APTS ASP Exercises 2018

Markov chains and reversibility

1. Suppose that $p_{x, y}$ are transition probabilities for a discrete state-space Markov chain satisfying detailed balance. Show that if the system of probabilities given by π_{x} satisfy the detailed balance equations then they must also satisfy the equilibrium equations.
2. Show that unconstrained simple symmetric random walk has period 2. Show that simple symmetric random walk subject to double reflection "by prohibition" must be aperiodic.
3. Solve the equilibrium equations $\pi P=\pi$ for simple symmetric random walk on $\{0,1, \ldots, k\}$ subject to double reflection "by prohibition".
4. Suppose that X_{0}, X_{1}, \ldots, is a simple symmetric random walk with double reflection "by prohibition" as above.

- Use the definition of conditional probability to compute

$$
\bar{p}_{y, x}=\frac{\mathbb{P}\left[X_{n-1}=x, X_{n}=y\right]}{\mathbb{P}\left[X_{n}=y\right]}
$$

- then show that

$$
\frac{\mathbb{P}\left[X_{n-1}=x, X_{n}=y\right]}{\mathbb{P}\left[X_{n}=y\right]}=\frac{\mathbb{P}\left[X_{n-1}=x\right] p_{x, y}}{\mathbb{P}\left[X_{n}=y\right]}
$$

- now substitute, using $\mathbb{P}\left[X_{n}=i\right]=\frac{1}{k+1}$ for all i so $\bar{p}_{y, x}=p_{x, y}$.
- Use the symmetry of the kernel $\left(p_{x, y}=p_{y, x}\right)$ to show that the backwards kernel $\bar{p}_{y, x}$ is the same as the forwards kernel $\bar{p}_{y, x}=p_{y, x}$.

5. Show that if X_{0}, X_{1}, \ldots, is a simple asymmetric random walk with double reflection "by prohibition", running in equilibrium, then it also has the same statistical behaviour as its reversed chain (i.e. solve the detailed balance equations!).
6. Show that detailed balance doesn't work for the 3 -state chain with transition probabilities $\frac{1}{3}$ for $0 \rightarrow 1,1 \rightarrow 2,2 \rightarrow 0$ and $\frac{2}{3}$ for $2 \rightarrow 1,1 \rightarrow 0,0 \rightarrow 2$.
7. Use Burke's theorem for a feed-forward $\cdot / M / 1$ queueing network (no loops) to show that in equilibrium each queue viewed in isolation is $M / M / 1$. This uses the fact that independent thinnings and superpositions of Poisson processes are still Poisson
8. Work through the Random Chess example to compute the mean return time to a corner of the chessboard.
9. Verify for the Ising model that

$$
\mathbb{P}\left[\mathbf{S}=\mathbf{s}^{(i)} \mid \mathbf{S} \in\left\{\mathbf{s}, \mathbf{s}^{(i)}\right\}\right]=\frac{\exp \left(-J \sum_{j: j \sim i} s_{i} s_{j}\right)}{\exp \left(J \sum_{j: j \sim i} s_{i} s_{j}\right)+\exp \left(-J \sum_{j: j \sim i} s_{i} s_{j}\right)}
$$

Determine how this changes in the presence of an external field. Confirm that detailed balance holds for the heat-bath Markov chain.
10. Write down the transition probability kernel for the Metropolis-Hastings sampler. Verify that it has the desired probability distribution as an equilibrium distribution.

Renewal processes and stationarity

1. Suppose that X is a simple symmetric random walk on \mathbb{Z}, started from 0 . Show that

$$
T=\inf \left\{n \geq 0: X_{n} \in\{-10,10\}\right\}
$$

is a stopping time (i.e. show that the event $\{T \leq n\}$ is determined by $X_{0}, X_{1}, \ldots, X_{n}$). What is the value of $\mathbb{P}[T<\infty]$? What is the distribution of X_{T} ?
2. For a Markov chain $\left(X_{n}\right)_{n \geq 0}$ on a state-space S, fix $i \in S$ and let $H_{0}^{(i)}=\inf \left\{n \geq 0: X_{n}=i\right\}$. For $m \geq 0$, let

