STATISTICAL ASYMPTOTICS APTS/09
Example Sheet (with sketch solutions) GAY /April 2009

[Comments and corrections to alastair.young@imperial.ac.uk]

1. Prove that random samples from the following distributions form (m,m) ex-
ponential families with either m = 1 or m = 2: Poisson, binomial, geometric, gamma
(index known), gamma (index unknown). Identify the natural statistics and the natural
parameters in each case.

The negative binomial distribution with both parameters unknown provides an example
of a model that is not of exponential family form. Why?

[Al. Just a matter of rewriting the density functions in exponential family form.
With the negative binomaual distribution, the sample space X depends on the unknown
parameter, not allowed in exponential family, if both parameters are unknown.|

2. Let Y1,...,Y, be IID N(u,u?). Show that this model is an example of a curved
exponential family and find a minimal sufficient statistic.

[A2. Immediate from writing joint density in exponential family form:

1 1
Py (y; ) eXp{—Q—MZ > vl . > i —nlogu}-

Minimal sufficient statistic is (> Y;, > Y?).]

3. Verify that the family of gamma distributions of known index constitutes a
transformation model under the action of the group of scale transformations.

[A3.
Let Y ~ Gamma (k, \) denote Y has a gamma distribution of known index k and pdf

Aogyk—1e=2y
A) =
Then oY ~ Gamma (k,\/0).]
4. Verify that maximum likelihood estimators are equivariant with respect to the
group of one-to-one transformations.

[A4.

This follows from the transformation property, that if ¢ = ¢(0) is a one-to-one trans-
formation of the parameter 0, then ¢ = ¢(0), where 6 = s(Y') is the maximum likelihood
estimator of 6. If the transformation ¢(-) corresponds to g, € G, then g4(Y') is the

transformation of Y whose MLE is ¢. Then ¢ = s(94(Y)), while $() = Go(s(Y)).
Hence s(g4(Y)) = go(s(Y)), for all such g4, which is the requirement of equivariance.]
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5. Verify directly that in the location-scale model the configuration has a distri-
bution which does not depend on the parameters.

[A5. This is just a matter of writing the configuration in terms of €1,...,€,, where
Vi =n+7e ]
6. Suppose that (yi,...,y,) are generated by a stationary first-order Gaussian

autoregression with correlation parameter p, mean p and innovation variance 7. That
is, Y1 ~ N(pu,7/(1 = p?)) and for j =2,...,n,

Vi=p+p(Yj—1—p)+e,
where (e1,...,€,) are IID N(0, 7).
Find the log-likelihood function. Show that if p is known to be zero, the log-likelihood
has (3,2) exponential family form, and find the natural statistics.

[A6. The distribution of Y; given Y(;_1y = {Y1,...,Y;_1} depends only on Y;_1 and

contributes the term

{y; — 1 — p(yj—1 — p)}?

2T

1
) log(2nT) —

to the log-likelithood. The full log—likelihood 18
)

Z{yj - pygl w)}

1
— g log(277) + 2 log(1 — p?) — (v =

(y1 — )%+ (yn — u)2

1
=— g log(277) + 5 log(1 — p?) —

27'
n—l n
(1497 p
Z += 0 (W =) yj-1 — ).
Jj=2 j=2

If n =0 this has (3,2) exponential family form with natural statistics
n—1 n
Uit ye > U > UiYi-1 ]
j=2 j=2

7. Let Y1,...,Y, be IID Poisson (#). Find the score function and the expected
and observed information.

Consider the new parametrisation 1) = ¥(6) = e~?. Compute the score function and
the expected and observed information in the i-parametrisation.

[A7. I reckon
Mo Zf‘fﬂ n.
OO)=7 00 =5 >
j=1
D gy = L [ =¥ ()= "
u (¢’y)—¢ < 10g¢ +n>7 ? (¢)_(—log¢)¢27

() _ i 27}:1 Yj 27‘121 Y
7P = Y2 { (lojgw)2 + l(])gzp +n}.
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Note that @ — e 0. We can proceed either directly, or use the formulae for the way the
score and information change under a reparameterisation.]

8. Consider a multinomial distribution with four cells, the probabilities for which
are

m(0) =% =:(1+0),

m3(0) = 5(2 - 0), ma(0) = 5(2+0),
where 6 is unknown, |0] < 1.

What is the minimal sufficient statistic? Show that A" = (N7 + No, N3 + Ny) and
A" = (N1 + Ny, No + N3) are both ancillary.

If A is ancillary in the simple sense, we may write

Py (y;0) = Pya(y | a;0)Pa(a).

