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STATISTICAL ASYMPTOTICS

This is a commentary on the APTS module ‘Statistical Asymptotics’. Please
notify the author of errors in these notes (e-mail alastair.young@imperial.ac.uk).
The material of the module is arranged in three chapters, of which the

first, provided here, constitutes background material, and the preliminary
reading for the module. Some of the key statistical ideas of this chapter will
be reviewed as necessary during the module, and may have been covered in
the APTS module ‘Statistical Inference’. However, the probability material
should be treated as prerequisite. The material in Sections 1.9 and 1.10 is
included to provide a more complete picture, but is non-essential.
The key reference for the module is Young and Smith (2005). A useful

background text, which presents basic ideas and techniques of inference, is
Casella and Berger (1990). Davison (2003) is another excellent reference:
Chapters 4 and 7 represent further very suitable preliminary reading and
Chapter 12 is particularly relevant to the course.
Chapters 1 and 2 follow Barndorff-Nielsen and Cox (1994) quite closely.

The introductory chapters of Cox and Hinkley (1974) are also drawn on.
Some of the material, in particular the large-sample theory in Chapter 2,
expands upon components of the APTS module ‘Statistical Inference’. The
heart of the module is Chapter 3, which is drawn from Young and Smith
(2005), and is intended to give a snapshot of important current ideas in
asymptotic inference. Many results are stated without proof. Some of the
derivations are hard, and beyond the scope of the course.
Another excellent book for the module is Pace and Salvan (1997). The

book by Severini (2000) is also strongly recommended, as being a bit more
accessible than Barndorff-Nielsen and Cox (1994).
Analytic methods used in the course are detailed by Barndorff-Nielsen

and Cox (1989).
The objectives of the module are: (i) to provide an overview of central

asymptotic theory of statistical inference, in particular of likelihood-based
approaches; (ii) to provide an introduction to analytic methods and tools, in
particular approximation techniques that are widely used in the development
of statistical theory and methodology; (iii) to provide exposure to key ideas
in contemporary statistical theory; and (iv) to provide practice in application
of key techniques to particular problems.
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APTS/April 2009 1 Concepts and Principles

1 Concepts and Principles

1.1 Introduction

The representation of experimental and observational data as outcomes of
random variables provides a structure for the systematic treatment of infer-
ence from data, by which inductive conclusions from the particular to the
general can be drawn. Such a systematic treatment involves first the for-
malisation, in mathematical terms, of several basic concepts about data as
observed values of random variables. The aim of this chapter is to intro-
duce these concepts and provide a formal basis for the methods of inference
discussed in Chapters 2 and 3.

We wish to analyse observations, y1, . . . , yn, collected as an n × 1 vector
y = (y1, . . . , yn)

T . Then:

1. We regard y as the observed value of a random variable Y = (Y1, . . . , Yn)
T

having an (unknown) probability distribution conveniently specified by
a probability density function f(y) = fY (y), with respect to an appro-
priate measure, usually Lebesgue measure on Rn or counting measure.

2. We restrict the unknown density to a suitable family F . We are con-
cerned primarily with the case where the density is of known analyt-
ical form, but involves a finite number of real unknown parameters
θ = (θ1, . . . , θd)T . We specify the region Ωθ ⊂ Rd of possible values
of θ, called the parameter space. To indicate the dependency of the
density on θ we write f(y; θ) and refer to this as the model function.

3. We assume that the objective of the analysis is one or more of:

(a) assessing some aspects of θ, for example the value of a single
component θb, say;

(b) predicting the value of some as yet unobserved random variable
whose distribution depends on θ;

(c) examining the adequacy of the model specified by F and Ωθ.

We will be concerned predominantly with (a). There are three main types
of inference we might be interested in, point estimation, interval estimation
and hypothesis testing. In point estimation, a single value is computed from
the data y, and used as an estimate of the parameter of interest. Inter-
val estimation provides a range of values which have some predetermined
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high probability of including the true, but unknown, value of the parame-
ter. Hypothesis testing sets up specific hypotheses regarding the parameter
of interest and assesses the plausibility of any specified hypothesis by see-
ing whether the data y supports or refutes that hypothesis. It is assumed
that the reader is familiar with basic procedures of inference, which can be
evaluated in terms of formal optimality criteria.

Our objective in these notes is to provide a framework for the relatively
systematic analysis of a wide range of possible F . We do not do this by
aiming to satisfy various formal optimality criteria, but rather by focusing on
fundamental elements of the theory of statistical inference, in particular the
likelihood function and quantities derived from it: a ‘neo-Fisherian’ approach
to inference.

1.2 Special models

Two general classes of models particularly relevant in theory and practice
are exponential families and transformation families.

1.2.1 Exponential families

Suppose that the distribution of Y depends on m unknown parameters, de-
noted by φ = (φ1, . . . , φm)T , to be called natural parameters, through a
density of the form

fY (y;φ) = h(y) exp{s
Tφ−K(φ)}, y ∈ Y , (1.1)

where Y is a set not depending on φ. Here s ≡ s(y) = (s1, . . . , sm)
T , are

called natural statistics. The value of m may be reduced if the components
of φ satisfy a linear constraint, or if the components of s are (with probability
one) linearly dependent. So assume that the representation (1.1) is minimal,
in that m is as small as possible. Provided the natural parameter space Ωφ
consists of all φ such that

∫
h(y) exp{sTφ}dy <∞,

we refer to the family F as a full exponential model, or an (m,m) exponential
family.

The exponential form (1.1) is preserved if we apply any fixed nonsingular
linear transformation to s, provided we make the inverse transformation to
φ, leaving sTφ invariant. If 0 ∈ Ωφ, we can without loss of generality take
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K(0) = 0 and then h(y) = fY (y; 0). In other cases we can measure φ from
some suitable origin φ0 ∈ Ωφ, by rewriting (1.1) as

fY (y;φ) = fY (y;φ0) exp[s
T (φ− φ0)− {K(φ)−K(φ0)}].

We refer to fY (y;φ) as the (m,m) exponential family generated from the
baseline fY (y;φ0), by exponential tilting via s. We generate all the members
of the family by tilting a single baseline density. This exponential tilting idea
will be used later, in Chapter 3.

We have from (1.1) that the moment generating function of the random
variable S corresponding to s is

M(S; t, φ) = E{exp(ST t)}

=

∫
h(y) exp{sT (φ+ t)}dy × exp{−K(φ)}

= exp{K(φ+ t)−K(φ)},

from which we obtain

E(Si;φ) =
∂K(φ)

∂φi
,

or
E(S;φ) = ∇K(φ),

where ∇ is the gradient operator (∂/∂φ1, . . . , ∂/∂φm)T . Also,

cov(Si, Sj;φ) =
∂2K(φ)

∂φi∂φj
.

