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The term ‘flexible regression’ refers to a wide range of methods which provide flexibility in
the nature of the relationship being modelled. This APTS course will start with univariate
smoothing and progress through standard forms of nonparametric regression to state-of-the
art modelling tools (including quantile regression) which can be applied in a wide variety of
settings.

As preparation, it would be helpful to revise the following topics covered in earlier APTS
courses:

• (Bayesian) linear models (see APTS course - Statistical Modelling);
• generalised linear models (see APTS course - Statistical Modelling);
• R programming (see APTS course - Statistical Computing);
• matrix computations (see APTS course - Statistical Modelling);
• confidence intervals/hypothesis testing (see APTS course - Statistical Inference).

The main emphasis will be on regression settings, because of the widespread use and application
of this kind of data structure. However, the preliminary material also covers various aspects
of density estimation, to introduce some of the main ideas of nonparametric smoothing and
to highlight some of the main issues involved. It is likely that many people will have come
across these ideas in one form or another. The preliminary material aims to:

• revise key concepts in (generalised) linear (mixed) models and introduce notation
required for the course;

• introduce the idea of smoothing through exploring simple kernel methods to construct
smooth density estimates;

• revise/introduce ideas of basis functions;
• introduce the idea of regression for quantiles;
• investigate some simple theoretical properties;
• experiment with software available in R.

A small number of exercises are provided to assist in engaging with the material.

1



1 Models of interest

1.1 Flexibility in the mean

In general, for a single explanatory variable with data x1, . . . , xn, and response data y1, . . . , yn
we can write a regression model as:

Yi = f(xi,β) + εi.

The function f(x,β) describes the relationship between the response and the predictor
variable, this might take the form of a straight line or some other function, which has
parameters β. The problem is to estimate this function f . Initially, in this course we will
generally assume that,

E(εi) = 0 and Var(εi) = σ2

for all i, where σ2 does not depend on any other unknown or on xi, and xi are assumed to be
recorded without error.

We also initially generally assume that εi ∼ N(0, σ2) and usually that εi and εj are uncorrelated
for i 6= j, (i.e. independent identically distributed, i.i.d).

For Gaussian data we have a least squares loss function which we use to estimate the
parameters β in our model, i.e. we choose β to minimise

n∑
i=1

(yi − f(xi))2.

Standard regression is sometimes referred to as mean regression, because the mean minimises
the squared loss.

Previous APTS courses have considered linear and non-linear functions and the inclusion of
both fixed and random effects in a regression model. In this course we will extend this by
allowing f() to be a data driven smooth function.

For a general smooth function f() we refer to the approach as nonparametric regression.
This extends to (generalised) additive models (GAMs) for more than one smooth covari-
ate, and such models can include univariate, bivariate (or possibly higher order) terms and
be extended to distributions other than the normal.
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1.2 Flexibility in the response quantile

In some circumstances regression methods based on standard distributional assumptions will
not capture all aspects of the distribution of the response variable of interest.

Usually regression models are based on a covariate-based model assumption for the mean
only. However in some situations not just the mean, but also the spread and the shape
of the distribution of the response depend on covariates. Therefore, additionally in this
course we will consider quantile regression and combine this with approaches which allow
smooth functions for the covariates, to introduce generalised additive quantile regression
models.

When the quantity of interest is just one quantile it is easiest to fit a quantile regression
model. Suppose we have data {(y1, x1), . . . , (yn, xn)} and a predictor function f(x) which
depends on parameters β. Instead of using the least squares loss function above, if we were
to use the absolute loss

n∑
i=1
|yi − f(xi)|

we would obtain median regression (also known as least absolute deviations regression).

Quantile regression is based on minimising,
n∑
i=1

ρτ (yi − f(xi))

and results in an estimate of the τ -th quantile of the response distribution, where ρτ (·) is the
so-called check function,

ρτ (z) =

τz if z > 0
(τ − 1)z if z ≤ 0.