The conditional expected information for 8 given A = a is

. —0?log Py (Y | a,0)
zA(Gla):E{ 502 ‘Aza;@}
—0%log Py (Y;0)| ,
—E{ 202 A—a,ﬁ}.

Now take expectations over the distribution of A:
E{ia(0] A)} =i(0).
With two ancillaries competing,
E{ia(0 | A')} = E{ian (0| A")},

so that expected conditional information is no basis for choice between them.

To discriminate between them it may be argued that A’ is preferable to A” if

var {ia(0 | A')} > var {ian (0] A”)}.

Show that in the above example A’ is preferable to A” in these terms.
[A8. The minimal sufficient statistic is (N1, N2, N3, Ny). Let N1 + No + N3 + Ny =

n. Write A’ = (a1,a2), A” = (b1,b2). Then a; ~ Binomial (n,1/3) and by ~
Binomial (n,1/2), showing that A" and A" are ancillary.

Simple calculations give

3a; +n(1 —6?)
(1—62)(1—02)

| S 20 + (1 — 0)(2+ 0)
OO = T e )

in(0)d) =
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Then
2n

{(1-02)(4—02)}*’
nb?

{(1-602)(4—06%)}*

leading immediately to the required conclusion.

var{ia/ (6 | A")} =

var{ia. (0 | A”)} =

9. Consider again the model of Question 2. Let Ty =Y and T = y/n=1 Y ;| Y2
Show that Z = T} /T, is ancillary. Why might inference on p be based on the conditional
distribution of V' = /nTs, given Z? Find the form of this conditional distribution.

[A9. Write U =Y and W = Y1 (Y; = Y)?/u®. Then U and W are independent
N(u, u?/n) and x2_, respectively, so the joint density of (U, W) is

_ n . w
fU,W(u7w> =C1u ! eXP{—ﬁ(U - M)Z}w( 3)/2 eXP(—E)-

Here and below, cq1,ca, ... denote generic constants, not depending on fi.

Transform to obtain the joint density of (V,Z). We have W = V2(1 — Z2)/u?,U =
ZV/\/n, and the Jacobian is 2V?/(u*\/n), so the joint density of (V,Z) is

-1, —(n— n—3, — n
o™ T () exp{ 5 (2v/ Vi — ) = (1= )/ (207)),
where hq(z) is some function of z, not depending on L.

Simplification shows this is

czho(2)p~ "0t exp{—%(v/u — zv/n)?},

for some hy(z2).
Observe that .
/,u_"vn_l exp{—§(v/u — 2v/n)?Ydv = hs(2),

say, not depending on p (write t = v/ and substitute), so we see that the marginal
density of Z, obtained by integrating out V' from the joint density, does not depend on
W, Z is ancillary.

The minimal sufficient statistic (11,T5) = (V, Z). Since Z is ancillary, the Condition-
ality Principle implies that we should base inference on the conditional distribution of
V' given Z. The conditional density is obtained by dividing the joint density of V and
Z by the marginal density of Z, and is

P 2m) = exp™"0" " expl— 5 0/ — 2/},

directly from the above. |



10. Show that, if the parameters 1 and x are orthogonal, any one-to-one smooth
function of v is orthogonal to any one-to-one smooth function of y.

[A10. This is a consequence of the definition of orthogonality of 1 and x, together with
the formula for the way the information matriz transforms under reparametrisation,
noting the special form of the transformation being made. The Jacobian term in the
formula for the new information matrix is block diagonal, so the new information matrix
itself is. |

11. Suppose that Y is distributed according to a density of the form

p(y:0) = exp{s(y)" c(0) — k(0) + D(y)}.

Suppose that § may be written 6 = (1, \), where ¢ denotes the parameter of interest,
possibly vector valued, and that ¢(0) = (c1(v), c2(8))T, for functions cy, o, where c; (+)
is a one-to-one function of .

Then, writing s(y) = (s1(y), s2(y))T, the log-likelihood function is of the form
W, \) = s1(y) " er(¢) + s2(y) " ea(0) — k(0).
Let ¢ be the complementary mean parameter given by

¢ = ¢(0) = E{s2(Y); 0}.

Show that ¢ and ¢ are orthogonal parameters.

Let Y have a gamma distribution with shape parameter 1) and scale parameter ¢, and
density

fys,0) = ¢~y exp(—y/9) /T ().
Show that ¢ is orthogonal to .
[A11. The log-likelihood function for (1, ¢) is given by

(¥, ¢) = s1(y) c1 () + s2(y)Tea(0(2, 9)) — k(O §)).

We know that %(z) has mean 0,

70c2(0) .

