
STATISTICAL ASYMPTOTICS APTS/09

Example Sheet (with sketch solutions) GAY/April 2009

[Comments and corrections to alastair.young@imperial.ac.uk ]

1. Prove that random samples from the following distributions form (m,m) ex-
ponential families with either m = 1 or m = 2: Poisson, binomial, geometric, gamma
(index known), gamma (index unknown). Identify the natural statistics and the natural
parameters in each case.

The negative binomial distribution with both parameters unknown provides an example
of a model that is not of exponential family form. Why?

[A1. Just a matter of rewriting the density functions in exponential family form.
With the negative binomial distribution, the sample space X depends on the unknown
parameter, not allowed in exponential family, if both parameters are unknown.]

2. Let Y1, . . . , Yn be IID N(µ, µ2). Show that this model is an example of a curved
exponential family and find a minimal sufficient statistic.

[A2. Immediate from writing joint density in exponential family form:

PY (y; µ) ∝ exp
{
− 1

2µ2

∑
y2

i +
1
µ

∑
yi − n log µ

}
.

Minimal sufficient statistic is (
∑

Yi,
∑

Y 2
i ).]

3. Verify that the family of gamma distributions of known index constitutes a
transformation model under the action of the group of scale transformations.

[A3.

Let Y ∼ Gamma (k, λ) denote Y has a gamma distribution of known index k and pdf

fY (y;λ) =
λkyk−1e−λy

Γ(k)
.

Then σY ∼ Gamma (k, λ/σ).]

4. Verify that maximum likelihood estimators are equivariant with respect to the
group of one-to-one transformations.

[A4.

This follows from the transformation property, that if φ = φ(θ) is a one-to-one trans-
formation of the parameter θ, then φ̂ = φ(θ̂), where θ̂ = s(Y ) is the maximum likelihood
estimator of θ. If the transformation φ(·) corresponds to ḡφ ∈ Ḡ, then gφ(Y ) is the
transformation of Y whose MLE is φ̂. Then φ̂ = s(gφ(Y )), while φ(θ̂) = ḡφ(s(Y )).
Hence s(gφ(Y )) = ḡφ(s(Y )), for all such gφ, which is the requirement of equivariance.]
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5. Verify directly that in the location-scale model the configuration has a distri-
bution which does not depend on the parameters.

[A5. This is just a matter of writing the configuration in terms of ε1, . . . , εn, where
Yj = η + τεj.]

6. Suppose that (y1, . . . , yn) are generated by a stationary first-order Gaussian
autoregression with correlation parameter ρ, mean µ and innovation variance τ . That
is, Y1 ∼ N(µ, τ/(1− ρ2)) and for j = 2, . . . , n,

Yj = µ + ρ(Yj−1 − µ) + εj ,

where (ε1, . . . , εn) are IID N(0, τ).

Find the log-likelihood function. Show that if µ is known to be zero, the log-likelihood
has (3, 2) exponential family form, and find the natural statistics.

[A6. The distribution of Yj given Y(j−1) = {Y1, . . . , Yj−1} depends only on Yj−1 and
contributes the term

−1
2

log(2πτ)− {yj − µ− ρ(yj−1 − µ)}2
2τ

to the log-likelihood. The full log-likelihood is

− n

2
log(2πτ) +

1
2

log(1− ρ2)− (y1 − µ)2(1− ρ2)
2τ

−
n∑

j=2

{yj − µ− ρ(yj−1 − µ)}2
2τ

=− n

2
log(2πτ) +

1
2

log(1− ρ2)− (y1 − µ)2 + (yn − µ)2

2τ

−
n−1∑

j=2

(yj − µ)2(1 + ρ2)
2τ

+
ρ

τ

n∑

j=2

(yj − µ)(yj−1 − µ).

If µ = 0 this has (3,2) exponential family form with natural statistics

y2
1 + y2

n,

n−1∑

j=2

y2
j ,

n∑

j=2

yjyj−1. ]

7. Let Y1, . . . , Yn be IID Poisson (θ). Find the score function and the expected
and observed information.

Consider the new parametrisation ψ = ψ(θ) = e−θ. Compute the score function and
the expected and observed information in the ψ-parametrisation.

[A7. I reckon

u(θ)(θ; y) =
1
θ

n∑

j=1

yj − n,

i(θ)(θ) =
n

θ
, j(θ)(θ) =

1
θ2

n∑

j=1

yj ,

u(ψ)(ψ; y) =
1
ψ

(∑n
j=1 yj

log ψ
+ n

)
, i(ψ)(ψ) =

n

(− log ψ)ψ2
,

j(ψ)(ψ) =
1
ψ2

{∑n
j=1 yj

(log ψ)2
+

∑n
j=1 yj

log ψ
+ n

}
.
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Note that ψ̂ = e−θ̂. We can proceed either directly, or use the formulae for the way the
score and information change under a reparameterisation.]

8. Consider a multinomial distribution with four cells, the probabilities for which
are

π1(θ) = 1
6 (1− θ), π2(θ) = 1

6 (1 + θ),
π3(θ) = 1

6 (2− θ), π4(θ) = 1
6 (2 + θ),

where θ is unknown, |θ| < 1.

What is the minimal sufficient statistic? Show that A′ = (N1 + N2, N3 + N4) and
A′′ = (N1 + N4, N2 + N3) are both ancillary.

If A is ancillary in the simple sense, we may write

PY (y; θ) = PY |A(y | a; θ)PA(a).

The conditional expected information for θ given A = a is

iA(θ | a) = E

{−∂2 log PY |A(Y | a, θ)
∂θ2

∣∣∣∣A = a; θ
}

= E

{−∂2 log PY (Y ; θ)
∂θ2

∣∣∣∣A = a; θ
}

.

Now take expectations over the distribution of A:

E{iA(θ | A)} = i(θ).

With two ancillaries competing,

E{iA′(θ | A′)} = E{iA′′(θ | A′′)},

so that expected conditional information is no basis for choice between them.

To discriminate between them it may be argued that A′ is preferable to A′′ if

var {iA′(θ | A′)} > var {iA′′(θ | A′′)}.

