statistical models with:

parameters ✓,
observations y , and
latent variables, z .

Typically, the joint distribution, fY ,Z,✓, is known,

but integrating out the latent variables in not feasible.

Without fY ,✓ we can’t implement an MCMC algorithm
targetting f✓|Y .

The basis of data augmentation is to augment ✓ with z and
to run an MCMC algorithm which targets f✓,Z|Y .

This distribution has the correct marginal in ✓.
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Data Augmentation

Data Augmentation and Gibbs Samplers

Gibbs sampling is only feasible when we can sample easily
from the full conditionals.

A technique that can help achieving full conditionals that are
easy to sample from is demarginalisation:
Introduce a set of auxiliary random variables Z1, . . . , Zr such
that f is the marginal density of (X1, . . . , Xp, Z1, . . . , Zr ),
i.e.

f (x1, . . . , xp) =

Z
f (x1, . . . , xp, z1, . . . , zr ) d(z1, . . . , zr ).

In many cases there is a “natural choice” of the completion
(Z1, . . . , Zr ).
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Example

Example: Mixture of Gaussians — Model
Consider the following K population mixture model for data
Y1, . . . , Yn:

f (yi) =
KX

k=1

⇡k�(µk ,1/⌧)(yi)
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mixture
population 1
population 2
population 3

Objective: Bayesian inference for the parameters
(⇡1, . . . ,⇡K , µ1, . . . , µK).
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Example

Example: Mixture of Gaussians — Priors

The number of components K is assumed to be known.

The variance parameter ⌧ is assumed to be known.

(⇡1, . . . ,⇡K) ⇠ Dirichlet(↵1, . . . ,↵K), i.e.

f(↵1,...,↵K)(⇡1, . . . ,⇡K) =
�(
P
K

k=1 ↵k)Q
K

k=1 �(↵k)

KY

k=1

⇡↵k�1
k

(µ1, . . . , µK) ⇠ N(µ0, 1/⌧0), i.e.

f(µ0,⌧0)(µk) / exp
�
�⌧0(µk � µ0)2/2

�
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Example: Mixture of Gaussians — Joint distribution

f (µ1, . . . , µK ,⇡1, . . . ,⇡K , y1, . . . , yn) /

 
KY

k=1

⇡↵k�1
k

!

·

 
KY

k=1

exp
�
�⌧0(µk � µ0)2/2

�
!

·

 
nY

i=1

KX

k=1

⇡k exp
�
�⌧(yi � µk)2/2

�
!

The full conditionals do not seem to come from “nice”
distributions.

Use data augmentation: include auxiliary variables Z1, . . . Zn
which indicate which population the i-th individual is from, i.e.

P(Zi = k) = ⇡k and Yi |Zi = k ⇠ N(µk , 1/⌧).
The marginal distribution of Y is as before, so Z1, . . . Zn are
indeed a completion. 218
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Example: Mixture of Gaussians — Joint distribution

The joint distribution of the augmented system is

f (y1, . . . , yn, z1, . . . , zn, µ1, . . . , µK ,⇡1, . . . ,⇡K)

/

 
KY

k=1

⇡↵k�1
k

!

·

 
KY

k=1

exp
�
�⌧0(µk � µ0)2/2

�
!

·

 
nY

i=1

⇡zi exp
�
�⌧(yi � µzi )

2/2
�
!

The full conditionals now come from “nice” distributions.
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Example: Mixture of Gaussians — Full conditionals

P(Zi = k |Y1, . . . , Yn, µ1, . . . , µK ,⇡1, . . . ,⇡K)

=
⇡k�(µk ,1/⌧)(yi)P
K

◆=1 ⇡◆�(µ◆,1/⌧)(yi)

µk |Y1, . . . , Yn, Z1, . . . , Zn,⇡1, . . . ,⇡K

⇠ N

 
⌧
�P

i : Zi=k
Yi
�
+ ⌧oµ0

|{i : Zi = k}|⌧ + ⌧0
,

1

|{i : Zi = k}|⌧ + ⌧0

!