This preliminary material will provide very brief revision of (generalised) linear (mixed) model
concepts and introduce ideas of smoothing and quantile regression to motivate ideas for the
course.
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2 Revision

2.1 Linear models

In general, for explanatory variables x1, . . . ,xp−1, with response data y1, . . . , yn we can write
our linear model as:

Yi = f(xi,β) + εi = x>i β + εi

and we wish to estimate and make inferences about the parameter vector β.

There are two main methods of parameter estimation for linear models: the methods of least
squares and maximum likelihood.

Least squares

The method of least squares minimises the sum of the squares of the vertical differences
between the observed values of y and the fitted values ŷ in order to estimate the parameter
vector β.

Minimise:

S(β) =
n∑
i=1

(yi − E(Yi))2

i.e. S(β) =
n∑
i=1

(yi − f(xi,β))2

with respect to β.

This can be re-formulated as the vector-matrix form of the linear model:

E(y) = Xβ

or

y = Xβ + ε

• y is the (n× 1) vector of observations

• β is the (p× 1) vector of parameters
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• X is an (n× p) design matrix

• ε is the (n× 1) vector of random errors, independent and identically distributed (i.i.d)
N(0, σ2In)

Therefore, the least squares formulation can be written in vector-matrix form as:

S(β) =
n∑
i=1

(yi − E(Yi))2 = (y− E(y))>(y− E(y)) = (y−Xβ)>(y−Xβ).

Differentiating with respect to β and setting to zero, we get the normal equations:

X>Xβ̂ = X>y.

Provided X is an invertible matrix (i.e. positive definite), this gives:

β̂ = (X>X)−1X>y.

From this, we can derive straight forward expressions for fitted values, residuals and the
residual sum of squares.

The fitted values are derived as

ŷ = Xβ̂ = X(X>X)−1X>y = Hy

where H = X(X>X)−1X> .

H is often referred to as the ‘hat’ or projection matrix, where H>H = H2 = H. The diagonal
elements of H, Hii are called leverages and are useful diagnostics.

The residuals (our estimate of the error term) are, therefore,

ε̂i = yi − ŷi

ε̂ = y− ŷ = y−Xβ̂ = y−Hy = (I−H)y

and the residual sum-of-squares (RSS) can be written as:

ε̂
>
ε̂ = (y−Hy)>(y−Hy) = ||y−Hy||2 = y>(I−H)y

where ||v|| =
√

v>v

Typically the standard deviations of residuals in a sample vary greatly from one data point
to another even when the errors all have the same standard deviation. We can adjust for this
problem by using modified residuals i.e. standardised residuals or studentised residuals.
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Standardised residuals:

ri = ε̂i√
var(ε̂i)

.

For this course it will also be particularly useful for us to examine the partial effects of
individual covariates. Therefore, we define,

Partial residuals, ε̂p :

ε̂pj = y− ŷ + f̂(xj)

where the partial residuals for covariate j are the sum of the residuals and the fitted values
for covariate j.

An unbiased estimator of σ2 is:

σ̂2 = 1
n− p

∑
i

(yi − ŷi)2 = RSS
n− p

where n− p is called the degrees of freedom for error, dferr.

The degrees of freedom for the model, dfmod is the number of parameters in the model, which
in this case is p. Therefore,

dferr = n− dfmod.

QR decomposition

In practice, the formulation above to compute β̂ is not particularly computationally efficient.
Therefore, since,

S(β) = (y−Xβ)>(y−Xβ) = ||y−Xβ||2,

the value will be unchanged if y−Xβ is rotated. This provides the basis for a practical method
for finding β̂, which is often used in practice e.g. for programming in R for computational
efficiency. Any real matrix X can always be decomposed,

X = Q
[

R
0

]
= Qf R

where R is a p× p upper triangular matrix and Q is an n× n orthogonal matrix, the first p
of which form Qf . Applying Q> to y−Xβ gives us:

6



||y−Xβ||2 = ||Q>y−Q>Xβ||2 =
∣∣∣∣∣
∣∣∣∣∣Q>y−

[
R
0

]
β

∣∣∣∣∣
∣∣∣∣∣
2

Writing

Q>y =
[

f
r

]
,

where f is vector of dimension p and hence r is a vector of dimension n− p gives us:

||y−Xβ||2 =
∣∣∣∣∣
∣∣∣∣∣
[

f
r

]
−
[

R
0

]
β

∣∣∣∣∣
∣∣∣∣∣
2

= ||f −Rβ||2 + ||r||2

The length of r does not depend on β, while ||f −Rβ||2 can be reduced to zero by choosing
β so that Rβ equals f .

