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Abstract

The fundamental formulas and algorithms for Bayesian spatial statistics using continuous domain
GMRF models are presented. The construction of the models as approximate SPDE solutions is not
covered. The results are applicable to non-spatial GMRF models as well, but the important property of
observations being local and non-local is only discussed in the spatial context.
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1 Basic spatial model in GMRF representation
Basic linear spatial model:

• Spatial basis expansion model u(s) =
∑m
k=1 ψk(s)uk, with m basis functions ψk(s) with lo-

cal (compact) support, and GMRF coefficients (u1, . . . , um) = u ∼ N(µu,Q
−1
u ), where Qu is

derived from an SPDE construction with parameters θu and µu is usually 0.

• Covariate matrix B, p coefficients b ∼ N(µb,Q
−1
b ). Typically, µb = 0, and Qb = τbIp with

τb ≈ 0.

• n observations y = (y1, . . . , yn) at locations si, and additive zero mean Gaussian noise ei with
(e1, . . . , en) = ε ∼ N(0,Q−1ε ). Typically,Qε = τεI .

DefineA so that Ai,j = ψj(si). The observation model is then

y = Bb+Au+ ε.

Since the covariate effects and the spatial field are jointly Gaussian, it’s often practical to join them into a
single vector x = (u, b), and

µx =

[
µu
µb

]
,

Qx =

[
Qu 0
0 Qb

]
,

Ax =
[
A B

]
,

y = Axx+ ε.

1.1 Bayesian hierarchical formulation
Written as a full Bayesian hierarchical model, the model is

θ = (θu, τb, τε) ∼ π(θ),
(x | θ) ∼ N(µx,Q

−1
x ),

(y | θ,x) ∼ N(Axx,Q
−1
ε ).

It will be important to note that for local basis functions (and at most Markov dependent noise ε),
A>QεA is sparse, and that

A>xQεAx =

[
A>QεA A>QεB

B>QεA B>QεB

]
is therefore also sparse if p is small.

1.2 Joint distribution
The joint distribution for the observations and the latent variables, (y,x) is given by[

y
x

]
∼ N

([
Axµx
µx

]
,

[
Qε −QεAx

−A>xQε Qx +A
>
xQεAx

]−1)
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1.3 Conditional/posterior distribution (or Kriging)
The conditional distribution for x given y and θ is given by

(x | θ,y) ∼ N(µx|y,Q
−1
x|y),

Qx|y = Qx +A
>
xQεAx,

µx|y = µx +Q
−1
x|yA

>
xQε(y −Axµx).

The proof is by completing the square in the exponent of the Gaussian conditional density expression

π(x | θ,y) = π(x,y | θ)
π(y | θ)

∝ π(x | θ)π(y | θ,x).

Note that the elements of µx|y are the basis function coefficients and covariate effect estimates in
the universal Kriging predictor, and that we’ve arrived at it without going “the long way around” via the
traditional covariance based Kriging equations and matrix inversion lemmas.

2 Expectations, covariances, and samples
Direct calculations and simulation (for models smaller than approximately m = 106) is typically done
with sparse Cholesky decomposition. Reordering methods are required to achieve sparsity (CAMD,
nested dissection, etc.). Here, assume for ease of notation that the nodes are already in a suitable order,
and that both the prior and posterior precision decompositions are sparse:

Qx = LxL
>
x ,

Qx|y = Lx|yL
>
x|y,

where all L· are lower triangular sparse matrices.
See Sections 2.5.2 and 4 for examples of how to handle models where only the prior precision has

a sparse Cholesky decomposition. In several instances, the needed adjustments for the use of iterative
equation solvers are also mentioned.

2.1 Solving with the posterior precision
Kriging requires solving a linear system

Qx|yz = w,

z = L−>x|y

(
L−1x|yw

)
,

requiring one forward solve and one backward solve. Several systems with the same posterior preci-
sion can be solved simultaneously by having a multi-column w. Often, practical implementations avoid
actually transposing the large sparse matrices, effectively doing

z =

{(
L−1x|yw

)>
L−1x|y

}>
instead.

The Kriging predictor (the posterior expectation) is obtained for w = A>xQε(y − Axµx), with
µx|y = µx + z.
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2.2 Prior and posterior variances
Even though the full covariance matrix is too large to be stored, the variances and covariances of neigh-
bouring Markov nodes can be calculated, using an algorithm related to the Cholesky decomposition. In
R-INLA, this is available as S=inla.qinv(Q), where

Sij =

{(
Q−1

)
ij
, when Qij 6= 0 or (i, j) is in the Cholesky infill, and

0 otherwise.
(1)

This means that the posterior neighbour covariances Cov(xi, xj | θ,y) for neighbours (i, j) are obtained
by calling inla.qinv() with the posterior precisionQx|y .