⇡1, . . . ,⇡K |Y1, . . . , Yn, Z1, . . . , Zn, µ1, . . . , µK
⇠ Dirichlet (↵1 + |{i : Zi = 1}|, . . . ,↵K + |{i : Zi = K}|) .
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Example

Example: Mixture of Gaussians — Gibbs sampler
Starting with initial values µ(0)1 , . . . , µ

(0)
K
,⇡(0)1 , . . . ,⇡

(0)
K
iterate the following

steps for t = 1, 2, . . .

1. For i = 1, . . . , n:

Draw Z(t)
i
from the discrete distribution on {1, . . . , K} specified

by

p(Z(t)
i
) =

0

@
⇡k�(µ(t�1)

k
,1/⌧)
(yi)

P
K

◆=1 ⇡
(t�1)
◆ �

(µ(t�1)◆ ,1/⌧)
(yi)

1

A .

2. For k = 1, . . . , K:

Draw

µ(t)
k
⇠ N

0

@
⌧
⇣P

i : Z(t)
i
=k
Yi
⌘
+ ⌧oµ0

|{i : Z(t)
i
= k}|⌧ + ⌧0

,
1

|{i : Z(t)
i
= k}|⌧ + ⌧0

1

A .

3. Draw

(⇡(t)1 , . . . ,⇡
(t)
K
) ⇠ Dirichlet

⇣
↵1 + |{i : Z(t)i = 1}|, . . . ,↵K + |{i : Z

(t)
i
= K}|

⌘
.
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Composition Sampling Data Augmentation Recent Innovations

Approximate Bayesian Computation

Bayesian Computation (Towards ABC)

Consider a target distribution fX|Y (x |y) written as:

fX|Y (x |y) =
fY |X(y |x)fX(x)

fY (y)
.

If both fX(x) and fY |X(y |x) can be evaluated we’re done.
If we cannot evaluate fY |X even pointwise, then we can’t
directly use the techniques which we’ve described previously.

Consider the case in which Y is discrete.

We can invoke a clever data augmentation trick which
requires only that we can sample from fY |X .
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Approximate Bayesian Computation

We can define an extended distribution:

fX,Z|Y (x , z |y) / fY |X(z |x)fX(x)�y ,z

and note that it has, as a marginal distribution, our target:
X

z

fX,Z|Y (x , z |y) /
X

z

fY |X(z |x)fX(x)�y ,z = fY |X(y |x)fX(x).

We can sample (X,Z) ⇠ fY |X(z |x)fX(x) and use this as a
rejection sampling proposal for our target distribution,
keeping samples with probability proportional to

fX,Z|Y (x , z |y)/fY |X(z |x)fX(x) / �y ,z
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Approximate Bayesian Computation

Approximate Bayesian Computation
When data is not discrete / takes many values, exact
matches have no or negligible probability.
Instead, we keep samples for which ||z � y ||  ✏.
This leads to a di↵erent target distribution:

f ABC
X,Z|Y (x , y |z) / fY |X(z |x)fX(x)IB(y ,✏)(z)

where B(y , ✏) := {x : |x � y |  ✏}, so

f ABC
x |Y /

Z
fY |X(z |x)fX(x)IB(y ,✏)(z)dz

/
Z
fY |X(z |x)IB(y ,✏)(z)dzfX(x)

/
Z

z2B(y ,✏)
fY |X(z |x)dzfX(x)

this approximation amounts to a smoothing of the likelihood
function. 225
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Approximate Bayesian Computation

Even More Approximate Bayesian Computation

Often a further approximation is introduced by considering
not the data itself but some low dimensional summary of the
data: This leads to a di↵erent target distribution:

f ABC
X,Z|Y (x , z |y) / fY |X(z |x)fX(x)IB(s(y),✏)(s(z))

Unless the summary is a su�cient statistic (which it probably
isn’t) this introduces a di�cult to understand approximation.

Be very careful.

Pseudomarginal methods can also be considered as augmentation
techniques, but we don’t have enough time to do that here.
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Theoretical Considerations Convergence Diagnostics Practical Considerations Current Directions

Results for Gibbs Samplers

Some reassurance about Gibbs Samplers

Definition (Positivity condition)

A distribution with density f (x1, . . . , xp) and marginal densities
fXi (xi) is said to satisfy the positivity condition if
f (x1, . . . , xp) > 0 for all x1, . . . , xp with fXi (xi) > 0.