To compute E(Si) etc. it is only necessary to know the function K(φ).

Let s(y) = (t(y), u(y)) be a partition of the vector of natural statistics, where
t has k components and u is m− k dimensional. Consider the corresponding
partition of the natural parameter φ = (τ, ξ). The density of a generic
element of the family can be written as

fY (y; τ, ξ) = exp{τ
T t(y) + ξTu(y)−K(τ, ξ)}h(y).

Two key results hold, which make exponential families particularly attractive,
as they allow inference about selected components of the natural parameter,
in the absence of knowledge about the other components.

First, the family of marginal distributions of U = u(Y ) is an m − k dimen-
sional exponential family,

fU(u; τ, ξ) = exp{ξ
Tu−Kτ (ξ)}hτ (u),
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say.

Secondly, the family of conditional distributions of T = t(Y ) given u(Y ) = u
is a k dimensional exponential family, and the conditional densities are free
of ξ, so that

fT |U=u(t; u, τ) = exp{τ
T t−Ku(τ)}hu(t),

say.

A proof of both of these results is given by Pace and Salvan (1997, p. 190).
The key is to observe that the family of distributions of the natural statistics
is an m dimensional exponential family, with density

fT,U(t, u; τ, ξ) = exp{τ
T t+ ξTu−K(τ, ξ)}p0(t, u),

where p0(t, u) denotes the density of the natural statistics when (τ, ξ) = (0, 0),
assuming without loss of generality that 0 ∈ Ωφ.

In the situation described above, both the natural statistic and the natural
parameter lie in m-dimensional regions. Sometimes, φ may be restricted to
lie in a d-dimensional subspace, d < m. This is most conveniently expressed
by writing φ = φ(θ) where θ is a d-dimensional parameter. We then have

fY (y; θ) = h(y) exp[s
Tφ(θ)−K{φ(θ)}]

where θ ∈ Ωθ ⊂ Rd. We call this system an (m, d) exponential family, noting
that we required that (φ1, . . . , φm) does not belong to a v-dimensional linear
subspace of Rm with v < m: we indicate this by saying that the exponential
family is curved. Think of the case m = 2, d = 1: {φ1(θ), φ2(θ)} defines a
curve in the plane, rather than a straight line, as θ varies.

Interest in curved exponential families stems from two features, related to
concepts to be discussed. The maximum likelihood estimator is not a suffi-
cient statistic, so that there is scope for conditioning on an ancillary statistic.
Also, it can be shown that any sufficiently smooth parametric family can be
approximated, locally to the true parameter value, to some suitable order,
by a curved exponential family.

1.2.2 Transformation families

The basic idea behind a transformation family is that of a group of transfor-
mations acting on the sample space, generating a family of distributions all
of the same form, but with different values of the parameters.

Recall that a group G is a mathematical structure having a binary operation
◦ such that
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• if g, g′ ∈ G, then g ◦ g′ ∈ G;

• if g, g′, g′′ ∈ G, then (g ◦ g′) ◦ g′′ = g ◦ (g′ ◦ g′′);

• G contains an identity element e such that e ◦ g = g ◦ e = g, for each
g ∈ G; and

• each g ∈ G possesses an inverse g−1 ∈ G such that g◦g−1 = g−1◦g = e.

In the present context, we will be concerned with a group G of transfor-
mations acting on the sample space X of a random variable X, and the
binary operation will simply be composition of functions: we have e(x) = x,
(g1 ◦ g2)(x) = g1(g2(x)).

The group elements typically correspond to elements of a parameter space Ωθ,
so that a transformation may be written as, say, gθ. The family of densities
of gθ(X), for gθ ∈ G, is called a (group) transformation family.

Setting x ≈ x′ iff there is a g ∈ G such that x = g(x′) defines an equivalence
relation, which partitions X into equivalence classes called orbits. These may
be labelled by an index a, say. Two points x and x′ on the same orbit have
the same index, a(x) = a(x′). Each x ∈ X belongs to precisely one orbit,
and might be represented by a (which identifies the orbit) and its position
on the orbit.

1.2.3 Maximal invariant

We say that the statistic t is invariant to the action of the group G if its
value does not depend on whether x or g(x) was observed, for any g ∈ G:
t(x) = t(g(x)). An example is the index a above.

The statistic t is maximal invariant if every other invariant statistic is a
function of it, or equivalently, t(x) = t(x′) implies that x′ = g(x) for some
g ∈ G. A maximal invariant can be thought of (Davison, 2003, Section 5.3)
as a reduced version of the data that represents it as closely as possible while
remaining invariant to the action of G. In some sense, it is what remains of
X once minimal information about the parameter values has been extracted.

1.2.4 Equivariant statistics and a maximal invariant

As described, typically there is a one-to-one correspondence between the
elements of G and the parameter space Ωθ, and then the action of G on X
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requires that Ωθ itself constitutes a group, with binary operation ∗ say: we
must have gθ ◦ gφ = gθ∗φ. The group action on X induces a group action on
Ωθ. If Ḡ denotes this induced group, then associated with each gθ ∈ G there
is a ḡθ ∈ Ḡ, satisfying ḡθ(φ) = θ ∗ φ.

If t is an invariant statistic, the distribution of T = t(X) is the same as that of
t(g(X)), for all g. If, as we assume here, the elements of G are identified with
parameter values, this means that the distribution of T does not depend on
the parameter and is known in principle. T is said to be distribution constant.

A statistic S = s(X) defined on X and taking values in the parameter space
Ωθ is said to be equivariant if s(gθ(x)) = ḡθ(s(x)) for all gθ ∈ G and x ∈ X .
Often S is chosen to be an estimator of θ, and it is then called an equivariant
estimator.

A key operational point is that an equivariant estimator can be used to
construct a maximal invariant.

Consider t(X) = g−1s(X)(X). This is invariant, since

t(gθ(x)) = g−1s(gθ(x))(gθ(x)) = g
−1
ḡθ(s(x))

(gθ(x)) = g
−1
θ∗s(x)(gθ(x))

= g−1s(x){g
−1
θ (gθ(x))} = g

−1
s(x)(x) = t(x).

If t(x) = t(x′), then g−1s(x)(x) = g−1s(x′)(x
′), and it follows that x′ = gs(x′) ◦

g−1s(x)(x), which shows that t(X) is maximal invariant.

The statistical importance of a maximal invariant will be illuminated in
Chapter 3. In a transformation family, a maximal invariant plays the role of
the ancillary statistic in the conditional inference on the parameter of inter-
est indicated by a Fisherian approach. The above direct construction of a
maximal invariant from an equivariant estimator facilitates identification of
an appropriate ancillary statistic in the transformation family context.