Show that in the above example A′ is preferable to A′′ in these terms.

[A8. The minimal sufficient statistic is (N1, N2, N3, N4). Let N1 + N2 + N3 + N4 =
n. Write A′ = (a1, a2), A′′ = (b1, b2). Then a1 ∼ Binomial (n, 1/3) and b1 ∼
Binomial (n, 1/2), showing that A′ and A′′ are ancillary.

Simple calculations give

iA′(θ | a′) =
3a1 + n(1− θ2)
(1− θ2)(4− θ2)

,

iA′′(θ | a′′) =
2θb1 + n(1− θ)(2 + θ)

(1− θ2)(4− θ2)
.
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Then
var{iA′(θ | A′)} =

2n

{(1− θ2)(4− θ2)}2 ,

var{iA′′(θ | A′′)} =
nθ2

{(1− θ2)(4− θ2)}2 ,

leading immediately to the required conclusion.]

9. Consider again the model of Question 2. Let T1 = Ȳ and T2 =
√

n−1
∑n

i=1 Y 2
i .

Show that Z = T1/T2 is ancillary. Why might inference on µ be based on the conditional
distribution of V =

√
nT2, given Z? Find the form of this conditional distribution.

[A9. Write U = Ȳ and W =
∑n

i=1(Yi − Ȳ )2/µ2. Then U and W are independent
N(µ, µ2/n) and χ2

n−1 respectively, so the joint density of (U,W ) is

fU,W (u,w) = c1µ
−1 exp{− n

2µ2
(u− µ)2}w(n−3)/2 exp(−w

2
).

Here and below, c1, c2, ... denote generic constants, not depending on µ.

Transform to obtain the joint density of (V, Z). We have W = V 2(1 − Z2)/µ2, U =
ZV/

√
n, and the Jacobian is 2V 2/(µ2

√
n), so the joint density of (V, Z) is

c2µ
−1µ−(n−3)vn−3µ−2v2h1(z) exp{− n

2µ2
(zv/

√
n− µ)2 − v2(1− z2)/(2µ2)},

where h1(z) is some function of z, not depending on µ.

Simplification shows this is

c3h2(z)µ−nvn−1 exp{−1
2
(v/µ− z

√
n)2},

for some h2(z).

Observe that ∫
µ−nvn−1 exp{−1

2
(v/µ− z

√
n)2}dv = h3(z),

say, not depending on µ (write t = v/µ and substitute), so we see that the marginal
density of Z, obtained by integrating out V from the joint density, does not depend on
µ, Z is ancillary.

The minimal sufficient statistic (T1, T2) ≡ (V,Z). Since Z is ancillary, the Condition-
ality Principle implies that we should base inference on the conditional distribution of
V given Z. The conditional density is obtained by dividing the joint density of V and
Z by the marginal density of Z, and is

f(v | z; µ) = c4µ
−nvn−1 exp{−1

2
(v/µ− z

√
n)2},

directly from the above. ]
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10. Show that, if the parameters ψ and χ are orthogonal, any one-to-one smooth
function of ψ is orthogonal to any one-to-one smooth function of χ.

[A10. This is a consequence of the definition of orthogonality of ψ and χ, together with
the formula for the way the information matrix transforms under reparametrisation,
noting the special form of the transformation being made. The Jacobian term in the
formula for the new information matrix is block diagonal, so the new information matrix
itself is. ]

11. Suppose that Y is distributed according to a density of the form

p(y; θ) = exp{s(y)T c(θ)− k(θ) + D(y)}.

Suppose that θ may be written θ = (ψ, λ), where ψ denotes the parameter of interest,
possibly vector valued, and that c(θ) = (c1(ψ), c2(θ))T , for functions c1, c2, where c1(·)
is a one-to-one function of ψ.

Then, writing s(y) = (s1(y), s2(y))T , the log-likelihood function is of the form

l(ψ, λ) = s1(y)T c1(ψ) + s2(y)T c2(θ)− k(θ).

Let φ be the complementary mean parameter given by

φ ≡ φ(θ) = E{s2(Y ); θ}.

Show that ψ and φ are orthogonal parameters.

Let Y have a gamma distribution with shape parameter ψ and scale parameter φ, and
density

f(y;ψ, φ) = φ−ψyψ−1 exp(−y/φ)/Γ(ψ).

Show that ψφ is orthogonal to ψ.

[A11. The log-likelihood function for (ψ, φ) is given by

l̃(ψ, φ) = s1(y)T c1(ψ) + s2(y)T c2(θ(ψ, φ))− k(θ(ψ, φ)).

We know that ∂l̃(θ)
∂φ has mean 0,

E{s2(Y )T ∂c2(θ)
∂φ

; θ} =
∂k(θ)
∂φ

.

So

φT ∂c2(θ)
∂φ

=
∂k(θ)
∂φ

,

for all θ. Differentiating this with respect to ψ gives

∂2k(θ)
∂ψ∂φ

− φT ∂2c2(θ)
∂ψ∂φ

= 0.
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But
∂2 l̃

∂ψ∂φ
(ψ, φ) = s2(y)T ∂2c2(θ)

∂ψ∂φ
− ∂2k(θ)

∂ψ∂φ

and

ĩψφ(θ) = E{− ∂2 l̃

∂ψ∂φ
} = 0,

as required to verify orthogonality.

For the Gamma example, the natural parameters are (ψ,−1/φ), corresponding to (log y, y),
so that E(Y ) = ψφ is orthogonal to ψ.]

12.∗ Dispersion models. The defining property of dispersion models is that their
model function is of the form

a(λ, y) exp{λt(y; γ)},

where λ ∈ R and γ ∈ Rk are parameters. Show that λ and γ are orthogonal.

Exponential dispersion models are a subclass of dispersion models where

t(y; γ) = γ.y −K(γ).

Let Y be a 1-dimensional random variable with density belonging to an exponential
dispersion family. Show that the cumulant generating function of Y is

KY (t; γ, λ) = λ

{
K

(
γ +

t

λ

)
−K(γ)

}

and that Y has mean

E(Y ) = µ(γ) =
∂K(γ)

∂γ
.