Theorem (Hammersley-Cli↵ord)

Let (X1, . . . , Xp) satisfy the positivity condition and have joint
density f (x1, . . . , xp). Then for all (⇠1, . . . , ⇠p) 2 supp(f )

f (x1, . . . , xp) /
pY

j=1

fXj |X�j (xj |x1, . . . , xj�1, ⇠j+1, . . . , ⇠p)
fXj |X�j (⇠j |x1, . . . , xj�1, ⇠j+1, . . . , ⇠p)
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Results for Gibbs Samplers

A Cautionary Example
Note the theorem does not guarantee the existence of a joint
distribution for every set of “full conditionals”!

Consider the following “model”

X1|X2 ⇠ Expo(�X2)

X2|X1 ⇠ Expo(�X1),

Trying to apply the Hammersley-Cli↵ord theorem, we obtain

f (x1, x2) /
fX1|X2(x1|⇠2) · fX2|X1(x2|x1)
fX1|X2(⇠1|⇠2) · fX2|X1(⇠2|x1)

/ exp(��x1x2)Z Z
exp(��x1x2) dx1 dx2 = +1

 joint density cannot be normalised.
There is no joint density with the above full conditionals.
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Results for Gibbs Samplers

Irreducibility and recurrence of Gibbs Samplers

Proposition

If the joint distribution f (x1, . . . , xp) satisfies the positivity
condition, the Gibbs sampler yields an f -irreducible, recurrent
Markov chain.

Outline Proof

Given an X such that
R
X f (x

(t)
1 , . . . , x

(t)
p )d(x

(t)
1 , . . . , x

(t)
p ) > 0.

Z

X
K(x(t�1), x(t))dx(t) =

Z

X
fX1|X�1(x

(t)
1 |x

(t�1)
2 , . . . , x (t�1)p )

| {z }
>0

· · ·

fXp |X�p(x
(t)
p |x

(t)
1 , . . . , x

(t)
p�1)| {z }

>0

dx(t)
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Results for Gibbs Samplers

Ergodic theorem

Theorem (Ergodicity of the Gibbs Sampler)

If the Markov chain generated by the Gibbs sampler is irreducible

and recurrent (which is e.g. the case when the positivity condition

holds), then for any integrable function ' : E ! R

lim
n!1

1

n

nX

t=1

'(X(t))! Ef ('(X))

for almost every starting value X(0).

Thus we can approximate expectations Ef ('(X)) by their
empirical counterparts using a single Markov chain.
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Results for Gibbs Samplers

A Simple Example
Consider

✓
X1
X2

◆
⇠ N2

✓✓
µ1
µ2

◆
,

✓
�21 �12
�12 �22

◆◆

Associated marginal distributions

X1 ⇠ N(µ1,�
2
1)

X2 ⇠ N(µ2,�
2
2)

Associated full conditionals

X1|X2 = x2 ⇠ N(µ1 + �12/�
2
2(x2 � µ2),�21 � (�12)2�22)

X2|X1 = x1 ⇠ N(µ2 + �12/�
2
1(x1 � µ1),�22 � (�12)2�21)

Gibbs sampler consists of iterating for t = 1, 2, . . .
1. Draw X(t)1 ⇠ N(µ1 + �12/�

2
2(X

(t�1)
2 � µ2),�21 � (�12)2�22)

2. Draw X(t)2 ⇠ N(µ2 + �12/�
2
1(X

(t)
1 � µ1),�22 � (�12)2�21).
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Results for Gibbs Samplers

Using the ergodic theorem we can estimate P(X1 � 0, X2 � 0) by
the proportion of samples (X(t)1 , X

(t)
2 ) with X

(t)
1 � 0 and

X(t)2 � 0:

0 2000 4000 6000 8000 10000

0.
1

0.
2

0.
3

0.
4

0.
5

t

|{
(X

(⌧
)

1
,
X

(⌧
)