1.2.5 An example

An important example is the location-scale model. Let X = η+τε, where
ε has a known density f , and the parameter θ = (η, τ ) ∈ Ωθ = R × R+.
Define a group action by gθ(x) = g(η,τ)(x) = η + τx, so

g(η,τ) ◦ g(μ,σ)(x) = η + τμ+ τσx = g(η+τμ,τσ)(x).

The set of such transformations is closed with identity g(0,1). It is easy to
check that g(η,τ) has inverse g(−η/τ,τ−1). Hence, G = {g(η,τ) : (η, τ ) ∈ R×R+}
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constitutes a group under the composition of functions operation ◦ defined
above.

The action of g(η,τ) on a random sample X = (X1, . . . , Xn) is g(η,τ)(X) =
η + τX, with η ≡ η1n, where 1n denotes the n × 1 vector of 1’s, and X is
written as an n× 1 vector.

The induced group action on Ωθ is given by ḡ(η,τ)((μ, σ)) ≡ (η, τ ) ∗ (μ, σ) =
(η + τμ, τσ).

The sample mean and standard deviation are equivariant, because with
s(X) = (X̄, V 1/2), where V = (n− 1)−1

∑
(Xj − X̄)2, we have

s(g(η,τ)(X)) =

(

η + τX,
{
(n− 1)−1

∑
(η + τXj − (η + τX))

2
}1/2)

=

(

η + τX̄,
{
(n− 1)−1

∑
(η + τXj − η − τX̄)

2
}1/2)

=
(
η + τX̄, τV 1/2

)

= ḡ(η,τ)(s(X)).

A maximal invariant is A = g−1s(X)(X), and the parameter corresponding

to g−1s(X) is (−X̄/V
1/2, V −1/2). Hence a maximal invariant is the vector of

residuals

A = (X − X̄)/V 1/2 =

(
X1 − X̄
V 1/2

, . . . ,
Xn − X̄
V 1/2

)T
,

called the configuration. It is easily checked directly that the distribution of
A does not depend on θ. Any function of A is also invariant. The orbits
are determined by different values a of the statistic A, and X has a unique
representation as X = gs(X)(A) = X̄ + V

1/2A.

1.3 Likelihood

1.3.1 Definitions

We have a parametric model, involving a model function fY (y; θ) for a ran-
dom variable Y and parameter θ ∈ Ωθ. The likelihood function is

LY (θ; y) = L(θ; y) = L(θ) = fY (y; θ).

Usually we work with the log-likelihood

lY (θ; y) = l(θ; y) = l(θ) = log fY (y; θ),
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sometimes studied as a random variable

lY (θ;Y ) = l(θ;Y ) = log fY (Y ; θ).

In likelihood calculations, we can drop factors depending on y only, or ad-
ditive terms depending only on y may be dropped from log-likelihoods.
This idea can be formalised by working with the normed likelihood L̄(θ) =
L(θ)/L(θ̂), where θ̂ is the value of θ maximising L(θ). We define the score
function by

ur(θ; y) =
∂l(θ; y)

∂θr

uY (θ; y) = u(θ; y) = ∇θl(θ; y),

where ∇θ = (∂/∂θ
1, . . . , ∂/∂θd)T .

To study the score function as a random variable (the ‘score statistic’) we
write

uY (θ;Y ) = u(θ;Y ) = U(θ) = U.

These definitions are expressed in terms of arbitrary random variables Y .
Often the components Yj are mutually independent, in which case both the
log-likelihood and the score function are sums of contributions:

l(θ; y) =
n∑

j=1

l(θ; yj),

u(θ; y) =
n∑

j=1

∇θl(θ; yj) =
n∑

j=1

u(θ; yj),

say, and where l(θ; yj) is found from the density of Yj.

Quite generally, even for dependent random variables, if Y(j) = (Y1, . . . , Yj),
we may write

l(θ; y) =
n∑

j=1

lYj |Y(j−1)(θ; yj | y(j−1)),

each term being computed from the conditional density given all the previous
values in the sequence.
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1.3.2 Score function and information

For regular problems for which the order of differentiation with respect to θ
and integration over the sample space can be reversed, we have

E{U(θ); θ} = 0. (1.2)

To verify this, note that a component of the left-hand side is

∫ {
∂ log fY (y; θ)

∂θr

}

fY (y; θ)dy

=

∫
∂fY (y; θ)

∂θr
dy

=
∂

∂θr

∫
fY (y; θ)dy =

∂

∂θr
1 = 0.

Also, when (1.2) holds,

cov{Ur(θ), Us(θ); θ}

= E

{
∂l(θ;Y )

∂θr
∂l(θ;Y )

∂θs
; θ

}

= E

{

−
∂2l(θ;Y )

∂θr∂θs
; θ

}

.

More compactly, the covariance matrix of U is

cov{U(θ); θ} = E{−∇∇T l; θ}.

This matrix is called the expected information matrix for θ, or sometimes the
Fisher information matrix, and will be denoted by i(θ). The Hessian −∇∇T l
is called the observed information matrix, and is denoted by j(θ). Note that
i(θ) = E{j(θ)}.

In the (m,m) exponential family (1.1),

U(φ) = ∇l = S −∇K(φ)

and ∇∇T l = −∇∇TK(φ).

Note that the score u(θ; y) and the information i(θ) depend not only on the
value of the parameter θ, but also on the parameterisation. If we change
from θ to ψ by a smooth one-to-one transformation and calculate the score
and information in terms of ψ, then different values will be obtained.
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Write (U (θ), i(θ)) and (U (ψ), i(ψ)) for quantities in the θ- and ψ-parameterisation
respectively. Using the summation convention whereby summation is under-
stood to take place over the range of an index that appears two or more times
in an expression, the chain rule for differentiation gives

U (ψ)a (ψ;Y ) =
∂l{θ(ψ);Y }

∂ψa

= U (θ)r (θ;Y )
∂θr

∂ψa
,

or

U (ψ)(ψ;Y ) =

[
∂θ

∂ψ

]T
U (θ)(θ;Y ),

where ∂θ/∂ψ is the Jacobian of the transformation from θ to ψ, with (r, a)
element ∂θr/∂ψa.

Similarly,

i
(ψ)
ab (ψ) =

∂θr

∂ψa
∂θs

∂ψb
i(θ)rs (θ),

or

i(ψ)(ψ) =

[
∂θ

∂ψ

]T
i(θ)(θ)

[
∂θ

∂ψ

]

.

The notion of parameterisation invariance is a valuable basis for choosing
between different inferential procedures. Invariance requires that the conclu-
sions of a statistical analysis be unchanged by reformulation in terms of ψ,
any reasonably smooth one-to-one function of θ.