Show also that var (Y ) = 1
λ V (µ) where

V (µ) =
∂2K(γ)

∂γ2

∣∣∣∣
γ=γ(µ)

,

and γ(µ) indicates the inverse function of µ(γ).

The notation
Y ∼ ED

(
µ, σ2V (µ)

)

is used to indicate that Y has density P (y; γ, λ) which belongs to an exponential dis-
persion family with γ = γ(µ), λ = 1/σ2 and variance function V (µ).

Let Y have the inverse Gaussian distribution Y ∼ IG(φ, λ) with density

P (y;φ, λ) =

√
λ√
2π

y−3/2e
√

λφ exp
{
−1

2

(
λ

y
+ φy

)}
,

y > 0, λ > 0, φ ≥ 0.
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Show that Y ∼ ED(µ, σ2V (µ)) with V (µ) = µ3.

Let Y1, . . . , Yn be independent random variables with

Yi ∼ ED

(
µ(γ),

σ2

wi
V

(
µ(γ)

))
, i = 1, . . . , n,

where w1, . . . , wn are known constants. Let w+ =
∑

wi.

Show that
1

w+

n∑

i=1

wiYi ∼ ED

(
µ(γ),

σ2

w+
V

(
µ(γ)

))
.

Deduce that, if Y1, . . . , Yn are IID IG(φ, λ), then Y = n−1
∑n

i=1 Yi ∼ IG(nφ, nλ).

[A12. We have
∂l

∂γ
=

λ∂t(y; γ)
∂γ

∂2l

∂λ∂γ
=

∂t(y; γ)
∂γ

,

but the general result

E

(
∂l

∂γ

)
= 0 ⇒ E

(
∂t

∂γ

)
= 0

and so, in the obvious partitioning of the expected information,

iλγ = E

(−∂2l

∂λ∂γ

)
= 0.

To obtain the cumulant generating function, integrate directly to obtain the moment
generating function, take logs.

The mean follows directly from differentiating the m.g.f. or c.g.f. Also, by the same
technique,

var Y =
1
λ

∂2K(γ)
∂γ2

.

The function µ(·) is one-to-one and smooth because of general results about exponential
families. It is therefore possible to reparametrise using the mean µ = µ(γ) instead of
the natural parameter γ. The question makes this notationally explicit.

If Y ∼ IG(φ, λ) the cumulant generating function of Y is easily calculated as

KY (t; φ, λ) = −
√

λ(φ− 2t) +
√

λφ.

Then
µ ≡ EY = K ′

Y (0; φ, λ) =
√

λ/φ,

K ′′
Y (0; φ, λ) =

1
λ

(
λ

φ

)3/2

=
1
λ

µ3.
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With the reparametrisation (µ, σ2) =
(√

λ/φ, 1/λ
)
, the density of Y can be written as

P (y; µ, σ2) = exp
{

1
σ2

(
1
µ2

y +
1
µ

)}
1√
2πσ

y−3/2e−1/(2σ2y),

so that Y ∼ ED(µ, σ2V (µ)) with V (µ) = µ3.

The rest here is just a straightforward exercise in manipulation of cumulant generating
functions.

The c.g.f. of Yi is

KYi

(
t; γ,

σ2

wi

)
=

wi

σ2

{
K

(
γ +

σ2

wi
t

)
−K(γ)

}
.

Then wiYi has c.g.f.

KwiYi

(
t; γ,

σ2

wi

)
=

wi

σ2
{K(γ + σ2t)−K(γ)},

and
∑

i wiYi has c.g.f.
w+

σ2
{K(γ + σ2t)−K(γ)}.

Finally
∑

wiYi/w+ has c.g.f.

w+

σ2

{
K

(
γ +

σ2

w+
t

)
−K(γ)

}
,

giving the conclusion. The inverse Gaussian case provides an example.]

13. Let Y1, . . . , Yn be independent random variables such that Yj has a Poisson
distribution with mean exp{λ + ψxj}, where x1, . . . , xn are known constants.

Show that the conditional distribution of Y1, . . . , Yn given S =
∑

Yj does not depend
on λ. Find the conditional log- likelihood function for ψ, and verify that it is equivalent
to the profile log-likelihood.

[A13. That the conditional distribution does not depend on λ is easy: the distribution
of S is Poisson with mean

∑
exp{λ+ψxj}. The definition of conditional log- likelihood

gives
ψ

∑
xjyj − s log[

∑
exp{ψxj}].

The maximum likelihood estimator of λ for fixed ψ is given by

λ̂ψ = log
( ∑

yj∑
exp{ψxj}

)

and plugging into the expression for the full log-likelihood shows that the profile log-
likelihood is equivalent to the conditional log-likelihood.]
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14. Verify that in general the likelihood ratio and score tests are invariant under a
reparameterization ψ = ψ(θ), but that the Wald test is not.

Write θ = (θ1, θ2), where θ1 is parameter of interest.

Suppose ψ = ψ(θ) = (ψ1, ψ2) is an interest respecting transformation, with ψ1 ≡
ψ1(θ) = θ1.

Show that the profile log-likelihood is invariant under this reparameterization.

[A14. Parameterization invariance of the likelihood function ensures invariance of the
likelihood ratio and score tests.

We have l(ψ)(ψ) = l(θ)(θ(ψ)). To test H0 : θ = θ0, the LRT rejects for large values of
l(θ)(θ̂) − l(θ)(θ0). The LRT in the ψ-parametrisation is H0 : ψ ≡ ψ(θ) = ψ0 ≡ ψ(θ0),
based on

l(ψ)(ψ̂)− l(ψ)(ψ0) ≡ l(θ)
(
θ(ψ̂)

)− l(θ)
(
θ(ψ0)

)
= l(θ)(θ̂)− l(θ)(θ0),

since ψ̂ = ψ(θ̂), θ̂ = θ(ψ̂).