E{SQ(Y) 8¢ )

So

o7 0co(0) _ 0k(0)
oo o¢
for all 0. Differentiating this with respect to v gives
0%k(0) B
0P

8202 (9)

ED

¢T
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But

9%l B 0% (0)  0%k()
and -
~ 0l
iyg(0) = E{— } =0,

Yo
as required to verify orthogonality.

For the Gamma example, the natural parameters are (v, —1/¢), corresponding to (logy,y),
so that E(Y) = ¢ is orthogonal to .]

12.*  Dispersion models. The defining property of dispersion models is that their
model function is of the form

a(A,y) exp{t(y; 7))},

where A € R and v € R¥ are parameters. Show that A and ~ are orthogonal.

Exponential dispersion models are a subclass of dispersion models where

ty;y) = vy — K(v).

Let Y be a 1-dimensional random variable with density belonging to an exponential
dispersion family. Show that the cumulant generating function of Y is

Ky ) =2 {K (v+1) - K0}

and that Y has mean

0K (v
B(Y) = ul) = 250
Show also that var (Y') = 1+ V() where
0K (v)
Vip) = ——5— ;
0y* =7 (1)

and v(u) indicates the inverse function of (7).

The notation
Y ~ ED(p, 0*V (1))

is used to indicate that Y has density P(y;v,A) which belongs to an exponential dis-
persion family with v = y(u), A = 1/0? and variance function V (u).

Let Y have the inverse Gaussian distribution Y ~ IG(¢, ) with density

P@ﬁ¢,k)=j§§%y_3ﬂevagema{—% (3—%¢y>},

y>0,\A>0,6¢>0.



Show that Y ~ ED(u, 02V (u)) with V(1) = p3.
Let Yi,...,Y, be independent random variables with

Y; ~ ED <u(v), 0—2 V(u(v))) , i=1,m,

Wi

where wq, ..., w, are known constants. Let wy = > w;.

Show that
1 < o2
— Y wiYi ~ ED (u(y), — V(1(7)) ) -
W+ i

W

Deduce that, if Y1,...,Y, are IID IG(¢, \), then Y =n=t 31" | V; ~ IG(ne, n\).
[A12. We have

ol _ Aot(y;7)

o oy
0%l 9t(y;7)
N0y Oy

but the general result
ol ot
EFl —|=0=FE(— )=
(%) - (87)

and so, in the obvious partitioning of the expected information,
—0%1
1 p— E p— 0
il (8)\37)

To obtain the cumulant generating function, integrate directly to obtain the moment
generating function, take logs.

The mean follows directly from differentiating the m.qg.f. or c.g.f. Also, by the same
technique,
1 92K (v)

varY = X 92

The function u(-) is one-to-one and smooth because of general results about exponential
families. It is therefore possible to reparametrise using the mean p = p(y) instead of
the natural parameter ~v. The question makes this notationally explicit.

If Y ~ IG(¢, \) the cumulant generating function of Y is easily calculated as

Ky (t:6,)) = —/A¢ — 2t) + /A¢.

Then



With the reparametrisation (u,c?) = (\/)\/(,b, 1//\>, the density of Y can be written as

1 1 1 1 2
Ply:p,0?) =expd — | =y + —)} —3/2,=1/(20 y)’
344, 0°) P { o? (u2 Yu) Vora Y

so that Y ~ ED(u, oV (i) with V(i) = p3.

The rest here is just a straightforward exercise in manipulation of cumulant generating
functions.

The c.g.f. of Y; is

O'2 w; 0'2
Ky, (t;%a) ) {K (’Y+ Et> —K(’Y)}-

Then w;Y; has c.g.f.
0-2 wz‘ 2
Kuy, (67, — | = 5 {K(y+07t) = K(n)},

and Y, w;Y; has c.g.f.
w4 2
ﬁ{K(’H‘U t) — K(7)}.

Finally > w;Y; /w4 has c.g.f.

e ) -xo)

giving the conclusion. The inverse Gaussian case provides an example.]

13. Let Yi,...,Y, be independent random variables such that Y; has a Poisson
distribution with mean exp{\ + ¢z;}, where x4, ..., z, are known constants.

Show that the conditional distribution of Yi,...,Y,, given S = Y, does not depend
on \. Find the conditional log- likelihood function for v, and verify that it is equivalent
to the profile log-likelihood.

[A13. That the conditional distribution does not depend on A is easy: the distribution
of S is Poisson with mean ) exp{A\+1x;}. The definition of conditional log- likelihood
gives

VY ajy; —slogy | exp{yu;}].

The mazximum likelithood estimator of X for fixed v is given by

o = log(s= =)

and plugging into the expression for the full log-likelihood shows that the profile log-
likelihood is equivalent to the conditional log-likelihood.
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14. Verify that in general the likelihood ratio and score tests are invariant under a
reparameterization 1) = 1(#), but that the Wald test is not.