Consider, for example, the exponential distribution with density ρe−ρy. It
would for many purposes be reasonable to reformulate in terms of the mean
1/ρ or, say, log ρ. Parameterisation invariance would require, for example,
the same conclusions about ρ to be reached by: (i) direct formulation in terms
of ρ, application of a method of analysis, say estimating ρ; (ii) formulation
in terms of 1/ρ, application of a method of analysis, estimating 1/ρ, then
taking the reciprocal of this estimate.

Invariance under reparameterisation can usefully be formulated much more
generally. Suppose that θ = (ψ, χ), with ψ the parameter of interest and χ a
nuisance parameter. It is reasonable to consider one-to-one transformations
from θ to θ̃ = (ψ̃, χ̃), where ψ̃ is a one-to-one function of ψ and χ̃ is a
function of both ψ and χ. Such transformations are called interest-respecting
reparameterisations.
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1.3.3 Pseudo-likelihoods

Typically we consider a model parameterised by a parameter θ which may be
written as θ = (ψ, λ), where ψ is the parameter of interest and λ is a nuisance
parameter. In order to draw inferences about the parameter of interest, we
must deal with the nuisance parameter.

Ideally, we would like to construct a likelihood function for ψ alone. The
simplest method for doing so is to construct a likelihood function based on a
statistic T such that the distribution of T depends only on ψ. In this case, we
may form a genuine likelihood function for ψ based on the density function
of T ; this is called a marginal likelihood, since it is based on the marginal
distribution of T .

Another approach is available whenever there exists a statistic S such that
the conditional distribution of the data X given S = s depends only on ψ. In
this case, we may form a likelihood function for ψ based on the conditional
density function of X given S = s; this is called a conditional likelihood
function. The drawback of this approach is that we discard the part of
the likelihood function based on the marginal distribution of S, which may
contain information about ψ.

Conditional and marginal likelihoods are particular instances of pseudo-
likelihood functions. The term pseudo-likelihood is used to indicate any
function of the data which depends only on the parameter of interest and
which behaves, in some respects, as if it were a genuine likelihood (so that
the score has zero null expectation, the maximum likelihood estimator has
an asymptotic normal distribution etc.).

Formally, suppose that there exists a statistic T such that the density of the
data X may be written as

fX(x;ψ, λ) = fT (t;ψ)fX|T (x|t;ψ, λ).

Inference can be based on the marginal distribution of T which does not
depend on λ. The marginal likelihood function based on t is given by

L(ψ; t) = fT (t;ψ).

The drawback of this approach is that we lose the information about ψ
contained in the conditional density of X given T . It may, of course, also be
difficult to find such a statistic T .

To define formally a conditional log-likelihood, suppose that there exists a
statistic S such that

fX(x;ψ, λ) = fX|S(x|s;ψ)fS(s;ψ, λ).
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The statistic S is sufficient (see Section 1.4) in the model with ψ held fixed. A
conditional likelihood function for ψ may be based on fX|S(x|s;ψ), which does
not depend on λ. The conditional log-likelihood function may be calculated
as

l(ψ; x | s) = l(θ)− l(θ; s),

where l(θ; s) denotes the log-likelihood function based on the marginal distri-
bution of S and l(θ) is the log-likelihood based on the full data X. Note that
we make two assumptions here about S. The first is that S is not sufficient
in the general model with parameters (ψ, λ), for if it was, the conditional
likelihood would not depend on either ψ or λ. The other is that S, the suf-
ficient statistic when ψ is fixed, is the same for all ψ; S does not depend on
ψ.

Note that factorisations of the kind that we have assumed in the definitions
of conditional and marginal likelihoods arise essentially only in exponential
families and transformation families. Outside these cases more general no-
tions of pseudo-likelihood must be found.

1.4 Sufficiency

1.4.1 Definitions

Let the data y correspond to a random variable Y with density fY (y; θ), θ ∈
Ωθ. Let s(y) be a statistic such that if S ≡ s(Y ) denotes the corresponding
random variable, then the conditional density of Y given S = s does not
depend on θ, for all s, so that

fY |S(y | s; θ) = g(y, s) (1.3)

for all θ ∈ Ωθ. Then S is said to be sufficient for θ.

The definition (1.3) does not define S uniquely. We usually take the minimal
S for which (1.3) holds, the minimal sufficient statistic. S is minimal sufficent
if it is sufficient and is a function of every other sufficient statistic.

The determination of S from the definition (1.3) is often difficult. Instead
we use the factorisation theorem: a necessary and sufficient condition that S
is sufficient for θ is that for all y, θ

fY (y; θ) = g(s, θ)h(y),

for some functions g and h. Without loss of generality, g(s, θ) may be taken
as the unconditional density of S for given θ.
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The following result is easily proved and useful for identifying minimal suffi-
cient statistics. A statistic T is minimal sufficient iff

T (x) = T (y)⇔
L(θ1; x)

L(θ2; x)
=
L(θ1; y)

L(θ2; y)
, ∀θ1, θ2 ∈ Ωθ.

1.4.2 Examples

Exponential models Here the natural statistic S is a (minimal) sufficient
statistic. In a curved (m, d) exponential model the dimension m of the suffi-
cient statistic exceeds that of the parameter.

Transformation models Except in special cases, such as the normal distri-
bution, where the model is also an exponential family model, there is no
reduction of dimensionality by sufficiency: the minimal sufficient statistic
has the same dimension as the data vector Y = (Y1, . . . , Yn).

1.5 Conditioning

In connection with methods of statistical inference, probability is used in two
quite distinct ways. The first is to define the stochastic model assumed to
have generated the data. The second is to assess uncertainty in conclusions,
via significance levels, confidence regions, posterior distributions etc. We
enquire how a given method would perform if, hypothetically, it were used
repeatedly on data derived from the model under study. The probabilities
used for the basis of inference are long-run frequencies under hypothetical
repetition. The issue arises of how these long-run frequencies are to be made
relevant to the data under study. The answer lies in conditioning the calcu-
lations so that the long run matches the particular set of data in important
respects.

1.5.1 The Bayesian stance

In a Bayesian approach the issue of conditioning is dealt with automatically.
Recall that the key idea of Bayesian inference is that it is supposed that the
particular value of θ is the realised value of a random variable Θ, generated by
a random mechanism giving a known density πΘ(θ) for Θ, the prior density.
Then Bayes’ Theorem gives the posterior density

πΘ|Y (θ | Y = y) ∝ πΘ(θ)fY |Θ(y | Θ = θ),

where now the model function fY (y; θ) is written as a conditional density
fY |Θ(y | Θ = θ). The insertion of a random element in the generation of

13
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θ allows us to condition on the whole of the data y: relevance to the data
is certainly accomplished. This approach is uncontroversial if a meaningful
prior can be agreed. In many applications, there may be major obstacles to
specification of a meaningful prior and we are forced to adopt a less direct
route to conditioning.