$$
H_{m+1}^{(i)}=\inf \left\{n>H_{m}^{(i)}: X_{n}=i\right\}
$$

Show that $H_{0}^{(i)}, H_{1}^{(i)}, \ldots$ is a sequence of stopping times.
3. Check that it follows from the Strong Markov property that $\left(H_{m+1}^{(i)}-H_{m}^{(i)}, m \geq 0\right)$ is a sequence of i.i.d. random variables, independent of $H_{0}^{(i)}$.
4. Suppose that $(N(n))_{n \geq 0}$ is a delayed renewal process with inter-arrival times Z_{0}, Z_{1}, \ldots where Z_{0} is a non-negative random variable, independent of Z_{1}, Z_{2}, \ldots which are i.i.d. strictly positive random variables with common mean μ. Use the Strong Law of Large Numbers for $T_{k}=\sum_{i=0}^{k} Z_{i}$ to show that

$$
\frac{N(n)}{n} \rightarrow \frac{1}{\mu} \quad \text { a.s. as } n \rightarrow \infty
$$

Hint: note that $T_{N(n)} \leq n<T_{N(n)+1}$ so that $N(n) / n$ can be sandwiched between $N(n) / T_{N(n)+1}$ and $N(n) / T_{N(n)}$. Use this and the fact that $N(n) \rightarrow \infty$ as $n \rightarrow \infty$.
5. Let $(Y(n))_{n \geq 0}$ be the auxiliary Markov chain associated to a delayed renewal process $(N(n))_{n \geq 0}$ i.e. $Y(n)=\bar{T}_{N(n-1)}-n$. Check that you agree with the transition probabilities given in the lecture notes.
6. Let

$$
\nu_{i}=\frac{1}{\mu} \mathbb{P}\left[Z_{1} \geq i+1\right], \quad i \geq 0
$$

Check that $\nu=\left(\nu_{i}\right)_{i \geq 0}$ defines a probability mass function.
7. Suppose that Z^{*} has the size-biased distribution associated with the distribution of Z_{1}, defined by

$$
\mathbb{P}\left[Z^{*}=i\right]=\frac{i \mathbb{P}\left[Z_{1}=i\right]}{\mu}, \quad i \geq 1
$$

(a) Verify that this is a probability mass function.
(b) Given $Z^{*}=k$, let $L \sim \mathrm{U}\{0,1, \ldots, k-1\}$. Show that, unconditionally, $L \sim \nu$. Note that you can generate L starting from Z^{*} by letting $U \sim U[0,1]$ and then setting $L=$ $\left\lfloor U Z^{*}\right\rfloor$.
(c) What is the size-biased distribution associated with $\operatorname{Po}(\lambda)$?
8. Show that ν is stationary for Y.

Hint: Y is clearly not reversible, so there's no point trying detailed balance!
9. Check that if $\mathbb{P}\left[Z_{1}=k\right]=(1-p)^{k-1} p$, for $k \geq 1$, the stationary distribution ν for the time until the next renewal is $\nu_{i}=(1-p)^{i} p$, for $i \geq 0$. (In other words, if we flip a biased coin with probability p of heads at times $n=0,1,2, \ldots$ and let $N(n)=\#\{0 \leq k \leq n$: we see a head at time $k\}$ then $(N(n), n \geq 0)$ is a stationary delayed renewal process.)

Martingales

1. Let X be a martingale. Use the tower property for conditional expectation to deduce that

$$
\mathbb{E}\left[X_{n+k} \mid \mathcal{F}_{n}\right]=X_{n}, \quad k=0,1,2, \ldots
$$

2. Recall Thackeray's martingale: let Y_{1}, Y_{2}, \ldots be a sequence of independent random variables, with $\mathbb{P}\left[Y_{1}=1\right]=\mathbb{P}\left[Y_{1}=-1\right]=1 / 2$. Define the Markov chain M by

$$
M_{0}=0 ; \quad M_{n}= \begin{cases}1-2^{n} & \text { if } Y_{1}=Y_{2}=\cdots=Y_{n}=-1 \\ 1 & \text { otherwise } .\end{cases}
$$