Write 6 = (61, 62), where 6 is parameter of interest.

Suppose 1 = (0) = (11,12) is an interest respecting transformation, with ¢; =
"¢1 (9) - 91.
Show that the profile log-likelihood is invariant under this reparameterization.

[A14. Parameterization invariance of the likelihood function ensures invariance of the
likelthood ratio and score tests.

We have I'¥) (1) = 119(0()). To test Hy : 6 = 0y, the LRT rejects for large values of
199(0) —199(0y). The LRT in the -parametrisation is Hy : ¢ = (0) = 1o = (6y),

based on
19 @) =19 (o) = 17 (0()) = 19 (0(v0)) = 1(8) — 1) (80),
since 1 = 1(0),0 = 0(1)).

That the score test is parametrisation invariant follows on showing that
U@ (00)"i " (80) ' U (G0) = U™ (10)"i ™ (400) T U™ (39),

using the formulae for the way U, i transform under reparametrisation.

The Wald statistic is not (generally) invariant, as is checked by working out the formula
for it in a new parametrisation. For example, in the one-dimensional case, to test
Hy : 0 =0y the Wald statistic might be taken as

(0 — 60)%i(6), *
say. If we consider a reparametrisation v = 1 (0) we have the statistic
LOIEAY
(00 - wien) 0 (52| ) -
O ly=y
on noting that
2
i () =i (6(v)) (% 9<w>) -
The two quantities * and x*x don’t necessarily coincide.

An example: let Y1,...,Y, be IID Poisson (0). Consider testing Hy : 0 = 1. We have
6=Y,19(0)=nY(logY —1) and 19 (1) = —n. In the parametrisation ¥ = =%, Hy :
Y =e'. We have 1) () = n(Y log(—log ) + log 1)), and i) = e~ . Then

(D) = nY (logY — 1), (e™) = —n.
The Wald statistic for Hy : 0 = 1 is wéo)(Go) =n(Y —1)2/Y. In the parametrisation
P =e % we have

wéw)(wg) =nle”Y —e 12 Y.
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For example, if n = 50, Y = 1.3, w§,") = 3.45, wj(,w) = 4.70. Referring to x2, the
significance level is 0.06 for wz()e) and 0.03 for wz(f/’).

Quite similar considerations show the profile log-likelihood is invariant under interest
respecting reparameterizations.

Write 0 = (01, 02), where 01 is parameter of interest. Suppose ¥ = () = (1,12) is
an interest respecting transformation, with ¥ = 11(6) = 6;.

We have
19 () = 1) (41, ¢2)
= 19(61(1), 05(1)))
=10 (Y1, 02(¢1,12)).
Then

S}plpl(w)(wlﬂh) = Sélpl(g)(wla 92)-

An instructive example to look at is the case of Y1,...,Y, IID N(u,0?). Check directly
that the profile log-likelihood for i is unchanged under either of the reparameterizations

(1, 0) = (w,logo) or (u,0) — (u,log(o/p)).]

15. Let Y1,...,Y, be IID N(u,0?), and let the parameter of interest be . Obtain
the form of the profile log-likelihood.

Show how to construct a confidence interval with asymptotic coverage 1 — « based on
the profile log-likelihood.

[A15. The mazimum likelihood estimate of o for fized p is 62 = > . (Vi — p)?/n.

m
Hence o
lp(p) = Up, 67,)
= —%nlog&i —3n
Y(Y; —Y)? Y — p)?
:—%nlog{ ¥ =¥) ;n( 2 }—%n,
since )
(Y. —
l(#vaz) = _%n10g02 - Ma
202
apart from a constant. Now, i = Y, sol,(j1) = —inlog62—1in where 62 = % S (Yi—
Y)2.
Then
. oh
2{l, (1) — (1)} = nlog 52
(n—f1)*
= nlog |:1 + T s

since 67 = 67 + (u — f1)°.

An approximate CI of coverage 1 — a for p is
{M 2 2{lp(R) — ()} < C}
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where c is s.t. P(x3 <c¢) =1— . This is

[T nlog(

)=
u1+( S {
{n)-

3Io

.(u—

C

p— \/eXp(— —1<upu
n

/ c X

=0 eXP(-) s+
n

16. Verify that the rth degree Hermite polynomial H, satisfies the identity

}
)
}

/\
3o
——
I
—
A/_/

Il
/_\/—/H/—:;Hf—/%/—/h\
3Im

SIO

N———
[S—y

v

/ T H, (y)b(y)dy = 1A

—00
Verify that the moment generating function of S} has the expansion

MS;;(t) :exp{KS* }

1

1
=2t exp{G\/_ pst> + —p4t4 +O(n 3/2)}

— e3P ) P3_ 43, P4 4 3 6 1 O(n3/2
‘ {+6\/ﬁ Tom Tyt O

On using the above identity, this latter expansion may be written

MS;@):/: {”67ng3( )

g ) + 2 () + 00 Lol

Comparison with the definition
M= [ efs; )y

provides a heuristic justification for the Edgeworth expansion.