2
)
:
⌧


t
,
X

(⌧
)

1
�

0,
X

(⌧
)

2
�

0}
|/
t
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Results for Metropolis-Hastings Algorithms

Theoretical properties of Metropolis-Hastings

The Markov chain (X(0),X(1), . . .) is (strongly) irreducible if
q(x|x(t�1)) > 0 for all x, x(t�1) 2 supp(f ).
(see, e.g.,(see Roberts & Tweedie, 1996) for weaker
conditions)

Such a chain is recurrent if it is irreducible.
(see e.g. Tierney, 1994)

The chain is aperiodic if there is positive probability that the
chain remains in the current state, i.e. P(X(t) = X(t�1)) > 0
(for a suitable group of “current states”).
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Results for Metropolis-Hastings Algorithms

Theorem (A Simple Ergodic Theorem)

If (Xi)i2N is an f -irreducible, f -invariant, recurrent Rd -valued
Markov chain then the following strong law of large numbers

holds for any integrable function ' : Rd ! R:

lim
t!1

1

t

tX

i=1

'(⇠i)
a.s.
=

Z
'(x)f (x)dx.

for almost every starting value x .
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Results for Metropolis-Hastings Algorithms

Theorem (A Central Limit Theorem)

Under technical regularity conditions the following CLT holds for

a recurrent, f -invariant Markov chain, and a function ' : E ! R
which has at least two finite moments:

lim
t!1

p
t

"
1

t

tX

i=1

'(⇠i)�
Z
'(x)µ(x)dx

#
D
= N

�
0,�2(')

�
,

�2(') = E
⇥
(f (⇠1)� '̄)2

⇤
+ 2

1X

k=2

E [('(⇠1)� '̄)('(⇠k)� '̄)] ,

where '̄ =
R
'(x)f (x)dx .
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Scaling of Proposal Distributions

Optimal Scaling
Much e↵ort has gone into determining optimal scaling rules:

Di↵usion Limits Under strong assumptions:

lim
p!1

X(btpc)1p
p

d�! Di↵usion

where p is dimension and the speed of the di↵usion
depends upon proposal scale.

ESJD Seek to maximise:
Z
f (x)K(x, y ; ✓)(y � x)2dxdy

Rule of Thumb Optimal RWM Scaling depends upon dimension:

p = 1 Acceptance rate of around 0.44.
p � 5 Acceptance rate of around 0.234.
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Scaling of Proposal Distributions

The Metropolis-Adjusted Langevin Algorithm

Based on the Langevin di↵usion:

dXt =
1

2
r log(f (Xt))dt + dBt

which is f -invariant in continuous time.

Given target f the MALA proposal proposes:

X X(t�1) + ✏

✏ ⇠N
✓
�2

2
r log f (X(t�1)),�2Ip

◆

at time t.

Accepts X with the usual MH acceptance probability.

Optimal acceptance rate (under similar strong conditions)
now 0.574.
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Scaling of Proposal Distributions

MALA Example: Normal (1)
Target f (x) = N(0, 1)
Proposal

q(X(t�1), X) = N

 

X(t�1) �
�2X(t�1)

2
,�2

!

Acceptance Probability

↵(X(t�1), X) =1 ^
f (X)

f (X(t�1))

q(X,X(t�1))

q(X(t�1), X)

=1 ^ exp
✓
1

2

h
(X(t�1))2 �X2

i◆
⇥

exp

✓
1

2�2

n
X � µ(X(t�1))

o2
�
n
X(t�1) � µ(X)

o2�◆

where µ(x) := x � x�22 .
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Scaling of Proposal Distributions
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Scaling of Proposal Distributions
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Scaling of Proposal Distributions
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Scaling of Proposal Distributions

MALA Example: Normal (2)

RWM Autocorrelation Probability of acceptance ESJD
⇢(X(t�1), X(t)) ↵(X,X(t�1))

�2 = 0.12 0.9901 0.9694 0.010
�2 = 1 0.7733 0.7038 0.448
�2 = 2.382 0.6225 0.4426 0.742
�2 = 102 0.8360 0.1255 0.337

MALA Autocorrelation Probability of acceptance ESJD
⇢(X(t�1), X(t)) ↵(X,X(t�1))

�2 = 0.52 0.898 0.877 0.246
�2 = 1 0.492 0.961 1.293
�2 = 1.52 0.047 0.774 2.137
�2 = 2.02 0.011 0.631 4.119
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Motivation: The Need for Convergece Diagnostics

The need for convergence diagnostics

Theory guarantees (under certain conditions) the
convergence of the Markov chain X(t) to the desired
distribution.