(a) Compute $\mathbb{E}\left[M_{n}\right]$ from first principles.
(b) What should be the value of $\mathbb{E}\left[\widetilde{M}_{n}\right]$ if \widetilde{M} is computed as for M but stopping play if M hits level $1-2^{N}$?
3. Consider a branching process Y, where $Y_{0}=1$ and Y_{n+1} is the sum $Z_{n+1,1}+\ldots+Z_{n+1, Y_{n}}$ of Y_{n} independent copies of a non-negative integer-valued family-size r.v. Z.
(a) Suppose $\mathbb{E}[Z]=\mu<\infty$. Show that $X_{n}=Y_{n} / \mu^{n}$ is a martingale.
(b) Show that Y is itself a supermartingale if $\mu<1$ and a submartingale if $\mu>1$.
(c) Suppose $\mathbb{E}\left[s^{Z}\right]=G(s)$. Let η be the smallest non-negative root of the equation $G(s)=s$. Show that $\eta^{Y_{n}}$ defines a martingale.
(d) Let $H_{n}=Y_{0}+\ldots+Y_{n}$ be the total of all populations up to time n. Show that $s^{H_{n}} /\left(G(s)^{H_{n-1}}\right)$ is a martingale.
(e) How should these three expressions be altered if $Y_{0}=k \geq 1$?
4. Consider asymmetric simple random walk, stopped when it first returns to 0 . Show that this is a supermartingale if jumps have non-positive expectation, a submartingale if jumps have nonnegative expectation (and therefore a martingale if jumps have zero expectation).
5. Consider Thackeray's martingale based on asymmetric random walk. Show that this is a supermartingale or submartingale depending on whether jumps have negative or positive expectation.
6. Show, using the conditional form of Jensen's inequality, that if X is a martingale then $|X|$ is a submartingale.
7. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and cards are turned over one at a time. Let B_{n} denote the number of black cards left just before the $n^{\text {th }}$ card is turned over. Let

$$
Y_{n}=\frac{B_{n}}{r+b-(n-1)}
$$

(So Y_{n} equals the proportion of black cards left just before the $n^{t h}$ card is revealed.) Show that Y is a martingale.
8. Suppose N_{1}, N_{2}, \ldots are independent identically distributed normal random variables of mean 0 and variance σ^{2}, and put $S_{n}=N_{1}+\ldots+N_{n}$.
(a) Show that S is a martingale.
(b) Show that $Y_{n}=\exp \left(S_{n}-\frac{n}{2} \sigma^{2}\right)$ is a martingale.
(c) How should these expressions be altered if $\mathbb{E}\left[N_{i}\right]=\mu \neq 0$?
9. Let X be a discrete-time Markov chain on a countable state-space S with transition probabilities $p_{x, y}$. Let $f: S \rightarrow \mathbb{R}$ be a bounded function. Let \mathcal{F}_{n} contain all the information about $X_{0}, X_{1}, \ldots, X_{n}$. Show that

$$
M_{n}=f\left(X_{n}\right)-f\left(X_{0}\right)-\sum_{i=0}^{n-1} \sum_{y \in S}\left(f(y)-f\left(X_{i}\right)\right) p_{X_{i}, y}
$$

defines a martingale. (Hint: first note that $\mathbb{E}\left[f\left(X_{i+1}\right)-f\left(X_{i}\right) \mid X_{i}\right]=\sum_{y \in S}\left(f(y)-f\left(X_{i}\right)\right) p_{X_{i}, y}$. Using this and the Markov property of X, check that $\mathbb{E}\left[M_{n+1}-M_{n} \mid \mathcal{F}_{n}\right]=0$.)
10. Let Y be a discrete-time birth-death process absorbed at zero:

$$
p_{k, k+1}=\frac{\lambda}{\lambda+\mu}, \quad p_{k, k-1}=\frac{\mu}{\lambda+\mu}, \quad \text { for } k>0, \text { with } 0<\lambda<\mu
$$

(a) Show that Y is a supermartingale.
(b) Let $T=\inf \left\{n: Y_{n}=0\right\}$ (so $T<\infty$ a.s.), and define

$$
X_{n}=Y_{n \wedge T}+\left(\frac{\mu-\lambda}{\mu+\lambda}\right)(n \wedge T)
$$

Show that X is a non-negative supermartingale, converging to

$$
Z=\left(\frac{\mu-\lambda}{\mu+\lambda}\right) T
$$

(c) Deduce that

$$
\mathbb{E}\left[T \mid Y_{0}=y\right] \leq\left(\frac{\mu+\lambda}{\mu-\lambda}\right) y
$$