1.5.2 The Fisherian stance

Suppose first that the whole parameter vector θ is of interest. Reduce the
problem by sufficiency. If, with parameter dimension d = 1, there is a one-
dimensional sufficient statistic, we have reduced the problem to that of one
observation from a distribution with one unknown parameter and there is lit-
tle choice but to use probabilities calculated from that distribution. The same
notion occurs if there is a d-dimensional θ of interest and a d-dimensional
sufficient statistic. If the dimension of the (minimal) sufficient statistic ex-
ceeds that of the parameter, there is scope and need for ensuring relevance
to the data under analysis by conditioning.

We therefore aim to

1. partition the minimal sufficient statistic s in the form s = (t, a), so that
dim(t) = dim(θ) and A has a distribution not involving θ;

2. use for inference the conditional distribution of T given A = a.

Conditioning on A = a makes the distribution used for inference involve
(hypothetical) repetitions like the data in some respects.

In the next section we extend this discussion to the case where there are
nuisance parameters.

1.5.3 An example

Suppose that Y1, . . . , Yn are independent and identically uniformly distributed
on (θ−1, θ+1). The (minimal) sufficient statistic is the pair of order statistics
(Y(1), Y(n)), where Y(1) = min{Y1, . . . , Yn} and Y(n) = max{Y1, . . . , Yn}. Sup-
pose we make a (one-to-one) transformation to the mid-range Ȳ = 1

2
(Y(1) +

Y(n)) and the range R = Y(n)− Y(1). The sufficient statistic may equivalently
be expressed as (Ȳ , R). A direct calculation shows that R has a distribu-
tion not depending on θ, so we have the situation where the dimension of
the sufficient statistic exceeds the dimension of θ and the statistic R, being
distribution constant, plays the role of A. Inference should be based on the
conditional distribution of Ȳ , given R = r, which it is easily checked to be
uniform over (θ − 1 + 1

2
r, θ + 1− 1

2
r).

14
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1.6 Ancillarity and the Conditionality Principle

A component a of the minimal sufficient statistic such that the random vari-
able A is distribution constant is said to be ancillary, or sometimes ancillary
in the simple sense.

The Conditionality Principle says that inference about a parameter of interest
θ is to be made conditional on A = a i.e. on the basis of the conditional
distribution of Y given A = a, rather than from the model function fY (y; θ).

An important convention should be flagged here. Later, specifically in Chap-
ter 3, we will use the term ancillary to mean a distribution constant statistic
which, together with the maximum likelihood estimator, constitutes a suffi-
cient statistic.

The Conditionality Principle is discussed most frequently in the context of
transformation models, where the maximal invariant is ancillary.

1.6.1 Nuisance parameters

In our previous discussion, the argument for conditioning on A = a rests
not so much on the distribution of A being known as on its being totally
uninformative about the parameter of interest.

Suppose, more generally, that we can write θ = (ψ, χ), where ψ is of interest.
Suppose that

1. Ωθ = Ωψ × Ωχ, so that ψ and χ are variation independent;

2. the minimal sufficient statistic s = (t, a);

3. the distribution of T given A = a depends only on ψ;

4. one or more of the following conditions holds:

(a) the distribution of A depends only on χ and not on ψ;

(b) the distribution of A depends on (ψ, χ) in such a way that from
observation of A alone no information is available about ψ;

Then the extension of the Fisherian stance of Section 1.5.2 argues that infer-
ence about ψ should be based upon the conditional distribution of T given
A = a, and we would still speak of A as being ancillary. The most straight-
forward extension corresponds to (a). In this case A is said to be a cut and to
be S-ancillary for ψ and S-sufficient for χ. The arguments for conditioning
on A = a when ψ is the parameter of interest are as compelling as in the
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case where A has a fixed distribution. Condition (b) is more problematical
to qualify. See the discussion in Barndorff-Nielsen and Cox (1994, pp.38–41)
for detail and examples. The same authors discuss problems associated with
existence and non-uniqueness of ancillary statistics.

1.7 Sample space derivatives

The log-likelihood is, except possibly for a term not depending on the param-
eter, a function of a sufficient statistic s and parameter θ. If the dimensions
of s and θ are equal, the maximum likelihood estimator θ̂ is usually a one-to-
one function of s and then θ̂ is minimal sufficient if and only if s is minimal
sufficient. We can then take the log-likelihood as l(θ; θ̂), it being the same
as if the data consisted solely of θ̂ or s. If s = (t, a) where t has the dimen-
sion of θ and a is ancillary, then we can generally write the log-likelihood as
l(θ; θ̂, a).

Similarly, the observed information can, in the scalar parameter case, be
written as

j(θ; θ̂, a) = −∂2l(θ; θ̂, a)/∂θ2.

In practice, θ being unknown, this would be evaluated at θ = θ̂, as j(θ̂; θ̂, a).

For a vector parameter we use −∇θ∇T
θ l(θ; θ̂, a).

An alternative expression for the observed information uses the notion of
‘sample space derivatives’, obtained by differentiating l(θ; θ̂, a) with respect
to θ̂.

The maximum likelihood equation is

∂l(θ; θ̂, a)

∂θ
|θ=θ̂ = 0,

so that
∂l(t; t, a)

∂θ
= 0,

identically in t. Differentiating this with respect to t, and evaluating at t = θ̂
we have [

∂2l(θ; θ̂, a)

∂θ2
+
∂2l(θ; θ̂, a)

∂θ∂θ̂

]

θ=θ̂

= 0,

so that

j(θ̂; θ̂, a) =

[
∂2l(θ; θ̂, a)

∂θ∂θ̂

]

θ=θ̂
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or, for a vector parameter,

j(θ̂; θ̂, a) = [∇θ∇
T
θ̂
l(θ; θ̂, a)]θ=θ̂.

1.8 Parameter Orthogonality

We work now with a multi-dimensional parameter θ. There are a number of
advantages, which we will study later, if the matrix i(θ) ≡ [irs(θ)] is diagonal.

1.8.1 Definition

Suppose that θ is partitioned into components θ = (θ1, . . . , θd1 ; θd1+1, . . . , θd) =
(θ(1), θ(2)) say, such that irs(θ) = 0 for all r = 1, . . . , d1; s = d1 + 1, . . . , d,
for all θ ∈ Ωθ. The matrix i(θ) is block diagonal and we say that θ(1) is
orthogonal to θ(2).