This does not imply that a finite sample from such a chain
yields a good approximation to the target distribution.

Validity of the approximation must be confirmed in practice.

Convergence diagnostics help answering this question.

Convergence diagnostics are not perfect and should be
treated with a good amount of scepticism.
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Motivation: The Need for Convergece Diagnostics

Di↵erent diagnostic tasks

Convergence to the target distribution Does X(t) yield a sample
from the target distribution?

Has reached (X(t))t a stationary regime?
Does (X(t))t cover the support of the target
distribution?

Convergence of averages Is
P
T

t=1 '(X
(t))/T ⇡ Ef ('(X))?

Comparison to i.i.d. sampling How much information is
contained in the sample from the Markov chain
compared to an i.i.d. sample?
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Motivation: The Need for Convergece Diagnostics

Pathological example 1: potentially slowly mixing
Gibbs sampler from a bivariate Gaussian with correlation
⇢(X1, X2)

⇢(X1, X2) = 0.3
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2

⇢(X1, X2) = 0.99
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For correlations ⇢(X1, X2) close to ±1 the chain can be poorly
mixing. 248
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Motivation: The Need for Convergece Diagnostics

Pathological example 2: no central limit theorem

The following MCMC algorithm has the Beta(↵, 1) distribution as
stationary distribution:

Starting with any X(0) iterate for t = 1, 2, . . .

1. With probability 1�X(t�1), set X(t) = X(t�1).
2. Otherwise draw X(t) ⇠ Beta(↵+ 1, 1).

Markov chain converges very slowly (no central limit theorem
applies).
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Motivation: The Need for Convergece Diagnostics

Pathological example 3: nearly reducible chain
Metropolis-Hastings sample from a mixture of two well-separated
Gaussians, i.e. the target is

f (x) = 0.4 · �(�1,0.22)(x) + 0.6 · �(2,0.32)(x)

If the variance of the proposal is too small, the chain cannot
move from one population to the other.
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8

de
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Elementary Techniques for Assessing Convergence

Basic plots

Plot the sample paths (X(t)
j
)t .

should be oscillating very fast and show very little structure.

Plot the cumulative averages (
P
t

⌧=1X
(⌧)
j
/t)t .

should be converging to a value.

Alternatively plot CUSUM (X̄j �
P
t

⌧=1X
(⌧)
j
/t)t with

X̄j =
P
T

⌧=1X
(⌧)
j
/T .

should be converging to 0.

Only very obvious problems visible in these plots.

Di�cult to assess multivariate distributions from univariate
projections.
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Elementary Techniques for Assessing Convergence

Basic plots for pathological example 1 (⇢(X1, X2) = 0.3)
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Looks OK.
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Elementary Techniques for Assessing Convergence

Basic plots for pathological example 1
(⇢(X1, X2) = 0.99)
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Slow mixing speed can be detected.
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Elementary Techniques for Assessing Convergence

Basic plots for pathological example 2
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Slow convergence of the mean can be detected.
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Elementary Techniques for Assessing Convergence

Basic plots for pathological example 3
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We cannot detect that the sample only covers one part of the
distribution.
(“you’ve only seen where you’ve been”)
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Elementary Techniques for Assessing Convergence

Non-parametric tests of convergence

Partition chain in 3 blocks:

burn-in (X(t))t=1,...,bT/3c
first block (X(t))t=bT/3c+1,...,2bT/3c
second block (X(t))t=2bT/3c+1,...,T

Distribution of X(t) in both blocks should be identical.

Idea: Use of a non-parametric test to test whether the two
distributions are identical.