[A16. Note first that
Kr(Sn) = nk,(Y) = nky,

since Kg, (t) =nKy(t). Also
kr(Y/b) = k. (Y) /0" = K. /D",

11



so, since cumulants of order higher than 2 are unaffected by location transformations,

e (S5) =m< S ) _ (,i(_sn)

no? no?)r

nhr  _ 1-r/2

= —nr/20_T =n Pr-

Also, because of standardisation, k1(S)) =0, k2(S)) = 1. Then

2 3

t N N _
5 + /13(5’”)5 + /‘434(8”)1 + O(?’L 3/2)
P3

— 2y P Py (32,

The rest of the derivation sketched in the question follows on noting that e =1+ x +
22/2 + O(23). The identity is easily proved by induction on r. It certainly holds for
r =0. Assume it holds for r — 1. By the definition of H, and by integrating by parts,

Ks:(t) = k1(S),)t + k2(S),)

n

/OO eV H, (y)¢(y)dy = (—1)" /Oo ") (y)dy

— 00 — 00

——¢y [ e (y)dy

= [t Y gy

— 00

B t/‘” eV Hy_1(y)$(y)dy

— 0o

1,92 1,90
_ r—1 _5t° _ 4r 5t
=ttt "e?” =te?"

by the inductive hypothesis.]
17. Verify that integration of the Edgeworth expansion for the density of S} yields
the distribution function expansion given in lecture notes.

[A17. This follows immediately on noting that

/ O W)ey)dy = (—1) / " 60 )y

= (~170" (@)
= —H, (@), |

18. Let Yi,...,Y, be IID N(u,0?). Obtain the saddlepoint approximation to the
density of S, = >, Y;, and comment on its exactness.

[A18. We have Ky (t) = ut + $0%t>. Now the saddlepoint equation is
nky (9) =z,
nu + a%n =z,
. x Q
¢ =(z—np)/(o"n) = - — .

o’n o

12



Also, K¥ (¢) = 02, so the saddlepoint approzimation to the density of Sy is

R
\/_()%

2 2 2
T e (BT 2 e
\/W {2 02“”“(7102) no”a?}

fs,(x) = exp{nud + ino’¢ — x}

1
B V2mno?

1
© V2rno? P {_ 2no?

which is ezact, since S, ~ N(nu,no?).]

19. Let Y7,...,Y, be IID exponential random variables with pdf f(y) = e~ Y. Ob-
tain the saddlepoint approximation to the density of S,, = Z?:l Y;, and show that it
matches the exact density except for the normalizing constant.

[A19. IfY has pdf f(y) = e~ Y, we have My (t) = (1 —t)7!, so Ky (t) = —log(1 — ).

The saddlepoint equation is
nky (¢) =

n
1-¢

n:a:—a:gzg

:5[;,

—:1:¢A>:n—:1:,

so that

Ky.(¢) = 2* /.
So the saddlepoint approximation to the density of S, is

1 1
fs,(¥) = —= ——71 exp {nlog = tn- :c} = cpz"TleT?,
27 (22/n)? n

where )

= (ZW)_%e”n_"’L?
This agrees with the exact gamma pdf
2" 1e™® /T(n),

except for replacement of I'(n) by a term which is asymptotically equivalent to the
leading term of Stirling’s approximation.|

20. Fill in the details of the statistical derivation of the saddlepoint approximation
to the density of S,.
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[A20. We have
fs, (s;A) = exp{sA — nKy(\)}fs, (s).

To see this note that
fs.(532) :/f(yl;A)---f(yn;A)dyl---dyn,

where the integral is over all (y1,...,Yn) Such that > y; = s, and substitute f(y; \) =

exp{yA — Ky (M)} f(y).
The associated moment generating function is

Mg, (t; X)) = exp{n(Ky (A +t) — Ky(\)) },

and the cumulant generating function is

Ks,(t;A) =n(Ky(A+1t) — Ky (\)).

The cumulants of Sy, under f(y;\), are
E\(Sn) = Kg, (0; ) = nKy (A),
vary(S,) = Kgn (0;0) = nK{ (N,
Fr(Sns A) = K5 (0;2) = nEy ().