That the score test is parametrisation invariant follows on showing that

U (θ)(θ0)T i(θ)(θ0)−1U (θ)(θ0) ≡ U (ψ)(ψ0)T i(ψ)(ψ0)−1U (ψ)(ψ0),

using the formulae for the way U, i transform under reparametrisation.

The Wald statistic is not (generally) invariant, as is checked by working out the formula
for it in a new parametrisation. For example, in the one-dimensional case, to test
H0 : θ = θ0 the Wald statistic might be taken as

(θ̂ − θ0)2i(θ)(θ̂), ∗

say. If we consider a reparametrisation ψ = ψ(θ) we have the statistic

(
ψ(θ̂)− ψ(θ0)

)2
i(θ)

(
θ(ψ̂)

)
(

∂θ(ψ)
∂ψ

∣∣∣∣
ψ=ψ̂

)2

, ∗∗

on noting that

i(ψ)(ψ) = i(θ)
(
θ(ψ)

)(
∂

∂ψ
θ(ψ)

)2

.

The two quantities ∗ and ∗∗ don’t necessarily coincide.

An example: let Y1, . . . , Yn be IID Poisson (θ). Consider testing H0 : θ = 1. We have
θ̂ = Ȳ , l(θ)(θ̂) = nȲ (log Ȳ − 1) and l(θ)(1) = −n. In the parametrisation ψ = e−θ,H0 :
ψ = e−1. We have l(ψ)(ψ) = n(Ȳ log(− log ψ) + log ψ), and ψ̂ = e−Ȳ . Then

l(ψ)(ψ̂) = nȲ (log Ȳ − 1), l(ψ)(e−1) = −n.

The Wald statistic for H0 : θ = 1 is w
(θ)
p (θ0) = n(Ȳ − 1)2/Ȳ . In the parametrisation

ψ = e−θ we have
w(ψ)

p (ψ0) = n(e−Ȳ − e−1)2e2Ȳ /Ȳ .
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For example, if n = 50, Ȳ = 1.3, w
(θ)
p

.= 3.45, w
(ψ)
p

.= 4.70. Referring to χ2, the
significance level is 0.06 for w

(θ)
p and 0.03 for w

(ψ)
p .

Quite similar considerations show the profile log-likelihood is invariant under interest
respecting reparameterizations.

Write θ = (θ1, θ2), where θ1 is parameter of interest. Suppose ψ = ψ(θ) = (ψ1, ψ2) is
an interest respecting transformation, with ψ1 ≡ ψ1(θ) = θ1.

We have
l(ψ)(ψ) ≡ l(ψ)(ψ1, ψ2)

= l(θ)
(
θ1(ψ), θ2(ψ)

)

= l(θ)
(
ψ1, θ2(ψ1, ψ2)

)
.

Then
sup
ψ2

l(ψ)(ψ1, ψ2) = sup
θ2

l(θ)(ψ1, θ2).

An instructive example to look at is the case of Y1, . . . , Yn IID N(µ, σ2). Check directly
that the profile log-likelihood for µ is unchanged under either of the reparameterizations
(µ, σ) → (µ, log σ) or (µ, σ) → (µ, log(σ/µ)).]

15. Let Y1, . . . , Yn be IID N(µ, σ2), and let the parameter of interest be µ. Obtain
the form of the profile log-likelihood.

Show how to construct a confidence interval with asymptotic coverage 1− α based on
the profile log-likelihood.

[A15. The maximum likelihood estimate of σ2 for fixed µ is σ̂2
µ =

∑n
i=1(Yi − µ)2/n.

Hence
lp(µ) = l(µ, σ̂2

µ)

= − 1
2n log σ̂2

µ − 1
2n

= − 1
2n log

{
Σ(Yj − Ȳ )2 + n(Ȳ − µ)2

n

}
− 1

2n,

since

l(µ, σ2) = − 1
2n log σ2 − Σ(Yj − µ)2

2σ2
,

apart from a constant. Now, µ̂ = Ȳ , so lp(µ̂) = − 1
2n log σ̂2− 1

2n where σ̂2 = 1
n

∑n
i=1(Yi−

Ȳ )2.

Then

2{lp(µ̂)− lp(µ)} = n log
σ̂2

µ

σ̂2

= n log
[
1 +

(µ− µ̂)2

σ̂2

]
,

since σ̂2
µ = σ̂2 + (µ− µ̂)2.

An approximate CI of coverage 1− α for µ is
{
µ : 2{lp(µ̂)− lp(µ)} ≤ c

}
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where c is s.t. P (χ2
1 ≤ c) = 1− α. This is

{
µ : n log

(
1 +

(µ− µ̂)2

σ̂2

)
≤ c

}

≡
{

µ : 1 +
(µ− µ̂)2

σ̂2
≤ exp

{ c

n

}}

≡
{

µ :
(µ− µ̂)2

σ̂2
≤ exp

{ c

n

}
− 1

}

≡
{

µ : −σ̂

√
exp

( c

n

)
− 1 ≤ µ− µ̂ ≤ σ̂

√
exp

( c

n

)
− 1

}

≡
(

µ̂− σ̂

√
exp

( c

n

)
− 1, µ̂ + σ̂

√
exp

( c

n

)
− 1

)
. ]

16. Verify that the rth degree Hermite polynomial Hr satisfies the identity

∫ ∞

−∞
etyHr(y)φ(y)dy = tre

1
2 t2 .

Verify that the moment generating function of S∗n has the expansion

MS∗n(t) = exp
{
KS∗n(t)

}

= e
1
2 t2 exp

{
1

6
√

n
ρ3t

3 +
1

24n
ρ4t

4 + O(n−3/2)
}

= e
1
2 t2

{
1 +

ρ3

6
√

n
t3 +

ρ4

24n
t4 +

ρ2
3

72n
t6 + O(n−3/2)

}
.

On using the above identity, this latter expansion may be written

MS∗n(t) =
∫ ∞

−∞
ety

{
1 +

1
6
√

n
ρ3H3(y)

+
1

24n
ρ4H4(y) +

1
72n

ρ2
3H6(y) + O(n−3/2)

}
φ(y)dy.