Hence,

β̂ = R−1f

is the least squares estimator of β.

We will not develop this further here, see Wood (2017) for further details.

Maximum likelihood

An alternative method to estimate β̂ is through using maximum likelihood. Under the
assumption of a normal distribution for the errors, the maximum likelihood estimate of the
parameters can be found by maximising the following likelihood function.

We have assumed that ε ∼ N(0, σ2In), which is equivalent to assuming y ∼ N(Xβ, σ2In).
Therefore,

L(β, σ2) = (2π)−n/2σ−nexp(−||y−Xβ||2/2σ2).

A direct extension of this is the situation where the data do not meet the constant variance
assumption, and may not even be independent i.e. the model

E(y) = Xβ, y ∼ N(Xβ,Vσ2)

where V is any positive definite matrix. In this case the likelihood for β is:
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L(β, σ2) = 1√
(2πσ2)n|V|

e−(y−Xβ)T V−1(y−Xβ)/(2σ2)

and if V is known then the maximum likelihood estimator of β can be computed.

The likelihood approach can be taken further. If V depends on unknown parameters then
these too can be estimated by maximum likelihood estimation and this is what is done in
linear mixed modelling (see Section 3.3).

In a similar way to the expressions above, the least squares estimates of β can be found by
minimising:

S(β) = (y−Xβ)>V−1(y−Xβ)

and the weighted least squares formulation is given by:

S(β) = (y−Xβ)>W(y−Xβ).

In vector-matrix form we have:

β̂ = (X>V−1X)−1X>V−1y

and

β̂ = (X>WX)−1X>Wy.

Please revise assessing model goodness of fit, R2(adj), model diagnostic checking (e.g. plots
of residuals versus fits) and inference for model coefficients (e.g. testing H0: βj = 0, and
producing associated confidence intervals).

Model comparison

It is usually a good idea to avoid over-complicated models (i.e. those that are dependent on
predictor variables which do not provide additional information), to produce models which
are efficient and straight forward to interpret. Several approaches to model selection are
based on hypothesis tests about model covariates. For example:

An F-test:

Under the null hypothesis that the simpler model (Model 0) is appropriate:

F = (RSS0 − RSS1)/(df0 − df1)
RSS1/(df1)

∼ F(df0−df1,df1).
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We reject the null hypothesis for small p-values and conclude that the more complex model
provides additional useful information, i.e we reject the simpler model for the more complex
one if F > F(df0−df1,df1) at some chosen significance level α.

An alternative method to hypothesis testing is to try to find the model that gets as close as
possible to the true model, rather than to find the simplest model that is consistent with the
data. Selecting models in order to minimise information criteria (e.g. Akaike’s Information
Criterion (AIC)) is one way of trying to do this - please revise these ideas.

Exercise: Unbiased estimators
For a linear regression model

Yi = β0 + β1x1i + · · ·+ βpxpi + εi, i = 1, . . . , n, ε ∼ N(0, σ2I),

show that β̂ is an unbiased estimator for β (the vector of parameters) and derive an expression
for the variance-covariance matrix of β̂. (Hint: E(β̂) = β, for an unbiased estimator).

Exercise: Degrees of freedom for a model

In the case of a linear regression model:

Yi = β0 + β1x1i + . . . βpxpi + εi, i = 1, . . . , n,

show that the trace (the sum of the diagonal entries) of the (so called) hat or projection
matrix is p+ 1 i.e. the trace (tr) of the hat/projection matrix (H) is equal to the number of
parameters (degrees of freedom for the model). It will be helpful to use the fact that tr(AB)
= tr(BA), where A and B are matrices.