Provided that the desired posterior predictions Apred
x x have the same sparse connectivity structure as

the prior model itself, e.g. when Apred
x = Ax, the sparse symmetric S matrix is sufficient to evaluate

marginal posterior predictive variances, as the diagonal ofApred
x S(Apred

x )>:

Var
(
(Apred

x x)i

)
=

m+p∑
j=1

(Apred
x )ij

m+p∑
k=1

Sjk(A
pred
x )ik,

which in R would typically be implemented as rowSums(A * (A %*% S)).
When the desired predictions are dense relative to the model (e.g. when predicting the overall spatial

average) solves with Lx|y are required. A small number of predictions (i.e. the number of rows of Apred
x

is small) can be evaluated simultaneously with

LAt <- solve(L, t(A))
colSums(LAt * LAt)

Data predictive marginal variances, for Apred
x x + εpred, are obtained by adding τ−1ε to the variances

forApred
x x.

2.3 Leave-one-out cross-validation
In the case of conditionally independent observations, expressions for expectations and variances of leave-
one-out cross-validation predictive distributions can be obtained via rank one modification of the full
posterior precision matrix, and are obtained “for free” by manipulating the above expressions.

Let Sx|y be the neighbour covariance matrix obtained from (1) applied toQx|y , and define

Ei = (Axµx|y)i,

Vi = (Ax)i·Sx|y(Ax)
>
i· .

Then the predictive distribution for xi based on the complete data is

((Axx)i |θ,y) ∼ N(Ei, Vi),

and the leave-one-out predictive distribution is(
(Axx)i

∣∣θ,yj , j 6= i
)
∼ N(E(i), V(i)),

where

E(i) = yi −
yi − Ei
1− qiVi

,

V(i) =
Vi

1− qiVi
.

where qi is the conditional precision of observation i, fromQε = diag(q1, . . . , qn).
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2.4 Sampling from the prior
Let w ∼ N(0, Im+p), then

x = µx +L
−>
x w

is a sample from the prior model for x. Multiple samples are obtained by repeated forward solves.

2.5 Sampling from the posterior
2.5.1 Direct method

First compute µx|y as in Section 2.1, and then let w ∼ N(0, Im+p). Then

x = µx|y +L
−>
x|yw

is a sample from the posterior for x given y. Multiple samples are obtained by repeated forward solves.

2.5.2 Least squares

In some models, the posterior precision matrix does not have a sparse Cholesky decomposition, but
iterative linear algebra methods may still be used to solve systems withQx|y . If the prior precision can be
decomposed as Qx = H>xHx for some sparse matrix Hx (not necessarily a Cholesky factor), then one
approach to sampling is least squares. Given that the posterior expectation has already been calculated
using an iterative solution to the equations in Section 1.3, a sample of x conditionally on y is given by
the solution to

Qx|y(x− µx|y) =
[
Hx A>xLε

]
w,

where w ∼ N(0, Im+p+n).

2.5.3 Sampling with conditioning by Kriging

The conditioning by Kriging approach to sampling is to construct samples from the prior and then correct
them to become samples from the posterior. For GMRF models, this is less efficient than the direct
approach in Section 2.5.1, except when some observations are non-local, which leads to a dense posterior
precision.

In its traditional form, the samples are constructed as follows:

x∗ = µx +L
−>
x wx, wx ∼ N(0, Im+p),

y∗ = y +L−>ε wy, wy ∼ N(0, In),

x = x∗ −Q−1x A
>
x

(
AxQ

−1
x A

>
x +Q−1ε

)−1
(Axx

∗ − y∗)

where the final expression is the covariance based Kriging equation. For anything but very small n,
the inner matrix is dense. Using the Woodbury identity, the expression can be rewritten to recover the
precision based equation from Section 1.3,

x = x∗ +
(
Qx +A

>
xQεAx

)−1
A>xQε(y

∗ −Axx
∗)

= x∗ +Q−1x|yA
>
xQε(y

∗ −Axx
∗),
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which is calculated as before, with forward and backward solves on Lx|y .
If N samples, as well as the posterior mean, are desired, conditioning by Kriging requires N solves

with Lx and Lε (to obtain x0 and y0), and 2 + 2N solves with Lx|y . The direct method only requires
2 + N solves with Lx|y , and no solves with Lx or Lε, which means that it is nearly always preferable
to conditioning by Kriging. The exception is non-local observations, which can be handled separately as
soft constraints, see Section 4.

3 Likelihood evaluation
The expensive part of evaluating likelihoods is calculating precision determinants, but they come at no
extra cost given the Cholesky factors:

log π(x | θ) = −m+ p

2
log(2π) +

1

2
log det(Qx)−

1

2
(x− µx)>Qx(x− µx),

log det(Qx) = 2

m+p∑
j=1

log(Lx)jj .