Comparison with the definition

MS∗n(t) =
∫ ∞

−∞
etyfS∗n(y)dy,

provides a heuristic justification for the Edgeworth expansion.

[A16. Note first that
κr(Sn) = nκr(Y ) = nκr,

since KSn(t) = nKY (t). Also

κr(Y/b) = κr(Y )/br = κr/br,
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so, since cumulants of order higher than 2 are unaffected by location transformations,

κr(S∗n) = κr

(
Sn√
nσ2

)
=

κr(Sn)
(
√

nσ2)r

=
nκr

nr/2σr
= n1−r/2ρr.

Also, because of standardisation, κ1(S∗n) = 0, κ2(S∗n) = 1. Then

KS∗n(t) = κ1(S∗n)t + κ2(S∗n)
t2

2!
+ κ3(S∗n)

t3

3!
+ κ4(S∗n)

t4

4!
+ O(n−3/2)

= 1
2 t

2 +
ρ3

6
√

n
t3 +

ρ4

24n
t4 + O(n−3/2).

The rest of the derivation sketched in the question follows on noting that ex = 1 + x +
x2/2 + O(x3). The identity is easily proved by induction on r. It certainly holds for
r = 0. Assume it holds for r − 1. By the definition of Hr and by integrating by parts,

∫ ∞

−∞
etyHr(y)φ(y)dy = (−1)r

∫ ∞

−∞
etyφ(r)(y)dy

= −(−1)r

∫ ∞

−∞
tetyφ(r−1)(y)dy

=
∫ ∞

−∞
tety(−1)r−1φ(r−1)(y)dy

= t

∫ ∞

−∞
etyHr−1(y)φ(y)dy

= t.tr−1e
1
2 t2 = tre

1
2 t2 ,

by the inductive hypothesis.]

17. Verify that integration of the Edgeworth expansion for the density of S∗n yields
the distribution function expansion given in lecture notes.

[A17. This follows immediately on noting that
∫ x

−∞
Hr(y)φ(y)dy = (−1)r

∫ x

−∞
φ(r)(y)dy

= (−1)rφ(r−1)(x)
= −Hr−1(x)φ(x). ]

18. Let Y1, . . . , Yn be IID N(µ, σ2). Obtain the saddlepoint approximation to the
density of Sn =

∑n
i=1 Yi, and comment on its exactness.

[A18. We have KY (t) = µt + 1
2σ

2t2. Now the saddlepoint equation is

nK ′
Y (φ̂) = x,

nµ + σ2φ̂n = x,

φ̂ = (x− nµ)/(σ2n) =
x

σ2n
− µ

σ2
.

12



Also, K ′′
Y (φ̂) = σ2, so the saddlepoint approximation to the density of Sn is

fSn
(x) =

1√
2π

1

(nσ2)
1
2

exp{nµφ̂ + 1
2nσ2φ̂− φ̂x}

=
1√

2πnσ2
exp

{
xµ

σ2
− nµ2

σ2
+ 1

2nσ2

(
x− nµ

nσ2

)2

− x2

nσ2
+

xµ

σ2

}

=
1√

2πnσ2
exp

{
1
2

(x− nµ)2

nσ2
− (x− nµ)2

nσ2

}

=
1√

2πnσ2
exp

{
− 1

2nσ2
(x− nµ)2

}
,

which is exact, since Sn ∼ N(nµ, nσ2).]

19. Let Y1, . . . , Yn be IID exponential random variables with pdf f(y) = e−y. Ob-
tain the saddlepoint approximation to the density of Sn =

∑n
i=1 Yi, and show that it

matches the exact density except for the normalizing constant.

[A19. If Y has pdf f(y) = e−y, we have MY (t) = (1− t)−1, so KY (t) = − log(1− t).

The saddlepoint equation is
nK ′

Y (φ̂) = x,
n

1− φ̂
= x,

n = x− xφ̂

− xφ̂ = n− x,

so that
KY (φ̂) = − log(1− φ̂) = − log

(
1−

(
1− n

x

))
= log

(x

n

)
,

K ′′
Y (φ̂) = x2/n2.

So the saddlepoint approximation to the density of Sn is

fSn(x) =
1√
2π

1

(x2/n)
1
2

exp
{

n log
x

n
+ n− x

}
= cnxn−1e−x,

where
cn = (2π)−

1
2 enn−n+

1
2 .

This agrees with the exact gamma pdf

xn−1e−x/Γ(n),

except for replacement of Γ(n) by a term which is asymptotically equivalent to the
leading term of Stirling’s approximation.]

20. Fill in the details of the statistical derivation of the saddlepoint approximation
to the density of Sn.

13



[A20. We have
fSn

(s; λ) = exp{sλ− nKY (λ)}fSn
(s).

To see this note that

fSn
(s; λ) =

∫
f(y1;λ) . . . f(yn; λ)dy1 . . . dyn,

where the integral is over all (y1, . . . , yn) such that
∑

yi = s, and substitute f(y; λ) =
exp{yλ−KY (λ)}f(y).

The associated moment generating function is

MSn(t;λ) = exp
{
n
(
KY (λ + t)−KY (λ)

)}
,

and the cumulant generating function is

KSn(t; λ) = n
(
KY (λ + t)−KY (λ)

)
.

The cumulants of Sn, under f(y;λ), are

Eλ(Sn) = K ′
Sn

(0; λ) = nK ′
Y (λ),

varλ(Sn) = K ′′
Sn

(0; λ) = nK ′′
Y (λ),

κr(Sn; λ) = K
(r)
Sn

(0; λ) = nK
(r)
Y (λ).

The corresponding standardised cumulants are

ρr(Sn; λ) =
1

nr/2−1
ρr(λ),

where
ρr(λ) = K

(r)
Y (λ)/{K ′′

Y (λ)}r/2.

We have
fSn(s) = exp{nKY (λ)− λs}fSn(s;λ).