2.2 Bayesian linear model

In this section we will quickly revise the Bayesian linear model, i.e. we assume the linear
regression model

yi|β ∼ N(x>i β, σ2) i.i.d.

or equivalently,
y|β ∼ N(Xβ, σ2I)

Assume for now that σ2 is known and just place a Gaussian prior on β, i.e.

β ∼ N(0, τ 2I).

We can write the p.d.f. of the posterior distribution of β as
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(a) Samples from the prior distribution.

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

Covariate x

R
es

po
ns

e 
y

● ●●

●
●

(b) Data and samples from the posterior distribution.

Figure 1: Draws from the prior distribution (a) and the posterior distribution (b) of a
Bayesian linear model. The bold line corresponds to the mean, the shaded area corresponds
to pointwise 95% credible intervals.

f(β|y1, . . . , yn) ∝
(

n∏
i=1

f(yi|β)
)

︸ ︷︷ ︸
Likelihood

· f(β)︸ ︷︷ ︸
prior

=
(

n∏
i=1

1√
2πσ2

exp
(
−(yi − x>i β)2

2σ2

))
·
(

1√
2πτ 2

)
exp

(
−
∑p
j=1 β

2
j

2τ 2

)
.

Collecting terms, taking logs and keeping only terms involving β yields the log-posterior
density

log f(β|y1, . . . , yn) = const− 1
2σ2

n∑
i=1

(yi − x>i β)2 − 1
2τ 2

p∑
j=1

β2
j ,

which is, up to a multiplicative constant, the objective function used in ridge regression with
λ = σ2

τ2 .

One can show (by completing the square) that the posterior distribution of β is

β|y1, . . . , yn ∼ N
(X>X + σ2

τ 2 I
)−1

X>y,
(

X>X + σ2

τ 2 I
)−1

 .
Thus the ridge regression estimate β̂ridge = (X>X + λI)−1X>y is the Bayesian maximum-a-
posteriori (MAP) estimate of β.
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Figure 1 illustrates this idea of Bayesian inference for a linear model with design matrix

X =


1 x1
... ...
1 xn

. Panel (a) shows ten draws from the prior distribution, whereas panel (b)

shows draws from the posterior distribution given the data.

2.3 Generalised linear models (GLMs)

GLMs extend a linear model to the situation where the response variable is a distribution
other than the normal, but is a member of the class known as the exponential family of
distributions.

A generalised linear model (GLM) can be written in the form:

g(E(Yi)) = β0 + β1x1i + . . . βmxmi

or in vector-matrix notation:

g(E(y)) = g(µ) = Xβ, g(E(Yi)) = g(µi) = xTi β

where, g is a smooth monotonic link function and describes how the mean response is linked
to the covariates through the linear predictor:

ηi = g(µi)

µi = E(Yi), yi ∼ EF(µi, φ)

and EF is an exponential family distribution with scale parameter φ.

In principle, any continuous and differentiable function which is monotonic can be used as
the link function but there are some choices which are common and convenient for standard
GLMs. See the APTS course - Statistical Modelling for revision on exponential families.

In order to estimate the parameters β of the GLM we use maximum likelihood estimation.

Maximum likelihood estimation for a set of parameters β based on data y:

• L(β; y) ∝ ∏n
i=1 f(yi,β)

• `(β; y) = loge(L(β; y))

• Usually, β̂ is obtained by differentiating the log-likelihood wrt each of the parameters
and setting equal to zero:
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∂`(β)
∂βt

= 0 for t = 1, . . . ,m.

Often the solutions are obtained numerically and likelihood estimates are maxima if the
Hessian matrix (matrix of second order derivatives) is negative definite.

Sometimes we can maximise the likelihood analytically and find an exact solution for the
MLE β̂ but the Gaussian GLM is the only common case where this is possible. Typically,
we must use numerical optimization. This optimization can be shown to be equivalent to
iteratively reweighted least squares (IRWLS).