Corresponding expressions hold for π(y | θ,x) and π(x | θ,y), using Lε and Lx|y .
Marginal data likelihoods require more effort.

3.1 Conditional marginal data likelihood
For any arbitrary x∗,

π(y | θ) = π(θ,y)

π(θ)
=
π(θ,y)π(x | θ,y)
π(θ)π(x | θ,y)

∣∣∣∣
x=x∗

=
π(θ,y,x)

π(θ)π(x | θ,y)

∣∣∣∣
x=x∗

=
π(x | θ)π(y | θ,x)

π(x | θ,y)

∣∣∣∣
x=x∗

.

In practice, this is evaluated for x∗ = µx|y , which gives better numerical stability than x∗ = 0. Written
explicitly,

log π(y | θ) = −n
2
log(2π) +

1

2
log det(Qx) +

1

2
log det(Qε)−

1

2
log det(Qx|y)

− 1

2
(µx|y − µx)>Qx(µx|y − µx)−

1

2
(y −Axµx|y)

>Qε(y −Axµx|y),

where an anticipated third quadratic form, from π(x | θ,y), has been eliminated due to the choice of
x∗. Comparing with a standard marginal Gaussian log-likelihood expression, the log-determinant and
quadratic form can be identified,

log det(Qy) = log det(Qx) + log det(Qε)− log det(Qx|y)

(y −Axµx)
>Qy(y −Axµx) = (µx|y − µx)>Qx(µx|y − µx) + (y −Axµx|y)

>Qε(y −Axµx|y),

even though the marginal precision matrix itself,Qy , is dense and cannot be stored.
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3.2 Posterior parameter likelihood and total marginal data likelihood
Using the result for the conditional marginal data likelihood, we can express the posterior parameter
likelihood as

π(θ | y) = π(θ,y)

π(y)
=
π(θ)π(y | θ)

π(y)
,

where the only unknown is the total marginal data likelihood π(y), which can be approximated with
numerical integration over θ,

π(y) =

∫
π(θ)π(y | θ) dθ.

3.3 A note on non-Gaussian data and INLA
For non-Gaussian data, Laplace approximation can be used, which in essence involves replacing the non-
Gaussian conditional posterior π(x | θ,y) with a Gaussian approximation in the expression for π(y | θ),
taking x∗ as the mode of π(x | θ,y).

The INLA implementation finds the mode of π(θ | y) using numerical optimisation, and further
approximates the marginal posteriors for the latent variables xk, π(xk | y), with numerical integration of

π(xk | y) =
∫
π(xk | θ,y)π(θ | y) dθ,

where a further laplace approximation of π(xk | θ,y) is made (as well as skweness corrections not
discussed here),

π(xk | θ,y) =
π(xk,x(k) | θ,y)
π(x(k) | θ,y,xk)

∣∣∣∣
x(k)=x∗

(k)

.

This combination of Laplace approximations is the “nested Laplace” part of INLA. In the case of Gaus-
sian data, the only approximation in the method is the numerical integration itself.

4 Linear constraints
There are two main classes of linear constraints:

1. Hard constraints, which fall into two subclasses,

(a) Interacting hard constraints, where linear combinations of nodes are constrained,

(b) Non-interacting hard constraints, where each constraint acts only on a single node, in effect
specifying those nodes explicitly,

2. Soft constraints, where linear combinations are specified with some uncertainty, equivalent to pos-
terior conditioning on observations of these linear combinations. Observations are treated under
this framework when they break the Markov structure in the posterior distribution, e.g. by affecting
all the nodes in the field directly.

All these cases can be written on matrix form as

Acx+ εc = ec,
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where εc = 0 in the hard constraint cases, and

εc ∼ N(0,Q−1c ),

in the soft constraint case. The aim is to sample from and evaluate properties of the conditional distribu-
tion for (x | ec), when

x ∼ N(µ,Q−1),

(ec | x) ∼ N(Acx,Q
−1
c ),

where x comes from a known GMRF model, typically either a prior or a posterior distribution.
Let r denote the number of constraints, i.e. the number of rows in Ac and the number of elements in

ec.

4.1 Non-interacting hard constraints
Non-interacting hard constraints are easiest to handle, as the constrained nodes can be completely re-
moved from all calculations in a preprocessing step, as they are in effect known deterministic values,
and the conditional precision for the remaining nodes can be trivially extracted as a block from the joint
precision matrix. Without loss of practical generality, we can assume that all scaling is done in ec, so that
each row ofAc has a single non-zero entry that is equal to 1.