Problem: Tests designed for i.i.d. samples.
 Resort to a (less correlated) thinned chain Y(t) = X(m·t).
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Elementary Techniques for Assessing Convergence

Kolmogorov-Smirnov test

Two i.i.d. populations: Z1,1, . . . , Z1,n and Z2,1, . . . , Z2,n

Estimate empirical CDF in each population:

F̂k(z) =
1

n

nX

i=1

I(�1,z ](Zk,i)

Test statistic is the maximum di↵erence between the two
empirical CDFs: K = sup

x2R
|F̂1(x)� F̂2(x)|

For n !1 the CDF of
p
n ·K converges to the CDF

R(k) = 1�
+1X

i=1

(�1)i�1 exp(�2i2k2)
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Elementary Techniques for Assessing Convergence

Kolmogorov-Smirnov test

In our case the two populations are

thinned first block (Y(t))t=bT/(3·m)c+1,...,2bT/(3·m)c
thinned second block (X(t))t=2bT/(3·m)c+1,...,bT/mc

Even the thinned chain (Y(t))t is autocorrelated
 test invalid from a formal point of view.
Standardised test statistic

p
bT/(3 ·m)c ·K can still be used

a heuristic tool.
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Elementary Techniques for Assessing Convergence

KS test for pathological example 1
⇢(X1, X2) = 0.3 ⇢(X1, X2) = 0.99
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Slow mixing speed can be detected for the highly correlated chain.
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Elementary Techniques for Assessing Convergence

KS test for pathological example 2
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Problems can be detected.

260



Theoretical Considerations Convergence Diagnostics Practical Considerations Current Directions

Elementary Techniques for Assessing Convergence

KS test for pathological example 3
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We cannot detect that the sample only covers one part of the
distribution.
(“you’ve only seen where you’ve been”)
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Further Convergence Diagnostics

Comparing multiple chains
Compare L > 1 chains (X(1,t))t , . . . , (X(L,t))t .
Initialised using overdispersed starting values
X(1,0), . . . ,X(L,0).
Idea: Variance and range of each chain (X(l ,t))t should equal
the range and variance of all chains pooled together.
Compare basic plots for the di↵erent chains.
Quantitative measure:

Compute distance �(l)↵ between ↵ and (1� ↵) quantile of
(X(l ,t)
k
)t .

Compute distance �(·)↵ between ↵ and (1� ↵) quantile of the
pooled data.

The ratio Ŝinterval↵ =

P
L

l=1 �
(l)
↵ /L

�(·)↵
should be around 1.

Alternative: compare variance within each chain with the
pooled variance estimate.
Choosing suitable initial values X(1,0), . . . ,X(L,0) di�cult.
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Further Convergence Diagnostics

Comparing multiple chains plots for pathological
example 3
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Ŝinterval↵ = 0.2703⌧ 1

We can detect that the sample only covers one part of the
distribution (provided the chains are initialised appropriately).
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Further Convergence Diagnostics

Riemann sums and control variates
Consider order statistic X[1]  . . .  X[T ].
Provided (X[t])t = 1 . . . , T covers the support of the target,
the Riemann sum

TX

t=2

(X[t] �X[t�1])f (X[t])

converges to Z
f (x)dx = 1.

Thus if
P
T

t=2(X
[t] �X[t�1])f (X[t])⌧ 1, the Markov chain

has failed to explore all the support of the target.

Requires that target density f is available inclusive of
normalisation constants.

Only e↵ective in 1D.
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Further Convergence Diagnostics

Riemann sums for pathological example 3

For the chain stuck in the population with mean 2 we obtain

TX

t=2

(X[t] �X[t�1])f (X[t]) = 0.598⌧ 1,

so we can detect that we have not explored the whole distribution.
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Further Convergence Diagnostics

E↵ective sample size
MCMC algorithms yield a positively correlated sample
(X(t))t=1,...,T .
How much less useful is an MCMC sample of size T than an
i.i.d. sample of size T?
Approximate ('(X(t)))t=1,...,T by an AR(1) process, i.e.:

⇢('(X(t)),'(X(t+⌧))) = ⇢|⌧ |.