In order to perform inference for GLMs, the terminology of deviance is required:

Deviance = D = 2logλ = 2(`(β̂max; y)− `(β̂; y)).

where β̂max are the estimated parameters for the saturated (full) model.

Models such as the normal distribution and gamma distribution have a scale parameter φ
and for these it is better to use the scaled deviance. This can be written as D∗ = D/φ.

To compare a more complex model 1 to a smaller nested model 0, the difference in the scaled
deviances D∗0 −D∗1 is asymptotically χ2 with degrees of freedom equal to the difference in
the number of identifiable parameters in the two models. That is:

D∗0 −D∗1 ∼ χ2(1− α; p1 − p0).

The simpler model is rejected in favour of the more complex model if:

D∗0 −D∗1 > χ2(1− α; p1 − p0)

where α is the chosen significance level, and p1 and p0 are the number of parameters in
Models 1 and 0 respectively.

As with standard linear models, it is important to check the adequacy of the assumptions
that we are making. These checks are still based on the residuals, the difference between the
observed and the fitted values from the GLM. However, since the variance of the response is
not constant for most GLMs they have to be modified to enable them to be used in a similar
way to residuals from a Gaussian linear model. Pearson residuals and deviance residuals are
reasonable choices.
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3 Smoothing

The first model of interest that we introduced in Section 1.1 was to allow flexibility in the
mean, and we will do this through using smoothing. In this course we will focus on smoothing
within regression models. However, in this preliminary material we’ll introduce some of the
ideas and concepts for smoothing through looking at density estimation - a straight forward
example to introduce the ideas (and that can also be useful for fitting mixture models).

3.1 Density estimation

The simple idea of density estimation is to place a kernel function, which in fact is itself a
density function, on top of each observation and average these functions.

A probability density function is a key concept through which variability can be expressed
precisely. In statistical modelling its role is often to capture variation sufficiently well, within
a model where the main interest lies in structural terms such as regression coefficients.
However, there are some situations where the shape of the density function itself is the focus
of attention. The example below illustrates this.

Example: Aircraft data
These data record six characteristics of aircraft designs which appeared during the twentieth
century. The variables are:

Yr year of first manufacture
Period a code to indicate one of three broad time periods
Power total engine power (kW)
Span wing span (m)

Length length (m)
Weight maximum take-off weight (kg)
Speed maximum speed (km/h)
Range range (km)

The data are available in the sm package for R through the object aircraft:
library(sm)
names(aircraft)

A brief look at the data suggests that the six measurements on each aircraft should be
expressed on the log scale to reduce skewness. Span is displayed on a log scale below,
for Period 3 which corresponds to the years after the Second World War. The pattern of
variability shown in the histogram exhibits some skewness. There is perhaps even a suggestion
of a subsidiary mode at high values of log span, although this is difficult to evaluate.
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A simple density estimate

The histogram is a very familiar object. It can be written as

f̃(y) =
n∑
i=1

I(y − ỹi;h),

where y1, . . . , yn denote the observed data, ỹi denotes the centre of the interval in which yi
falls and I(z;h) is the indicator function of the interval [−h, h]. (Notice that further scaling
would be required to ensure that f̃ integrates to 1.)

The form of the construction of f̃ highlights some features which are open to criticism if we
view the histogram as an estimator of the underlying density function. Firstly the histogram
is not smooth, when we expect that the underlying density usually will be. Secondly, some
information is lost when we replace each observation yi by the bin mid-point ỹi. Both of
these issues can be addressed by using a density estimator in the form

f̂(y) = 1
n

n∑
i=1

w(y − yi;h),

where w is a probability density, called here a kernel function, whose variance is controlled by
the smoothing parameter h. The middle panel in the plots below shows the effects of doing
this with the aircraft data. Large changes in the value of the smoothing parameter have large
effects on the smoothness of the resulting estimates, as the left and right hand plots below
illustrate.
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Exercise: The effect of the smoothing parameter
To experiment with density estimates, the code below should launch a new window with
interactive controls. Try altering the smoothing parameter through the slider. Does this
help you assess whether the subsidiary mode is a genuine feature or an artefact of random
variation?