The corresponding standardised cumulants are

1
pr(Sn; A) = /21 pr(A),

where
pr(N) = K () {EL ()72,

We have
fs, (s) = exp{nKy(\) — As}fs, (s; A).

Now the Edgeworth expansion for fs, (s;\) is

o 1 s — Ex(Sn)

fs.(850) vary(S,) (b( varx(sn)>
1 S — EA(SH)

X {1 + mps(A)HS (m)

+ o PV (—S . EA(S”)

2 vary (Sy)
[ s — Ex(Sn) 32
+egn PV ( vari<sn>> o )}'
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Now choose A, as a function of s, so that E5(Sn) =s. Then nK} () =s. Then
. 1
fs.(5;A) = ——=—==¢(0)
ni ()
1 3 L 95 —2
A1t g OO+ 5 A0 + 00 .

Note that we can assert that the error is of order O(n=2) since Har11(0) = 0.

Since Hy(0) = 3 and Hg(0) = —15, with the notation p, = py(N), r = 3,4, we have
. 1

fs, (s;A) = — {1 + 2i (3p4 — Ag) + O(n—Z)} :
2Ky ()

from which the result follows, since

fs. (s) = exp{nKy (A) — As}fs, (s;0). ]

21. Verify the calculations leading to the Laplace approximation (3.11) of lecture
notes.

[A21. Taylor expansion of g(y) around § gives

9y) =g+3y -7 + iy — y)gg”’+214 (v — 93" +0((y - 9)°),

where g = g(9), 9" = g"(y) ete. Then

b
In :e—"fl/ 30=0°3" o= =0’ = 35 =03V +n0W=1)° g,
a

Multiply and divide by \/ng"/(2m) and change the variable of integration to z = (y —

9)v/ng", to obtain
) ie—ng o . B zSg/// B Z4§(4)
VT S e iy
_ng\/ﬂ/( g/// 8

u)3/2

+ O(n3/2)} o(2)dz

~(4) 1 ~1171\2
“%n (g ERE o % o O(n_3/2)) Hejaz

If Z ~ N(0,1), BE(Z¥) = 0 if k is odd, E(Z*) = (k — 1)(k — 3)...3.1 if k is even.
Using this we obtain (3.11). The error is of order O(n=2) and not O(n=3/2), because
the term of order O(n=3/2) only involves expectations of odd powers of Z.]

22. Let Yi,...,Y,, be IID exponential random variables of mean pu. Verify that the
p*-formula for the density of i is exact.
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[A22. IfYy,...,Y, are IID exponential with mean p, we have fi =Y and we can write
lp; ) = —nlog p —nji/p. Then

oy 0P )
j(i) = _5—M2

Then the p* formula gives

P (s 1) = clg()|? exp{l(p) — 1)}

exp {nlog E_y
I

where ¢ 1s a normalising constant. So,
* (A~ A — n ..
P*(fi; 1) o< f" " exp (—; u) ,

which is exact, since the true density of [i is gamma.]

23.* Let y1,...,y, be independent realisations of a continuous random variable Y
with density belonging to a location-scale family,

p(y; p,0) = %Po ((y;u)) :

(y—p)/o e X, p€R,o>0. Assume that the maximum likelihood estimate (f,5) of
(1, 0) based on y = (y1, ..., y,) exists and is finite and that py is suitably differentiable.
Define the sample configuration a by

_(yl—/l yn—/l)
O= | —F--s — %= |-
o o

Show that the p*-formula for the conditional density of (ji, ) given a is

~An—2

n A A
‘(n G & h—p
p* (1,650 | a) = c(u, 0,0)—— [ [ po (—aﬂr )
g i1 g g

and is exact.

[A23. Let qo(y) = —log(po(y)). The log-likelihood (1, 0;y) can be written in the form

n
l(“aa;laaa—aa’) = —nloga - ZCJO (yl _Iu>
i=1

o
= —nloga—zn:qo (ga--l— ﬂ—ﬂ)
- (2 )
i1 o g
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on writing y; = [t + da;. Then we have
l(,u,a'ﬂ,& a’) - l(ﬂ7 A'la a- )

o
= —nloga—Zqo (— a; + —H> +n10ga—|—ZqO Clz

=1

1t is easily checked that

A A A A

= (6)7*v/D(a),

.
=
9
F
9
&
Tl

where

(S to0) (o Tt - (S o)}

7

The form of the p*-formula follows immediately.