For ease of notation, assume that the nodes are ordered so that the unconstrained nodes U are followed
by the constrained, C, so that the joint distribution is[

xU
xC

]
∼ N

([
µU
µC

]
,

[
QUU QUC

QCU QCC

]−1)
.

The conditional distribution for the unconstrained nodes is given by

(xU | xC = ec) ∼ N
(
µU |C ,Q

−1
UU

)
,

µU |C = µU −Q
−1
UUQUC(ec − µC).

The constrained mean and constrained samples are obtained with the same forward and backward solving
techniques as in Section 1.3 and Section 2.5.1, using the Cholesky decomposition of QUU . The joint
constrained distribution can be written as a degenerate Normal distribution,([

xU
xC

] ∣∣∣∣xC = ec

)
∼ N

([
µU |C
ec

]
,

[
Q−1UU 0
0 0

])
.

4.2 Conditioning by Kriging
Conditioning on local observations preserves the Markov structure, and Markov breaking conditioning
is therefore done as a final step, when computing posterior means, and sampling from the posterior as
well as from the prior. Using the conditioning by Kriging introduced in Section 2.5.3, conditioning on
linear constraints or on non-local observations can be written in a common framework. LetQc = LcL

>
c

be the Cholesky decomposition of Qc in the soft constraint case, and for notational convenience, define
Q−1c = 0 and L−1c = 0 for hard constraints.

8



The method proceeds by constructing a sample from the unconstrained model, and then correcting for
the constraints,

x∗ = µ+L−>wx, wx ∼ N(0, Im+p),

e∗c = ec +L
−>
c wc, wc ∼ N(0, Ir),

x = x∗ −Q−1A>c
(
AcQ

−1A>c +Q−1c

)−1
(Acx

∗ − e∗c).

In order to obtain the conditional mean instead of a sample, set x∗ = µ and e∗c = ec. The dense but
small inner r × r matrix can be evaluated using a single forward solve with L,

AcQ
−1A>c +Q−1c =

(
L−1A>c

)>
L−1A>c +Q−1c .

Defining Ã
>
c = L−1A>c , the full expression becomes

x = x∗ −L−>Ã
>
c

(
ÃcÃ

>
c +Q−1c

)−1
(Acx

∗ − e∗c),

where the remaining inner r × r solve is evaluated using, e.g., Cholesky decomposition, and the result
fed into a final backward solve with L>.

In order to avoid unnecessary recalculations for multiple samples, further precomputation can be used.
A fully Cholesky based approach that also simplifies later calulations is

L̃cL̃
>
c = ÃcÃ

>
c +L>c L

−1
c ,

B = L−>Ã
>
c L̃
−>
c ,

x = x∗ −BL̃
−1
c (Acx

∗ − e∗c),

where L̃c is a dense r× r Cholesky factor, andB is dense, (m+ p)× r. For models that require iterative
solves forQ instead of Cholesky decomposition, the pre-calculations are modified slightly,

˜̃
A
>

c = Q−1A>c

L̃cL̃
>
c = Ac

˜̃
A
>

c +L>c L
−1
c ,

B =
˜̃
A
>

c L̃
−>
c ,

but the final step for constructing x remains unchanged.

4.3 Conditional covariances
From the conditioning by Kriging algorithm, we obtain

Cov(x,x | ec) = Q−1 −BB>,

which can be combined with the neighbour covariance algorithm from Section 2.2 to yield the conditional
covariances between nodes that are neighbours in the unconstrained model,

(Sc)ij =

{
Sij −

∑
kBikBjk, when Qij 6= 0 or (i, j) is in the Cholesky infill, and

0 otherwise.
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4.4 Constrained likelihood evaluation
The constrained likelihood is given by

π(x | ec) =
π(x)π(ec | x)

π(ec)
,

where π(ec | x) is a degenerate density in the hard constraint case.
The marginal distributions for x and ec are

x ∼ N(µ,Q−1),

ec ∼ N(Acµ, L̃cL̃
>
c ),

and the densities can be evaluated with the usual approach, with

log π(x) = −m+ p

2
log(2π) + log det(L)− 1

2
(x− µ)>Q(x− µ),

log π(ec) = −
r

2
log(2π)− log det(L̃c)−

1

2
(ec −Acµ)

>L̃
−>
c L̃

−1
c (ec −Acµ).

In the hard constraint case, Section 2.3.3 of (Rue and Held, 2005) provides the degenerate conditional
density through

log π(ec | x) = log π(Acx | x) = −
1

2
log det(AcA

>
c )

which can be evaluated using the Cholesky decomposition of the r×rmatrixAcA
>
c . In the soft constraint

case,

log π(ec | x) = −
r

2
log(2π) + log det(Lc)−

1

2
(ec −Acx)

>Qc(ec −Acx).
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