library(rpanel)
library(tkrplot)
library(sm)
y <- log(aircraft$Span[aircraft$Period == 3])
sm.density(y, panel = TRUE)

One advantage of density estimates is that it is a simple matter to superimpose these to allow
different groups to be compared. Here the groups for the three different time periods are
compared. It is interesting that the ‘shoulder’ appears in all three time periods.
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Simple properties of density estimates

Without any real restriction, we can assume that the kernel function can be written in the
simple form w(y − yi;h) = 1

h
w
(
y−yi

h

)
. The mean of a density estimator can then be written

as
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E
{
f̂(y)

}
=
∫ 1
h
w
(
y − z
h

)
f(z)dz =

∫
w(u)f(y − hu)du,

where the last expression simply involves a change of variable u = y−z
h
. A Taylor series

expansion of the term involving f in the last expression gives

f(y − hu) = f(y)− huf ′(y) + 1
2h

2u2f ′′(y) + o(h2)

and, on insertion into the expression for the mean, this produces the approximation

E
{
f̂(y)

}
≈ f(y) + h2

2 σ
2
w f
′′(y),

where we assume that the kernel function is symmetric so that
∫
uw(u)du = 0, and where σ2

w

denotes the variance of the kernel, namely
∫
u2w(u)du.

The variance of the density estimate can be written as

Var{f̂(y)} = 1
n

Var
{1
h
w
(
y − Y
h

)}
= 1

n

{
E
{[1
h
w
(
y − Y
h

)]2}
− E

{1
h
w
(
y − Y
h

)}2}
.

A similar change of variable and Taylor series expansion produces the approximation

Var{f̂(y)} ≈ 1
nh
f(y)α(w),

where α(w) =
∫
w2(u)du.

These expressions capture the essential features of smoothing. In particular, bias is incurred
and we can see that this is controlled by f ′′, which means that where the density has peaks
and valleys the density estimate will underestimate and overestimate respectively. This makes
intuitive sense.

A useful global measure of performance is the mean integrated squared error (MISE) which
balances squared bias and variance.

MISE(f̂) = E
{∫

[f̂(y)− f(y)]2dy
}

=
∫ [

E
{
f̂(y)

}
− f(y)

]2
dy +

∫
Var{f̂(y)}dy.
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3.2 Basis function approaches

When we consider nonparametric regression and (generalised) additive models, kernel weight
functions (as introduced in section 3.1), through local regression are one approach that can
be used to estimate the smooth fucntion for a covariate relationship with a response (using
the data). An alternative approach is to use the idea of basis functions, and so we will
introduce/revise the mathematical terminology and notation here.

A basis

Consider the following general polynomial:

Yi = f(xi) + εi = β0 + β1xi + β2x
2
i + · · ·+ βpx

p
i + εi.

We say that the space of polynomials of order p and below, contains f . This is an example of
a basis.

A basis defines the space of functions of which f (or a close approximation to it) is an element.

Choosing a basis amounts to choosing some basis functions which will be treated as completely
known. The basis functions for a third order polynomial would be: 1, x, x2, x3 and hence the
basis is:

b0(x) = 1, b1(x) = x, b2(x) = x2, b3(x) = x3.

Polynomial regression can be a useful tool if a polynomial of very low order yields a sufficient
fit to the data. However, polynomial regression is not very well suited for modelling more
complex relationships as each basis function acts “globally” rather than “locally”. Fitting
data well in one part of the sample space can create artefacts elsewhere.

An alternative approach is to use a set of basis functions which are more local in their effects.
Polynomial splines are the most popular such model. Polynomial spline models are based
on piecewise polynomial models of low order, and we’ll explore a truncated power basis,
B-splines, fourier basis and p-splines as part of this course.