1.8.2 An immediate consequence

Orthogonality implies that the corresponding components of the score statis-
tic are uncorrelated.

1.8.3 The case d1 = 1

For this case, write θ = (ψ, λ1, . . . , λq), with q = d − 1. If we start with an
arbitrary parameterisation (ψ, χ1, . . . , χq) with ψ given, it is always possible
to find λ1, . . . , λq as functions of (ψ, χ1, . . . , χq) such that ψ is orthogonal to
(λ1, . . . , λq).

Let l∗ and i∗ be the log-likelihood and information matrix in terms of (ψ, χ1, . . . , χq)
and write χr = χr(ψ, λ1, . . . , λq). Then

l(ψ, λ) ≡ l∗{ψ, χ1(ψ, λ), . . . , χq(ψ, λ)}

and use of the chain rule for differentiation gives

∂2l

∂ψ∂λr
=

∂2l∗

∂ψ∂χs
∂χs

∂λr
+

∂2l∗

∂χt∂χs
∂χs

∂λr
∂χt

∂ψ

+
∂l∗

∂χs
∂2χs

∂ψ∂λr
,

where we have used the summation convention over the range 1, . . . , q. Now
take expectations.
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The final term vanishes and orthogonality of ψ and λ then requires

∂χs

∂λt

(

i∗ψs + i
∗
rs

∂χr

∂ψ

)

= 0.

Assuming that the Jacobian of the transformation from (ψ, χ) to (ψ, λ) is
non-zero, this is equivalent to

i∗rs
∂χr

∂ψ
+ i∗ψs = 0. (1.4)

These partial differential equations determine the dependence of λ on ψ and
χ, and are solvable in general. However, the dependence is not determined
uniquely and there remains considerable arbitrariness in the choice of λ.

1.8.4 An example

Let (Y1, Y2) be independent, exponentially distributed with means (χ, ψχ).
Then equation (1.4) becomes

2χ−2
∂χ

∂ψ
= −(ψχ)−1,

the solution of which is χψ1/2 = g(λ), where g(λ) is an arbitrary function of λ.
A convenient choice is g(λ) ≡ λ, so that in the orthogonal parameterisation
the means are λ/ψ1/2 and λψ1/2.

1.8.5 The case d1 > 1

When dim(ψ) > 1 there is no guarantee that a λ may be found so that ψ
and λ are orthogonal.

If, for example, there were two components ψ1 and ψ2 for which it was
required to satisfy (1.4), there would in general be no guarantee that the
values of ∂χr/∂ψ1 and ∂χr/∂ψ2 so obtained would satisfy the compatibility
condition

∂2χr

∂ψ1∂ψ2
=

∂2χr

∂ψ2∂ψ1
.

1.8.6 Further remarks

Irrespective of the dimension of ψ, orthogonality can be achieved locally at
θ = θ0 via a linear transformation of parameters with components depending
on i(θ0). More generally, for a fixed value ψ0 of ψ it is possible to determine
λ so that iψλ(ψ0, λ) = 0 identically in λ.

If λ is orthogonal to ψ, then any one-to-one smooth function of ψ is orthog-
onal to any one-to-one smooth function of λ.
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1.9 General principles

The previous sections have introduced a number of fundamental concepts
of statistical inference. In this section we outline the role played by these
concepts in various abstract principles of inference. These principles are
included here largely for the sake of interest. The formal role that they play
in different approaches to statistical inference is sketched in Section 1.10 :
further discussion is given by Cox and Hinkley (1974, pp.48–56).

1.9.1 Sufficiency principle

Suppose that we have a model according to which the data y correspond to
a random variable Y having p.d.f. fY (y; θ) and that S is minimal sufficient
for θ. Then, according to the sufficiency principle, so long as we accept the
adequacy of the model, identical conclusions should be drawn from data y1
and y2 with the same value of S.

1.9.2 Conditionality principle

Suppose that C is an ancillary statistic, either in the simple sense described
at the beginning of Section 1.6, or the extended sense of Section 1.6.1 where
nuisance parameters are present. Then the conditionality principle is that
the conclusion about the parameter of interest is to be drawn as if C were
fixed at its observed value c.

1.9.3 Weak likelihood principle

The weak likelihood principle is that two observations with proportional like-
lihood functions lead to identical conclusions, so if y1 and y2 are such that
for all θ

fY (y1; θ) = h(y1, y2)fY (y2; θ),

then y1 and y2 should lead to identical conclusions, as long as we accept the
adequacy of the model.

This is identical with the sufficiency principle.

1.9.4 Strong likelihood principle

Suppose that two different random systems are contemplated, the first giv-
ing observations y corresponding to a random variable Y and the second
giving observations z on a random variable Z, the corresponding p.d.f.’s be-
ing fY (y; θ) and fZ(z; θ), with the same parameter θ and the same parameter
space Ωθ. The strong likelihood principle is that if y and z give proportional
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likelihood functions, the conclusions drawn from y and z should be identical,
assuming adequacy of both models. If, for all θ ∈ Ωθ,

fY (y; θ) = h(y, z)fZ(z; θ),

identical conclusions about θ should be drawn from y and z.

A simple example concerning Bernoulli trials illustrates this. The log likeli-
hood function corresponding to r successes in n trials is essentially the same
whether (i) only the number of successes in a prespecified number of trials is
recorded or (ii) only the number of trials necessary to achieve a prespecified
number of successes is recorded, or (iii) whether the detailed results of indi-
vidual trials are recorded, with an arbitrary data-dependent stopping rule.
A further example is given in Section 2.7.

The strong likelihood principle may be deduced from the sufficiency principle
plus some form of conditionality principle. Bayesian methods of inference
satisfy the strong likelihood principle. Nearly all others do not.

1.9.5 Repeated sampling principle

This principle, like that in Section 1.9.6, is concerned with interpretation
of conclusions, rather than what aspects of the data and model are rele-
vant. According to the repeated sampling principle, inference procedures
should be interpreted and evaluated in terms of their behaviour in hypothet-
ical repetitions under the same conditions. Measures of uncertainty are to
be interpreted as hypothetical frequencies in long run repetitions and cri-
teria of optimality are to be formulated in terms of sensitive behaviour in
hypothetical repetitions.

1.9.6 Bayesian coherency principle

In the Bayesian approach to inference, all uncertainties are described by
probabilities, so that unknown parameters have probabilities both before the
data are available and after the data have been obtained. It is justified by
the supposition that:

(a) any individual has an attitude to every uncertain event which can be
measured by a probability, called a subjective probability;

(b) all such probabilities for any one individual are comparable;

(c) these subjective probabilities can be measured by choice in hypothetical
betting games.
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The Bayesian coherency principle is that subjective probabilities should be
such as to ensure self-consistent betting behaviour. This implies that sub-
jective probabilities for any one individual should be manipulated by the
ordinary laws of probability, in particular Bayes’ Theorem. The principle
implies that conclusions about unknown parameters in models have to be in
the form of probability statements. This implies all the principles of 1.9.1–
1.9.4, in particular the strong likelihood principle.