11. Let $L\left(\theta ; X_{1}, X_{2}, \ldots, X_{n}\right)$ be the likelihood of parameter θ given a sample of independent and identically distributed random variables, $X_{1}, X_{2}, \ldots, X_{n}$.
(a) Check that if the "true" value of θ is θ_{0} then the likelihood ratio

$$
M_{n}=\frac{L\left(\theta_{1} ; X_{1}, X_{2}, \ldots, X_{n}\right)}{L\left(\theta_{0} ; X_{1}, X_{2}, \ldots, X_{n}\right)}
$$

defines a martingale with $\mathbb{E}\left[M_{n}\right]=1$ for all $n \geq 1$.
(b) Using the strong law of large numbers and Jensen's inequality, show that

$$
\frac{1}{n} \log M_{n} \rightarrow-c \text { as } n \rightarrow \infty .
$$

12. Let X be a simple symmetric random walk absorbed at boundaries $a<b$.
(a) Show that

$$
f(x)=\frac{x-a}{b-a} \quad x \in[a, b]
$$

is a bounded harmonic function.
(b) Use the martingale convergence theorem and optional stopping theorem to show that

$$
f(x)=\mathbb{P}\left[X \text { hits } b \text { before } a \mid X_{0}=x\right] .
$$

Recurrence and rates of convergence

1. Recall that the total variation distance between two probability distributions μ and ν on \mathcal{X} is given by

$$
\operatorname{dist}_{\mathrm{TV}}(\mu, \nu)=\sup _{A \subseteq \mathcal{X}}\{\mu(A)-\nu(A)\}
$$

Show that this is equivalent to the distance (note the absolute value signs!)

$$
\sup _{A \subseteq \mathcal{X}}|\mu(A)-\nu(A)| .
$$

2. Show that if \mathcal{X} is discrete, then

$$
\operatorname{dist}_{\mathrm{TV}}(\mu, \nu)=\frac{1}{2} \sum_{y \in \mathrm{X}}|\mu(y)-\nu(y)| .
$$

(Here we do need to use the absolute value on the RHS!)
Hint: consider $A=\{y: \mu(y)>\nu(y)\}$.
3. Suppose now that μ and ν are density functions on \mathbb{R}. Show that

$$
\operatorname{dist}_{\mathrm{TV}}(\mu, \nu)=1-\int_{-\infty}^{\infty} \min \{\mu(y), \nu(y)\} d y
$$

Hint: remember that $|\mu-\nu|=\mu+\nu-2 \min \{\mu, \nu\}$.
4. Let X be a random walk on \mathbb{R}, with increments given by the standard normal distribution. Recall that any bounded set is small of lag 1 . Does there exist $k \geq 1$ such that the whole state space is small of lag k ?
5. Consider a Markov chain X with continuous transition density kernel. Show that it possesses many small sets of lag 1 .
6. Consider a Vervaat perpetuity X, where

$$
X_{0}=0 ; \quad X_{n+1}=U_{n+1}\left(X_{n}+1\right),
$$

and where U_{1}, U_{2}, \ldots are independent $\operatorname{Uniform}(0,1)$ (simulated below).

Find a small set for this chain.
7. Recall the idea of regenerating when our chain hits a small set: suppose that C is a small set (with lag 1) for a ϕ-recurrent chain X, i.e. for $x \in C$,

$$
\mathbb{P}\left[X_{1} \in A \mid X_{0}=x\right] \geq \alpha \nu(A)
$$

Suppose that $X_{n} \in C$. Then with probability α let $X_{n+1} \sim \nu$, and otherwise let it have transition distribution $\frac{p(x, \cdot)-\alpha \nu(\cdot)}{1-\alpha}$.
(a) Check that the latter expression really gives a probability distribution.
(b) Check that X_{n+1} constructed in this manner obeys the correct transition distribution from X_{n}.
8. Define a reflected random walk as follows: $X_{n+1}=\max \left\{X_{n}+Z_{n+1}, 0\right\}$, for Z_{1}, Z_{2}, \ldots i.i.d. with continuous density $f(z)$,

$$
\mathbb{E}\left[Z_{1}\right]<0 \quad \text { and } \quad \mathbb{P}\left[Z_{1}>0\right]>0
$$

Show that the Foster-Lyapunov criterion for positive recurrence holds, using $\Lambda(x)=x$.