Now the Edgeworth expansion for fSn(s; λ) is

fSn(s; λ) =
1√

varλ(Sn)
φ

(
s− Eλ(Sn)√

varλ(Sn)

)

×
{

1 +
1

6
√

n
ρ3(λ)H3

(
s− Eλ(Sn)√

varλ(Sn)

)

+
1

24n
ρ4(λ)H4

(
s− Eλ(Sn)√

varλ(Sn)

)

+
1

72n
ρ2
3(λ)H6

(
s− Eλ(Sn)√

varλ(Sn)

)
+ O(n−3/2)

}
.

14



Now choose λ̂, as a function of s, so that Eλ̂(Sn) = s. Then nK ′
Y (λ̂) = s. Then

fSn
(s; λ̂) =

1√
nK ′′

Y (λ̂)
φ(0)

×
{

1 +
1

24n
ρ4(λ̂)H4(0) +

1
72n

ρ2
3(λ̂)H6(0) + O(n−2)

}
.

Note that we can assert that the error is of order O(n−2) since H2r+1(0) = 0.

Since H4(0) = 3 and H6(0) = −15, with the notation ρ̂r = ρr(λ̂), r = 3, 4, we have

fSn
(s; λ̂) =

1√
2πnK ′′

Y (λ̂)

{
1 +

1
24n

(3ρ̂4 − 5ρ̂2
3) + O(n−2)

}
,

from which the result follows, since

fSn(s) = exp{nKY (λ̂)− λ̂s}fSn(s; λ̂). ]

21. Verify the calculations leading to the Laplace approximation (3.11) of lecture
notes.

[A21. Taylor expansion of g(y) around ỹ gives

g(y) = g̃ + 1
2 (y − ỹ)g̃′′ + 1

6 (y − ỹ)3g̃′′′ +
1
24

(y − ỹ)4g̃(4) + O
(
(y − ỹ)5

)
,

where g̃ = g(ỹ), g̃′′ = g′′(ỹ) etc. Then

gn = e−ng̃

∫ b

a

e−
n
2 (y−ỹ)2g̃′′e−

n
6 (y−ỹ)3g̃′′′− n

24 (y−ỹ)4g̃(4)+nO(y−ỹ)5dy.

Multiply and divide by
√

ng̃′′/(2π) and change the variable of integration to z = (y −
ỹ)
√

ng̃′′, to obtain

gn
.=

e−ng̃
√

2π√
ng̃′′

∫

R
exp

{
− z3g̃′′′

6
√

n(g̃′′)3/2
− z4g̃(4)

24n(g̃′′)2
+ O(n−3/2)

}
φ(z)dz

=
e−ng̃

√
2π√

ng̃′′

∫

R

(
1− 1

6
√

n

g̃′′′

(g̃′′)3/2
z3

− 1
24n

g̃(4)

(g̃′′)2
z4 +

1
72n

(g̃′′′)2

(g̃′′)3
z6 + O(n−3/2)

)
φ(z)dz.

If Z ∼ N(0, 1), E(Zk) = 0 if k is odd, E(Zk) = (k − 1)(k − 3) . . . 3.1 if k is even.
Using this we obtain (3.11). The error is of order O(n−2) and not O(n−3/2), because
the term of order O(n−3/2) only involves expectations of odd powers of Z.]

22. Let Y1, . . . , Yn be IID exponential random variables of mean µ. Verify that the
p∗-formula for the density of µ̂ is exact.
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[A22. If Y1, . . . , Yn are IID exponential with mean µ, we have µ̂ = Ȳ and we can write
l(µ; µ̂) = −n log µ− nµ̂/µ. Then

j(µ̂) = −∂2l(µ; µ̂)
∂µ2

∣∣∣∣
µ=µ̂

= n/µ̂2.

Then the p∗ formula gives

p∗(µ̂;µ) = c|j(µ̂)| 12 exp{l(µ)− l(µ̂)}

= c
n

1
2

µ̂
exp

{
n log

µ̂

µ
− n

(
µ̂

µ
− 1

)}

= cn
1
2

1
µ̂

(
µ̂

µ

)n

exp
(
−n

µ̂

µ

)
en,

where c is a normalising constant. So,

p∗(µ̂;µ) ∝ µ̂n−1 exp
(
−n

µ
µ̂

)
,

which is exact, since the true density of µ̂ is gamma.]

23.* Let y1, . . . , yn be independent realisations of a continuous random variable Y
with density belonging to a location-scale family,

p(y; µ, σ) =
1
σ

p0

((
y − µ

σ

))
,

(y − µ)/σ ∈ X , µ ∈ R, σ > 0. Assume that the maximum likelihood estimate (µ̂, σ̂) of
(µ, σ) based on y = (y1, . . . , yn) exists and is finite and that p0 is suitably differentiable.
Define the sample configuration a by

a =
(

y1 − µ̂

σ̂
, . . . ,

yn − µ̂

σ̂

)
.

Show that the p∗-formula for the conditional density of (µ̂, σ̂) given a is

p∗(µ̂, σ̂; µ, σ | a) = c(µ, σ, a)
σ̂n−2

σn

n∏

i=1

p0

(
σ̂

σ
ai +

µ̂− µ

σ

)
,

and is exact.

[A23. Let q0(y) = − log(p0(y)). The log-likelihood l(µ, σ; y) can be written in the form

l(µ, σ; µ̂, σ̂, a) = −n log σ −
n∑

i=1

q0

(
yi − µ

σ

)

= −n log σ −
n∑

i=1

q0

(
σ̂

σ
ai +

µ̂− µ

σ

)
,
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on writing yi = µ̂ + σ̂ai. Then we have

l(µ, σ; µ̂, σ̂, a)− l(µ̂, σ̂; µ̂, σ̂, a)

= −n log σ −
n∑

i=1

q0

(
σ̂

σ
ai +

µ̂− µ

σ

)
+ n log σ̂ +

n∑

i=1

q0(ai).

It is easily checked that

|j(µ̂, σ̂; µ̂, σ̂, a)| 12 = (σ̂)−2
√

D(a),

where

D(a) =
{(∑

i

q′′0 (ai)
)(

n +
∑

i

a2
i q
′′
0 (ai)

)
−

(∑

i

aiq
′′
0 (ai)

)2}
.