1.9.7 Principle of coherent decision making

In problems where an explicit decision is involved, parallel arguments to
Section 1.9.6 show that for any individual each decision and true parameter
value have an associated ‘utility’ such that the optimum decision is found by
maximising expected utility.

1.10 Approaches to Statistical Inference

We have set out four principles (sufficiency, conditionality, weak likelihood,
strong likelihood) which concern the way in which the data should affect the
conclusions. They do not concern the exact form and interpretation of the
conclusions. Interpretation is governed by the other principles. We are then
in a position to describe briefly the main approaches to inference.

There are four broad approaches to statistical inference, via sampling theory,
likelihood theory, Bayesian theory and decision theory.

1.10.1 Sampling theory

In this approach primary emphasis is placed on the repeated sampling prin-
ciple, on ensuring that procedures have an interpretation in terms of frequen-
cies in hypothetical repetitions under the same conditions. An example is
construction of a confidence interval for the mean μ of a normal distribution.
This approach does not satisfy the strong likelihood principle.

1.10.2 Likelihood theory

In this approach the likelihood function itself is used directly as a sum-
mary of information. In particular, ratios of likelihoods or differences in
log-likelihoods give the relative plausibilities of two parameter values, say
θ1 and θ2. This approach clearly satisfies the weak and strong likelihood
principles, and the conditionality principle is implicitly satisfied.
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1.10.3 Bayesian theory

This approach was sketched in Section 1.5.1. Inference about the parameter
of interest θ is derived from the posterior density. If the prior distribu-
tion arises from a physical random mechanism with known properties, the
posterior distribution can be regarded as a hypothetical frequency distribu-
tion, and the principles 1.9.1–1.9.4 are all satisfied. To apply the Bayesian
approach more generally, we may invoke the Bayesian coherency principle.
Then the prior is taken as measuring the investigator’s subjective opinion
about the parameter from evidence other than the data under analysis.

1.10.4 Decision theory

This approach emphasises the action to be taken in the light of data. If
for each parameter value the consequences of each possible action can be
measured by a utility (or loss), then we can evaluate the expected utility
of the possible methods of action. We can then rule out certain methods
of action on the grounds that they lead to uniformly lower expected utility
for all parameter values. A unique optimal action will be defined if a prior
distribution is available, in which case the expected utility, averaged with
respect to the prior distribution, can be maximised over the set of possible
actions. The principle of coherent decision making is explicitly applicable.

1.11 Some Essential Mathematical Material

1.11.1 Background

Consider a random vector Y with a known distribution, and suppose that
the distribution of the statistic f(Y ) is needed, for some real-valued function
f . In most situations, finding the exact distribution of f(Y ) is impossible
or impractical. The approach then is to use as asymptotic approximation
to the distribution of the statistic, which then allows us to approximate
distributional quantities of interest, such as quantiles or moments. Much of
the module (Chapter 3 in particular) is concerned with methods for obtaining
such approximations. An attractive feature of the approximations is that
they take just a few basic and general forms, and therefore provide a quite
general distribution theory. The current section revises the key notions of
probability theory that are essential to an understanding of the nature and
properties of these approximations.
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1.11.2 Some probability results

A sequence of (scalar) random variables {Y1, Y2, . . .} is said to converge in
distribution if there exists a distribution function F such that

lim
n→∞

P (Yn ≤ y) = F (y)

for all y that are continuity points of the limiting distribution F . If F is the

distribution function of the random variable Y , we write Yn
d
−→ Y .

The extension to random vectors is immediate. Let {Y1, Y2, . . .} be a
sequence of random vectors, each of dimension d, and let Y denote a random
vector of dimension d. For each n = 1, 2, . . ., let Fn denote the distribution
function of Yn, and let F denote the distribution function of Y . Then the
sequence Yn converges in distribution to Y as n→∞ if

lim
n→∞

Fn(y) = F (y),

for all y ∈ Rd at which F is continuous.
A sequence of (scalar) random variables {Y1, Y2, . . .} is said to converge

in probability to a random variable Y if, for any ε > 0

lim
n→∞

P (|Yn − Y | > ε) = 0.

We write Yn
p
−→ Y . [Note that for this to make sense, for each n, Y and

Yn must be defined on the same sample space, a requirement that does
not arise in the definition of convergence in distribution.] The extension to
d−dimensional random vectors is again immediate: the sequence of random
vectors Yn converges in probability to Y if, for any ε > 0,

lim
n→∞

P (‖ Yn − Y ‖> ε) = 0,

where ‖ ∙ ‖ denotes Euclidean distance on Rd.

An important relationship is that convergence in probability implies con-
vergence in distribution. An important special case is where the sequence
converges in probability to a constant, c, Yn

p
−→ Y , where P (Y = c) = 1.

Then convergence in probability is equivalent to convergence in distribution.

A stronger yet mode of convergence is almost sure convergence. A sequence
of random vectors {Y1, Y2, . . .} is said to converge almost surely to Y if

P ( lim
n→∞

‖ Yn − Y ‖= 0) = 1.
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We write Yn
a.s
−→ Y .

Finally, a sequence of random vectors {Y1, Y2, . . .} is said to converge to Y
in Lp (or p-th moment) if

lim
n→∞

E(‖ Yn − Y ‖
p) = 0,

where p > 0 is a fixed constant. We write Yn
Lp
−→ Y .

A very useful result is Slutsky’s Theorem which states that if Xn
d
−→ X and

Yn
p
−→ c, where c is a finite constant, then: (i) Xn + Yn

d
−→ X + c, (ii)

XnYn
d
−→ cX, (iii) Xn/Yn

d
−→ X/c, if c 6= 0.

Let X1, . . . , Xn be independent, identically distributed (scalar) random vari-
ables with finite mean μ. The strong law of large numbers (SLLN) says that
the sequence of random variables X̄n = n

−1(X1+ ∙ ∙ ∙+Xn) converges almost
surely to μ if and only if the expectation of |Xi| is finite. The weak law of
large numbers (WLLN) says that if the Xi have finite variance, X̄n

p
−→ μ.

The central limit theorem (CLT) says that, under the condition that the
Xi are of finite variance σ

2, then a suitably standardised version of X̄n,
Zn =

√
n(X̄n − μ)/σ, converges in distribution to a random variable Z hav-

ing the standard normal distribution N(0, 1). We write Zn
d
−→ N(0, 1).