Basis function approaches are not based on local weights, but based on expanding the design
matrix used in linear regression. To fix notation, we quickly state the simple linear regression
model

E(Yi) = f(xi) = β0 + β1xi for i = 1, . . . , n,
or equivalently, in matrix-vector notation,

E(y) = Bβ with y = (Y1, . . . , Yn)> and B =


1 x1
... ...
1 xn

.
Basis function approaches effectively consist of introducing functions of x (other than just
the identity) into the design matrix B.
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One key advantage of basis-expansion methods is that we can then estimate β using the
same techniques as used in multiple linear regression, i.e. the least-squares estimator is

β̂ = (B>B)−1B>y

for a design matrix B of basis functions rather than X of covariates.

Exercise: Basis functions
Write down the basis functions for the following models:

• E(Yi) = β0 + β1xi + β11(xi − 0.6)+ + εi, i = 1, . . . , n;
• E(Yi) = β0 + β1xi + β11|xi − κ1|+ εi, i = 1, . . . , n.

Note: (x− 0.6)+ refers to the positive part of the function and hence this is zero for values of
x < 0.6, and κ1 is known.

We will start the course by considering the ideas of nonparametric regression, estimating f(x)
in the equation:

Yi = f(xi) + εi

using both kernel and spline based methods.

The two key issues here are:

• how to do the smoothing? (E.g. kernel/spline based methods) and,
• how much to smooth? (I.e. considering the bias/variance trade-off).

3.3 Mixed models

The idea and concepts of random effects can be used to introduce methods of automatically
selecting the level of smoothing for smooth functions in regression models.

So let’s revise the key ideas for mixed models.

Mixed models contain:

• Fixed effects: unknown parameter(s) that we are specifically interested in estimating
from the data;

• Random effects: random variables where we try to estimate the parameters that
describe the distribution of the random effects.

For a mixed effect model with normal errors:

y = Xβ + Zγ + ε.

We assume that the random effects γ ∼ N(0,D), ε ∼ N(0, σ2I).

This gives us that:
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Var(y) = Var(Zγ) + Var(ε) = ZDZ> + σ2I

and hence,

y ∼ N(Xβ,ZDZ> + σ2I).

Standard maximum likelihood is one method of estimation to find β, σ2 and D, with
estimation of V indirectly referred to as variance component estimation. However, maximum
likelihood estimation of variance components tends to underestimate them. Therefore, an
alternative approach to estimation is Restricted Maximum Likelihood (REML), which involves
maximizing the likelihood of linear combinations of the elements of y that do not depend on
the fixed parameters β and is a bias reducing alternative.

See the APTS courses Statistical Modelling and Statistial Inference for more revision here.

An additive model can be represented as a mixed model with a variance component controlling
the amount of smoothing for each additive component - we’ll expand on these ideas within
the course to enable automatic selection of smoothing parameters.
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4 Quantile regression

The second model of interest in the course is where we allow flexibility in the response being
modelled. In this course we’ll consider the ideas of quantile regression as outlined in Section
1.2. To motivate this, consider the example below:

Example: Effect of age on obesity in the US - part 1
This example explores data on body mass index (BMI) and age from the United States. The
example fits a series of models. Firstly,

• a linear regression for the relationship between mean BMI and age;
• a quantile regression to explore the 90% and 98% quantiles of the conditional distribu-

tion.
– To find the 90% and 98% quantile of the conditional distribution of the BMI given

Age we fit two quantile regression models using the function rq from quantreg.

Example R code is:
library(NHANES)
library(quantreg)

plot(BMI~Age, data=NHANES, col="grey", pch=16, cex=0.5)
newdata <- data.frame(Age=seq(2,80,len=500))

model <- lm(BMI~Age, data=NHANES)
lines(newdata$Age, predict(model, newdata), col=1, lwd=2)

model <- rq(BMI~Age, data=NHANES, tau=0.9)
lines(newdata$Age, predict(model, newdata), col=3, lwd=2)

model <- rq(BMI~Age, data=NHANES, tau=0.98)
lines(newdata$Age, predict(model, newdata), col=4, lwd=2)
legend("topleft",col=c(1,3,4), lwd=2, c("linear regression",

"90% quantile", "98% quantile"))
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In their vanilla form, quantile regression models are run separately for each quantile. This
can however sometimes lead to a problem with estimated quantiles crossing.