Note that of the quantities q; only n — 2 are functionally independent: the likelihood
equations [, = é%l(,u, 0)=0andl, = E%l(u,a) = 0 give two constraints:

Z%(ai) =0
Zai%(ai) =n

Consider the one-to-one function

(yl,---;yn) — (ﬂ7&7a1;"'7a’n—2)-

We have

pY(yla"'aynnua H < )

and because y; = i + da; the joint density of (fi,6,a1,...,a,_2) is

o 1 n N N
p(u707a17'--aan—2;,u7 :_n U (—+;az> ’J|

where |J| is the Jacobian determinant of (yi1,...,yn) expressed as a function of
(f1,6,a1,...,an—2). From the representation
y1=p+oar

Yn—2 = jL + 0ap_2
Yn—1 =+ 0fi(ar,...,an2)
Yn = ﬂ—l—é’fg(al,. ..,an_g)

17



we obtain

1 a1 o 0
J = 1 Ap—2 0 15
L fi(a®) ofia(a®) ... 6fin-2(a”)
1 fa(a*) 6f2a(a”) ... 6fon—2(a”)
say, where a* = (a1,...,an—2). We may write this as

J _ |:lfn,2 a* OA_I’I’Z*Q
1, fla) oF(a)]"

Recall that

A B| 1
'C D‘ = |B||C — DB A|.
With B = ¢1,,_2 we obtain
I = 6" 2hu(a),

say.

Denote by p(a) the marginal density of (a1, ...,an—2). Then the conditional density of
(f1,0) given a is

~

en—2 [ =1 &
+—-a |,
an Ep0< o P z>

where c(a) = hyp(a)/p(a) can be interpreted as a normalising constant.

p(i, 65,0 | a) = c(a)

This is the p*-formula, which is therefore exact. Note that this analysis shows that the
normalising constant in the p*-formula does not depend on (u, o).

24. Let X1,...,X, be independent exponential random variables with mean 1/
and let Y7,...,Y, be an independent sample of independent exponential random vari-
ables of mean 1/(9)\).

Find the p* approximation to the density of (1&, ;\), and hence find an approximation
to the marginal density of 1. The exact distribution of /1 is an F-distribution with
degrees of freedom (2n,2n), so that the exact density of 1 is given by

L) 1yt ¥
T oty (GTl

) —2n
(G
Comment on the exactness of the marginal density approximation.

[A24. Simple calculations give ) = :E/g,f\ = 1/z, where Z,y denote the respective
sample means. The log-likelihood may be written

A
1(6) =2nlog A +nlo —n(l=—=+ =),
(0) g g1 (/\w /\)
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and

i0=n( 0 GL).

Noting that no ancillary is required, the approximation to the joint density of (1, \) is

~ R )\ 2n 'Q[J n )\'QZJ )\
* A A) = TLA = = — <A =~ — .
A ) = e 2 () () exn(n(35 + T - 2))

The approximation to the marginal density ofzﬁ 18

/p*(zﬂ, A1), A)dA = c(%)n% exp(2n) /000 g2n—1 exp{—n(% + 1)t}dt,

on writing t = A/\.

Evaluation of the (gamma) integral gives the density approzimation

cF(Zn) exp(2n) Y\n ¢ —2n
) Uy 40y

which equals

~

1/3 n—1 Y\ —2n
(@) (1+E)

on simplification, so that the approximation is seen to be exact, apart from the normal-
ising factor.]

cl'(2n) exp(2n)

<[~

25. As in question 15, let Y7,...,Y, be IID N(u,o?), but suppose the parameter

of interest is the variance o2.

Obtain the form of the profile log-likelihood. Show that the profile score has an expec-
tation which is non-zero.

Find the modified profile log-likelihood for ¢? and examine the expectation of the
modified profile score.

[A25. We have i, =Y, so that the profile log-likelihood is

1
Iy(0?) = —g logo? — g log 2m — 252 »(Y; —Y)2.

The profile score is therefore

8117(02) _ N o ~2/ 2
D2 __E(O-) (1_0/0)a

where 62 = L X(Y; —Y)? has expectation

E(6?) = ("; 1) 0% = (1 = %) o2,




So,

Ol,(0?) n 1 1 1
E P = ———= 1 —_ — 1 _— — 2 = —— .
( o2 202 o2 n)’ 202 70
In general, the expectation of the profile score is of order O(1). We have

Wp,0%) = U(p, 0%, 67)

_n 9 M 1 9
——Eloga —§log2w—mZ(Yi—u)

(2

1
= —g logo? — g log 2w — 557 {né? +nlip — p)?}.