Variance of the estimator is

Var

 
1

T

TX

t=1

'(X(t))

!

⇡
1 + ⇢

1� ⇢ ·
1

T
Var

⇣
'(X(t))

⌘

Same variance as an i.i.d. sample of the size T ·
1� ⇢
1 + ⇢

.

Thus define T ·
1� ⇢
1 + ⇢

as e↵ective sample size.
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Further Convergence Diagnostics

E↵ective sample for pathological example 1

Rapidly mixing chain
(⇢(X1, X2) = 0.3)
10,000 samples

MCMC sample
X

(t)
1

f̂X1(x1)

⇢(X(t�1)1 , X(t)1 ) = 0.078

ESS for estimating Ef (X1) is
8,547.

Slowly mixing chain
(⇢(X1, X2) = 0.99)
10,000 samples

MCMC sample
X

(t)
1

f̂X1(x1)

⇢(X(t�1)1 , X(t)1 ) = 0.979

ESS for estimating Ef (X1) is
105.
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Further Convergence Diagnostics

What Else Can We Do?

1 More sophisticated convergence diagnostics:

Geweke’s method based on spectral analysis
Raftery’s binary-chain method
...

2 Theoretical Computations

Convergence rates
Mixing times
Confidence intervals

3 Perfect Simulation

Processes with “ordered transitions”.
Certain spatial processes.
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Practical Considerations

Theoretical Considerations Convergence Diagnostics Practical Considerations Current Directions

Where do we start?
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RWM Traces.

Target:
f (x) = e�|x |/5/10

Starting values:

X(1) = 0

X(1) = 10

X(1) = 100

X(1) = 1, 000
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Practical considerations: Burn-in period
Theory (ergodic theorems) allows for the use of the entire
chain (X(0),X(1), . . .).
However distribution of (X(t)) for small t might still be far
from the stationary distribution f .
Can be beneficial to discard the first iterations X(t),
t = 1, . . . , T0 (burn-in period).
Optimal T0 depends on mixing properties of the chain.
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Reducing Correlation

Practical considerations: Multiple Starts?

Should we use “multiple overdispersed initialisations”?

Advantages:

Exploring di↵erent parts of the space.
May be useful for assessing convergence.
Trivial to parallelize.

Disadvantages:

We need to specify many starting values.
What does overdispersed mean, anyway?
Every chain needs to reach stationarity.
Multiple burn-in periods may be expensive.
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Reducing Correlation

One Chain vs. Many: 1000 or 10⇥ 100
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Reducing Correlation

One Chain vs. Many: 10, 000 or 10⇥ 1000
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Reducing Correlation

One Chain vs. Many: 100, 000 or 10⇥ 10, 000
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Reducing Correlation

Practical considerations: Thinning (1)

MCMC methods typically yield positively correlated chain:
⇢(X(t),X(t+⌧)) large for small ⌧ .

Idea: keeping only every m-th value: (Y(t))t=1,...,bT/mc with

Y(t) = X(m·t) instead of (X(t))t=1,...,T (thinning).

(Y(t))t exhibits less autocorrelation than (X(t))t , i.e.

⇢(Y(t),Y(t+⌧)) = ⇢(X(t),X(t+m·⌧)) < ⇢(X(t),X(t+⌧)),

if the correlation ⇢(X(t),X(t+⌧)) decreases monotonically in
⌧ .

Price: length of (Y(t))t=1,...,bT/mc is only (1/m)-th of the

length of (X(t))t=1,...,T .
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Reducing Correlation

Practical considerations: Thinning (2)

If X(t) ⇠ f and corresponding variances exist,

Var

 
1

T

TX

t=1

'(X(t))

!

 Var

0

@ 1

bT/mc

bT/mcX

t=1

'(Y(t))

1

A ,

i.e. thinning cannot be justified when objective is estimating
Ef ('(X)).
Thinning can be a useful concept

if computer has insu�cient memory.
for convergence diagnostics: (Y(t))t=1,...,bT/mc is closer to an
i.i.d. sample than (X(t))t=1,...,T .
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Some Current Directions

Theoretical Considerations Convergence Diagnostics Practical Considerations Current Directions

Ensembles and Momentum

Ensemble-based Methods

Allow (weighted) collections of “particles” to evolve in time.