The form of the p∗-formula follows immediately.

Note that of the quantities qi only n − 2 are functionally independent: the likelihood
equations lµ = ∂

∂µ l(µ, σ) = 0 and lσ = ∂
∂σ l(µ, σ) = 0 give two constraints:

∑

i

q′0(ai) = 0

∑

i

aiq
′
0(ai) = n.

Consider the one-to-one function

(y1, . . . , yn) ↔ (µ̂, σ̂, a1, . . . , an−2).

We have

pY (y1, . . . , yn; µ, σ)=
1
σn

n∏

i=1

p0

(
yi − µ

σ

)

and because yi = µ̂ + σ̂ai the joint density of (µ̂, σ̂, a1, . . . , an−2) is

p(µ̂, σ̂, a1, . . . , an−2;µ, σ) =
1
σn

n∏

i=1

p0

(
µ̂− µ

σ
+

σ̂

σ
ai

)
|J |

where |J | is the Jacobian determinant of (y1, . . . , yn) expressed as a function of
(µ̂, σ̂, a1, . . . , an−2). From the representation

y1 = µ̂ + σ̂a1

...
yn−2 = µ̂ + σ̂an−2

yn−1 = µ̂ + σ̂f1(a1, . . . , an−2)
yn = µ̂ + σ̂f2(a1, . . . , an−2)

17



we obtain

J =




1 a1 σ̂ . . . 0
...

...
...

. . .
1 an−2 0 σ̂
1 f1(a∗) σ̂f1,1(a∗) . . . σ̂f1,n−2(a∗)
1 f2(a∗) σ̂f2,1(a∗) . . . σ̂f2,n−2(a∗)




say, where a∗ = (a1, . . . , an−2). We may write this as

J =
[

1n−2 a∗ σ̂In−2

12 f(a) σ̂F (a)

]
.

Recall that ∣∣∣∣
A B
C D

∣∣∣∣ = |B||C −DB−1A|.

With B = σ̂In−2 we obtain
|J | = σ̂n−2hn(a),

say.

Denote by p(a) the marginal density of (a1, . . . , an−2). Then the conditional density of
(µ̂, σ̂) given a is

p(µ̂, σ̂; µ, σ | a) = c(a)
σ̂n−2

σn

n∏

i=1

p0

(
µ̂− µ

σ
+

σ̂

σ
ai

)
,

where c(a) = hn(a)/p(a) can be interpreted as a normalising constant.

This is the p∗-formula, which is therefore exact. Note that this analysis shows that the
normalising constant in the p∗-formula does not depend on (µ, σ).

24. Let X1, . . . , Xn be independent exponential random variables with mean 1/λ
and let Y1, . . . , Yn be an independent sample of independent exponential random vari-
ables of mean 1/(ψλ).

Find the p∗ approximation to the density of (ψ̂, λ̂), and hence find an approximation
to the marginal density of ψ̂. The exact distribution of ψ̂/ψ is an F -distribution with
degrees of freedom (2n, 2n), so that the exact density of ψ̂ is given by

Γ(2n)
Γ(n)

1
ψ

( ψ̂

ψ

)n−1( ψ̂

ψ
+ 1

)−2n
.

Comment on the exactness of the marginal density approximation.

[A24. Simple calculations give ψ̂ = x̄/ȳ, λ̂ = 1/x̄, where x̄, ȳ denote the respective
sample means. The log-likelihood may be written

l(θ) = 2n log λ + n log ψ − n
(λψ

λ̂ψ̂
+

λ

λ̂

)
,
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and

j(θ̂) = n

(
ψ̂−2 (ψ̂λ̂)−1

(λ̂ψ̂)−1 2λ̂−2

)
.

Noting that no ancillary is required, the approximation to the joint density of (ψ̂, λ̂) is

p∗(ψ̂, λ̂; ψ, λ) = c
n

ψ̂λ̂

(λ

λ̂

)2n(ψ

ψ̂

)n exp{−n
(λψ

ψ̂λ̂
+

λ

λ̂
− 2

)}.

The approximation to the marginal density of ψ̂ is
∫

p∗(ψ̂, λ̂; ψ, λ)dλ̂ = c
(ψ

ψ̂

)n n

ψ̂
exp(2n)

∫ ∞

0

t2n−1 exp{−n
(ψ

ψ̂
+ 1

)
t}dt,

on writing t = λ/λ̂.

Evaluation of the (gamma) integral gives the density approximation

c
Γ(2n) exp(2n)

ψ̂

(ψ

ψ̂

)n(ψ

ψ̂
+ 1

)−2n
,

which equals

cΓ(2n) exp(2n)
1
ψ

( ψ̂

ψ

)n−1(1 +
ψ̂

ψ

)−2n

on simplification, so that the approximation is seen to be exact, apart from the normal-
ising factor.]

25. As in question 15, let Y1, . . . , Yn be IID N(µ, σ2), but suppose the parameter
of interest is the variance σ2.

Obtain the form of the profile log-likelihood. Show that the profile score has an expec-
tation which is non-zero.

Find the modified profile log-likelihood for σ2 and examine the expectation of the
modified profile score.

[A25. We have µ̂σ2 = Ȳ , so that the profile log-likelihood is

lp(σ2) = −n

2
log σ2 − n

2
log 2π − 1

2σ2
Σ(Yi − Ȳ )2.

The profile score is therefore

∂lp(σ2)
∂σ2

= −n

2
(σ2)−1(1− σ̂2/σ2),

where σ̂2 = 1
n Σ(Yi − Ȳ )2 has expectation

E(σ̂2) =
(

n− 1
n

)
σ2 =

(
1− 1

n

)
σ2.
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So,

E

(
∂lp(σ2)

∂σ2

)
= − n

2σ2

{
1− 1

σ2

(
1− 1

n

)
σ2

}
= − 1

2σ2
6= 0.

In general, the expectation of the profile score is of order O(1). We have

l(µ, σ2) = l(µ, σ2; µ̂, σ̂2)

= −n

2
log σ2 − n

2
log 2π − 1

2σ2

∑

i

(Yi − µ)2

= −n

2
log σ2 − n

2
log 2π − 1

2σ2
{nσ̂2 + n(µ̂− µ)2}.