Then 9
l#?ﬂ(:u’a 02; /:l’a 6-2) = @ (_
Also,

B PR n
j##(ﬂaUQ;uao-Q) = ;;

1
so the modifying factor M(o?) = ("—2) ’ and, ignoring constants, the modified profile

n

log-likelihood is

~ (n—1) R
l, = — 5 logo? — 552 no?
ol (o2 n—1 né? n &2 1
J%;:—(z)+ I= o2 \172) tge-
oo 20 20 20 o 20

Then, E <8[§§”22)> =0.
In general, the expectation of the modified profile score is of order O(n=1).]
26. Let Yi,...,Y, be independent exponential random variables, such that Y; has

mean \exp(v¢z;), where z1,...,2, are known scalar constants and 1 and A are un-
known parameters.

In this model the maximum likelihood estimators are not sufficient and an ancillary
statistic is needed. Let o
aj =logY; —log A — Yx;,

j=1,...,n, and take a = (ay,...,a,) as the ancillary.

Find the form of the profile log-likelihood function and of the modified profile log-
likelihood function for .

[A26. The log-likelihood is
1
1(0) = —nlog A=y > x; — X > exp(—vz;)y;,
which is equivalent to
A .
—nlog A= ¢ Y x; = £ Y exp{(v — ¥)z; +a;)},
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using the definition of the ancillary.
Mazimising 1(0) with respect to \ gives

- >_exp{—vz;}y;
W = .

n

Then, on noting that R
5= 5\2 exp{(¢ — ¥)z; + a;}
Y = 9

n

simple manipulation shows that the modifying factor M () is free of ¥ and depends
only on the data. Hence l,(¢) = 1,(1). In detail: O\y/ON = S, say, with —j, =
n/j\f/} - 25\5/5@ Hence jy, = n®/(A25?), so that M(v) is a function of n, \, not v.]

27. Let Y1,...,Y, be IID N(u,0?) and consider testing Hy : pt = pg. Show that
the likelihood ratio statistic for testing Hy may be expressed as

w = nlog{l + t2/(TL - 1)}7

where ¢ is the usual Student’s t statistic.

Show directly that

3
Ew=14_—+0(n"?
v +2n+ (™)

in this case, so that the Bartlett correction factor b = 3/2.

Examine numerically the adequacy of the x?, approximation to w and to w’ = w/(1 +
3/2n).

[A27. The first part is a simple exercise. Now

w = nlog{l+t*/(n—1)}
N t2 1t
—”{n—1_§(n—m2}’

on using the expansion log(l + z) = x — % + - Also E(t?) = var(t) = 221, since

t~ty_1. Also E(t*) =3+ O(n™1) [recall t, — N(0,1) as v — o0|. So, by the above,

E(w):n_3—%+0(n_2)
1-3/n 2n (n™)
=142 2 o)

as required.
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I performed the following simple simulation exercise. For each of a set of values of
n I generated 1 million null values of w and w’, generating from N(0,1) and testing
Hy : i = 0, and recorded the proportion exceeding 3.8/, the upper 5% point of X2. It
is apparent that the chi-squared approximation to the distribution of w' is adequate for
small n, while the distribution of w approaches x3 more slowly.

n w w’

10 0.0702 0.0520
20 0.0593 0.0506
30 0.0558 0.0501
40 0.0548 0.0503

28. Let (X1,Y7),...,(X,,Y,) be independent pairs of independently normally dis-

tributed random variables such that, for each j, X; and Y; each have mean p; and

variance o2.

Find the maximum likelihood estimator of o2 and show that it is not consistent.

Find the form of the modified profile log-likelihood function for ¢? and examine the
estimator of 2 obtained by its maximization.

Let S =>"" ,(X;—Y;)?. What is the distribution of S? Find the form of the marginal
log-likelihood for o2 obtained from S and compare it with the modified profile likeli-
hood.

[This is the ‘Neyman-Scott problem’ which typifies situations with large numbers of
nuisance parameters. Note, however, that the model falls outside the general framework
that we have been considering, in that the dimension of the parameter (pi1, . .., fin,0?)
depends on the sample size, and tends to oo as n — o0.]

[A28. It is straightforward to obtain the mazximum likelihood estimator as

4n '

Then note that 6% has mean 02/2 and by WLLN converges in probability to o2 /2, so
that it is inconsistent.

The profile log-likelihood is

ly(0?) = i 2nlogo.

Then observe that ji; = fi;_,, and that

Pl _[-% ifi=],
OpiOp; 10, otherwise’



so that | juu (02, fig2) |= (Z)". Hence

I,(0%) = B nlogo.

It is easily checked that the estimator obtained by maximising l~p(02) 1S consistent.

We have S/(202) ~ X2, so that the density of S is proportional to o~ ™ exp{—s/(40?)},
so that the marginal log-likelihood is equivalent to the modified profile log-likelihood. |
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