Can combine importance sampling and MCMC ideas.

Well-suited to estimating normalising constants.

Facilitate adaptation.

Often computationally costly.

Cf. Del Moral, P., Doucet, A. and Jasra, A. (2006) Sequential
Monte Carlo samplers. Journal of the Royal Statistical Society B,
63, 411–436.
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Ensembles and Momentum

Hamiltonian / Hybrid Monte Carlo

Mimics a conservative physical system by introducing
momentum.

Approximate continuous measure-preserving flow using
(symplectic) numerical integration.

Use Metropolis-Hastings accept/reject correction.

Can mix much faster than random walk algorithms.

Di�culties with multi-modal targets and can be expensive.

Cf. Neal (2011) MCMC using Hamiltonian dynamics. In Brooks
et al. (2011), 113–162. [Brooks, Gelman, Jones, and Meng
(eds.) (2011) Handbook of Markov Chain Monte Carlo. CRC
Press.]
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QMC

Quasi Monte Carlo

Why use “random” numbers?

Wouldn’t “regular” numbers be better?
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QMC

Low Discrepancy Sequences

Definition (Discrepancy)

Given P = {x1, . . . , xn} ⇢ [0, 1]d , the discrepancy and star
discrepancy are:

DN(P ) = sup
J2J

����
#P \ J
N

� �(J)
����

D?N(P ) = sup
J2J ?

����
#P \ J
N

� �(J)
����

where J are sets of the form
Q
d

i=1[ai , bi) and J ? are
Q
d

i=1[0, bi).

QMC: why not approximate integrals with low discrepancy
(not random) sequences?

The Koksma-Hlawka Inequality controls approximation error.
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QMC

Quasi Monte Carlo

Advantages

Can (dramatically) beat Monte Carlo’s
p
n-convergence rate.

Reduces dependency on random numbers.

Challenges

Constructing minimum discrepancy sequences.

Sequence extensibility.

Transformations (& preserving discrepancy)

Cf. Niederreiter, H. (1992) Random Number Generation and
Quasi-Monte Carlo Methods. Society for Industrial and Applied
Mathematics.
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Approximations

Exact Approximate Methods

Replacing appropriate quantities with unbiased estimators
within other algorithms. E.g. ⇡(x) with ˆ⇡(x) in
MH-acceptance probability.

Justified via extended state space arguments.

Cf. Andrieu, C. and Roberts, G. O. (2009) The pseudo-marginal
approach for e�cient Monte Carlo computations. Annals of
Statistics, 37, 697–725; Andrieu, C., Doucet, A. and Holenstein,
R. (2010) Particle Markov chain Monte Carlo. Journal of the
Royal Statistical Society B, 72, 269–342.
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Approximations

Approximate Approximate Methods

Replacing di�cult quantities with biased estimators within
other algorithms.

It’s hard to control the approximation error theoretically.

Much more speculative than pseudomarginal methods.

Cf. Medina-Aguayo, Lee, and Roberts (2016). Stability of noisy
Metropolis-Hastings. Statistics and Computing 26(6):1187–1211.
Alquier, Friel, Everitt. and Boland. (2016) Noisy Monte Carlo:
convergence of Markov chains with approximate transition
kernels. Statistics and Computing, 26, 29–47; Everitt, Johansen,
Rowing, and Evdemon-Hogan (2017). Bayesian model selection
with un-normalised likelihoods. Statistics and Computing
27(2):403-422.
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Approximations

Dealing with Big Data

Distribution: sub-posteriors; consensus methods; medians of
medians.

Subsampling: unadjusted Langevin; zig-zag & bouncy
particles; similar.

A whole lot of computer science.

Cf. Bardenet, Doucet and Holmes (2015). On Markov chain
Monte Carlo methods for tall arXiv:1505.02827; Scott (In Press).
Comparing Consensus Monte Carlo Strategies for Distributed
Bayesian Computation (Brazilian Journal of Probability and
Statistics).
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Approximations

Thank you!

287