Then
lµ;µ̂(µ, σ2; µ̂, σ̂2) =

∂

∂µ

(
− n

σ2
(µ̂− µ)

)
=

n

σ2
.

Also,
jµµ(µ, σ2; µ̂, σ̂2) =

n

σ2
,

so the modifying factor M(σ2) =
(

σ2

n

) 1
2

and, ignoring constants, the modified profile
log-likelihood is

l̃p = − (n− 1)
2

log σ2 − 1
2σ2

nσ̂2

∂l̃p(σ2)
∂σ2

= − (n− 1)
2σ2

+
nσ̂2

2σ4
= − n

2σ2

(
1− σ̂2

σ2

)
+

1
2σ2

.

Then, E
(

∂l̃p(σ2)
∂σ2

)
= 0.

In general, the expectation of the modified profile score is of order O(n−1).]

26. Let Y1, . . . , Yn be independent exponential random variables, such that Yj has
mean λ exp(ψxj), where x1, . . . , xn are known scalar constants and ψ and λ are un-
known parameters.

In this model the maximum likelihood estimators are not sufficient and an ancillary
statistic is needed. Let

aj = log Yj − log λ̂− ψ̂xj ,

j = 1, . . . , n, and take a = (a1, . . . , an) as the ancillary.

Find the form of the profile log-likelihood function and of the modified profile log-
likelihood function for ψ.

[A26. The log-likelihood is

l(θ) = −n log λ− ψ
∑

xj − 1
λ

∑
exp(−ψxj)yj ,

which is equivalent to

−n log λ− ψ
∑

xj − λ̂

λ

∑
exp{(ψ̂ − ψ)xj + aj)},
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using the definition of the ancillary.

Maximising l(θ) with respect to λ gives

λ̂ψ =
∑

exp{−ψxj}yj

n
.

Then, on noting that

λ̂ψ = λ̂

∑
exp{(ψ̂ − ψ)xj + aj}

n
,

simple manipulation shows that the modifying factor M(ψ) is free of ψ and depends
only on the data. Hence lp(ψ) ≡ l̃p(ψ). In detail: ∂λ̂ψ/∂λ̂ = S, say, with −ĵψ =
n/λ̂2

ψ − 2λ̂S/λ̂3
ψ. Hence ĵψ = n3/(λ̂2S2), so that M(ψ) is a function of n, λ̂, not ψ.]

27. Let Y1, . . . , Yn be IID N(µ, σ2) and consider testing H0 : µ = µ0. Show that
the likelihood ratio statistic for testing H0 may be expressed as

w = n log{1 + t2/(n− 1)},

where t is the usual Student’s t statistic.

Show directly that

Ew = 1 +
3
2n

+ O(n−2)

in this case, so that the Bartlett correction factor b ≡ 3/2.

Examine numerically the adequacy of the χ2, approximation to w and to w′ = w/(1 +
3/2n).

[A27. The first part is a simple exercise. Now

w = n log{1 + t2/(n− 1)}

' n

{
t2

n− 1
− 1

2
t4

(n− 1)2

}
,

on using the expansion log(1 + x) = x − x2

2 + · · ·. Also E(t2) = var(t) = n−1
n−3 , since

t ∼ tn−1. Also E(t4) = 3 + O(n−1) [recall tν → N(0, 1) as ν →∞]. So, by the above,

E(w) =
n

n− 3
− 3

2n
+ O(n−2)

=
1

1− 3/n
− 3

2n
+ O(n−2)

= 1 +
3
n
− 3

2n
+ O(n−2)

= 1 +
3
2n

+ O(n−2),

as required.
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I performed the following simple simulation exercise. For each of a set of values of
n I generated 1 million null values of w and w′, generating from N(0, 1) and testing
H0 : µ = 0, and recorded the proportion exceeding 3.84, the upper 5% point of X 2

1 . It
is apparent that the chi-squared approximation to the distribution of w′ is adequate for
small n, while the distribution of w approaches χ2

1 more slowly.

n w w′

10 0.0702 0.0520
20 0.0593 0.0506
30 0.0558 0.0501
40 0.0548 0.0503

]

28. Let (X1, Y1), . . . , (Xn, Yn) be independent pairs of independently normally dis-
tributed random variables such that, for each j, Xj and Yj each have mean µj and
variance σ2.

Find the maximum likelihood estimator of σ2 and show that it is not consistent.

Find the form of the modified profile log-likelihood function for σ2 and examine the
estimator of σ2 obtained by its maximization.

Let S =
∑n

i=1(Xi−Yi)2. What is the distribution of S? Find the form of the marginal
log-likelihood for σ2 obtained from S and compare it with the modified profile likeli-
hood.

[This is the ‘Neyman-Scott problem’ which typifies situations with large numbers of
nuisance parameters. Note, however, that the model falls outside the general framework
that we have been considering, in that the dimension of the parameter (µ1, . . . , µn, σ2)
depends on the sample size, and tends to ∞ as n →∞.]

[A28. It is straightforward to obtain the maximum likelihood estimator as

σ̂2 =
∑

(Xj − Yj)2

4n
.

Then note that σ̂2 has mean σ2/2 and by WLLN converges in probability to σ2/2, so
that it is inconsistent.

The profile log-likelihood is

lp(σ2) = − S

4σ2
− 2n log σ.

Then observe that µ̂i ≡ µ̂iσ2 , and that

∂2l

∂µi∂µj
=

{
− 2

σ2 , if i = j,
0, otherwise

,
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so that | jµµ(σ2, µ̂σ2) |= ( 2
σ2 )n. Hence

l̃p(σ2) = − S

4σ2
− n log σ.

It is easily checked that the estimator obtained by maximising l̃p(σ2) is consistent.

We have S/(2σ2) ∼ χ2
n, so that the density of S is proportional to σ−n exp{−s/(4σ2)},

so that the marginal log-likelihood is equivalent to the modified profile log-likelihood. ]

23