This can be avoided by estimating the entire conditional distribution in one go.

Linear programming algorithms are used for estimation here and these concepts will be
revised/introduced throughout the course.

Example: Effect of age on obesity in the US - part 2
In this second part, the example explores smooth functions for the relationship between data
on body mass index (BMI) and age from the United States. Specifically,

• a nonparametric regression using B-splines to estimate the smooth function;
• a nonparametric quantile regression using B-splines to explore the 90% and 98%

quantiles of the conditional distribution

Example R code is:
library(NHANES)
library(splines)
library(quantreg)

plot(BMI~Age, data=NHANES, col="grey", pch=16, cex=0.5)
newdata <- data.frame(Age=seq(2,80,len=500))
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model <- lm(BMI~bs(Age, df=10), data=NHANES)
lines(newdata$Age, predict(model, newdata), col=2, lwd=2)

model <- rq(BMI~bs(Age, df=10), data=NHANES, tau=0.9)
lines(newdata$Age, predict(model, newdata), col=5, lwd=2)

model <- rq(BMI~bs(Age, df=10), data=NHANES, tau=0.98)
lines(newdata$Age, predict(model, newdata), col=6, lwd=2)
legend("topleft",col=c(2,5,6), lwd=2, c("nonparametric regression",

"90% quantile", "98% quantile"))
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Which of these models do you think is a useful representation for the pattern/relationship?

This course will introduce and develop the theoretical details and concepts for the models
fitted in the example above (including B-splines and quantile regression), and extend these
ideas for the situation of multiple covariates.
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5 Broad concepts

The simple case of density estimation and the introduction to the area of quantile regression
here highlight features and issues which are common to a wide range of problems involving
the estimation of functions, relationships or patterns which are nonparametric but smooth,
and evident over different quantiles of the response distribution.

The term nonparametric is used in this context to mean that the relationships or patterns of
interest cannot be expressed in specific formulae which involve a fixed number of unknown
parameters. This means that the parameter space is the space of functions, whose dimension-
ality is infinite. This takes us outside of the standard framework for parametric models and
the main theme of the course will be to discuss how we can do this while producing tools
which are highly effective for modelling and analysing data from a wide variety of contexts
and exhibiting a wide variety of structures.

On a side note, the term nonparametric is sometimes used in the narrower setting of simple
statistical methods based on the ranks of the data, rather than the original measurements.
This is not the sense in which it will be used here.
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6 Further reading

A variety of texts on flexible regression:

Hastie, T. & Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall: London.

Bowman, A.W. & Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis.
OUP: Oxford.

Koenker, R. (2005). Quantile Regression (Econometric Society Monographs). Cambridge:
Cambridge University Press.

Koenker, R., Chernozhukov, V., He, X. & Peng, L. (2017). Handbook of Quantile Regression.
Chapman and Hall/CRC.

Ruppert, D., Wand, M.P. & Carroll, R.J. (2003). Semiparametric Regression. CUP: Cam-
bridge.

Wood, S. (2017). Generalized additive models: an introduction with R SECOND EDITION.
CRC Press, Taylor & Francis Group, Boca Raton, FL.
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7 Solutions

Exercise: Unbiased estimators

For β̂ to be an unbiased estimator of β we require E(β̂) = β

E(β̂) = E((X>X)−1X>y)
= (X>X)−1X>E(y)
= (X>X)−1X>Xβ
= β

Cov(β̂) = Cov((X>X)−1X>y)
= (X>X)−1X>Cov(y)((X>X)−1X>)>

= (X>X)−1X>
σ2IX(X>X)−1

= (X>X)−1X>X(X>X)−1σ2

= (X>X)−1σ2

Exercise 2: Degrees of freedom for a model

tr(H) = tr(X(X>X)−1X>) = tr(X>X(X>X)−1)
= tr(Ip+1) = p+ 1

Exercise 3: Basis functions

• 1, x, (x− 0.6)+

• 1, x, |x− κ1|
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