Another useful result is the ‘delta-method’: if Yn has a limiting normal dis-
tribution, then so does g(Yn), where g is any smooth function. Specifically,

if
√
n(Yn − μ)/σ

d
−→ N(0, 1), and g is a differentiable function such that

g′(μ) 6= 0, then √
n(g(Yn)− g(μ))
|g′(μ)|σ

d
−→ N(0, 1).

1.11.3 Mann-Wald notation

In asymptotic theory, the so-called Mann-Wald notation is useful, to describe
the order of magnitude of specified quantities. For two sequences of positive
constants (an), (bn), we write an = o(bn) when limn→∞(an/bn) = 0, and
an = O(bn) when lim supn→∞(an/bn) = K < ∞. For sequences of random
variables {Yn}, we write Yn = op(an) if Yn/an

p
−→ 0 as n → ∞ and Yn =

Op(an) when Yn/an is bounded in probability as n → ∞, i.e. given ε > 0
there exist k > 0 and n0 such that, for all n > n0,

Pr(|Yn/an |< k) > 1− ε.

In particular, Yn = c+ op(1) means that Yn
p
−→ c.
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1.11.4 Moments and cumulants

The moment generating function of a scalar random variable X is defined
by MX(t) = E{exp(tX)}, whenever this expectation exists. Note that
MX(0) = 1, and that the moment generating function is defined in some
interval containing 0. If MX(t) exists for t in an open interval around 0, then
all the moments μ′r = EX

r exist, and we have the Taylor expansion

MX(t) = 1 + μ
′
1t+ μ

′
2

t2

2!
+ ∙ ∙ ∙+ μ′r

tr

r!
+O(tr+1),

as t→ 0.

The cumulant generating function KX(t) is defined by KX(t) = log{MX(t)},
defined on the same interval as MX(t). Provided MX(t) exists in an open
interval around 0, the Taylor series expansion

KX(t) = κ1t+ κ2
t2

2!
+ ∙ ∙ ∙+ κr

tr

r!
+O(tr+1),

as t→ 0, defines the rth cumulant κr.

The rth cumulant κr can be expressed in terms of the rth and lower-order mo-
ments by equating coefficients in the expansions of exp{KX(t)} and MX(t).
We have, in particular, κ1 = E(X) = μ′1 and κ2 = var(X) = μ′2 − μ

′2
1 . The

third and fourth cumulants are called the skewness and kurtosis respectively.
For the normal distribution, all cumulants of third and higher order are 0.

Note that, for a, b ∈ R, KaX+b(t) = bt + KX(at), so that if κ̃r is the rth
cumulant of aX + b, then κ̃1 = aκ1 + b, κ̃r = a

rκr, r ≥ 2. Also, if X1, . . . , Xn

are independent and identically distributed random variables with cumulant
generating function KX(t), and Sn = X1 + . . .+Xn, then KSn(t) = nKX(t).

Extension of these notions to multivariate X involves no conceptual compli-
cation: see Pace and Salvan (1997, Chapter 3).

1.11.5 Some reminders

The Taylor expansion for a function f(x) of a single real variable about x = a
is given by

f(x) = f(a)+f (1)(a)(x−a)+
1

2!
f (2)(a)(x−a)2+ . . .+

1

n!
f (n)(a)(x−a)n+Rn,

where

f (l)(a) =
dlf(x)

dxl

∣
∣
∣
∣
x=a

,

25



APTS/April 2009 1.11 Some Essential Mathematical Material

and the remainder Rn is of the form

1

(n+ 1)!
f (n+1)(c)(x− a)n+1,

for some c ∈ [a, x].

The Taylor expansion is generalised to a function of several variables in a
straightforward manner. For example, the expansion of f(x, y) about x = a
and y = b is given by

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2!
{fxx(a, b)(x− a)

2 + 2fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)
2}+ . . . ,

where

fx(a, b) =
∂f

∂x

∣
∣
∣
∣
x=a,y=b

fxy(a, b) =
∂2f

∂x∂y

∣
∣
∣
∣
x=a,y=b

,

and similarly for the other terms.

Some particular expansions therefore are:

log(1 + x) = x− x2/2 + x3/3− x4/4 . . . (|x| < 1)

exp(x) = 1 + x+ x2/2! + x3/3! + x4/4! . . . (x ∈ R)

f(x+ h) = f(x) + f ′(x)h+ f ′′(x)h2/2! + . . . (x ∈ R)

f(x+ h) = f(x) + f ′(x)Th+ hTf ′′(x)h/2! + . . . (x ∈ Rp).

The sign function sgn is defined by

sgn(x) =






1, if x > 0
0, if x = 0
−1, if x < 0

Suppose we partition a matrix A so that A =

[
A11 A12
A21 A22

]

, with A−1 cor-

respondingly written A−1 =

[
A11 A12

A21 A22

]

. If A11 and A22 are non-singular,

let
A11.2 = A11 − A12A

−1
22 A21,
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and
A22.1 = A22 − A21A

−1
11 A12.

Then,

A11 = A−111.2, A22 = A−122.1, A12 = −A−111 A12A
22,

A21 = −A−122 A21A
11.

1.11.6 Multivariate normal distribution

Of particular importance is the multivariate normal distribution, which, for
nonsingular Σ, has density

f(y;μ,Σ) =
1

(2π)p/2|Σ|1/2
exp{−1

2
(y − μ)TΣ−1(y − μ)}

for y ∈ Rp, μ ∈ Rp. We write this as Np(μ,Σ). If Y ∼ Np(μ,Σ) then EY = μ,
varY = Σ.
If Y ∼ Np(0,Σ), call QY = Y

TΣ−1Y the covariance form associated with
Y . Then a key result is that QY ∼ χ2p. To see this, note

1. the covariance form is invariant under non-singular transformation of
Y ;

2. Y can be transformed to independent components of unit variance (set
Z = Σ−1/2Y );

3. the chi-squared distribution then follows directly, QY ≡ QZ = Z
TZ.

Now suppose that Y is partitioned into two parts Y T = (Y T
(1), Y

T
(2)) where

Y(j) is pj × 1, p1 + p2 = p. It is immediate that QY(1) ∼ χ2p1 , but in addition

QY(1).Y(2) = QY −QY(1) ∼ χ2p2

independently of QY(1) . Apply a transformation to Y so that the first p1
components are Y(1) and the last p2 components, Y

′
(2) say, are independent

of Y(1). Then, by the invariance of the covariance form under non-singular
transformation of Y ,

QY = QY(1) +QY ′
(2)
,

so that QY ′
(2)
≡ QY(1).Y(2) . The stated properties of QY ′

(2)
clearly hold.
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