
APTS Statistical Computing:
Lab Problems

Here are some practical problems which aim to explore and reinforce some of the course material.
They all use R. This is for convenience: many statistical numerical analysis tasks are best approached
with a mixture of compiled code, using a language like C, and code in a high level language such as R
or Matlab. But for exploratory purposes the high level languages are best. The problems here all use
simulated data: when developing statistical modelling code, it is often best to start out with data where
you know what the truth is (and can generate further replicates).

1. This question revisits the third example in section 1.1 of the notes. First simulate the data used in
that example.

(a) Write code to reproduce the good and bad fits produced by calls to lm in the example.

(b) Examine the condition numbers of the model matrices in the two cases. Why was the second
lm fit so bad?

(c) Plot the second and third columns of the model matrix against each other for the two cases,
and use cor to examine their correlation. Why are the condition numbers so high here?

(d) One fix is simply to subtract the mean x value from the x vector before fitting. Try this and
see what happens to the condition number and column correlations of the model matrix now.

(e) If we want good condition numbers then the best thing would be have a model matrix made
up of columns from an orthogonal matrix. Orthogonal polynomials provide a way of achieving
this. Try fitting with lm(y~poly(x,2)) to see these in action. Look at the correlation between
the model matrix columns now, and the condition number.

(f) The model matrix produced in the last part is not quite (column) orthogonal (meaning or-
thonormal), but we could rescale and use a model matrix X <- cbind(n^-.5,poly(x,2))
where n is the number of data. What is the QR decomposition of this matrix? Show how the
model matrix can be used directly to find the fitted values in this case, without any need for
an lm call. Check that it works (efficiently please).

2. Consider the linear mixed model

y = Xβ + Zb + ε, b ∼ N(0, Iσ2
b ), ε ∼ N(0, Iσ2)

X and Z are model matrices, β, σ2
b and σ2 are parameters.

(a) First simulate some data from a model of this sort, taking care to relate the code back to the
mathematical statement of the model. . .

n <- 100;n.b <- 10;n.beta <- 5
X <- cbind(1,matrix(runif(n*n.beta-n),n,n.beta-1))
Z <- matrix(runif(n*n.b),n,n.b)
beta <- rep(1,n.beta)
b <- rnorm(n.b)
y <- X%*%beta + Z%*%b + rnorm(n)

(b) Now find the (marginal) expectation, µ, and covariance matrix, V, of y. State the (marginal)
distribution of y.

(c) Write an R function to evaluate the log likelihood of θT = (βT, σ2
b , σ2) given data y. Make

sure that θ is the first argument of the function.

(d) To maximize the log likelihood of the model using unconstrained methods, it is better to
use a parameterization that guarantees positive variances. Modify your function to accept a
parameter vector θT = (βT, ρb, ρ) where ρ = log(σ) and ρb = log(σb).
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(e) Use optim to maximize your likelihood (note that optim minimizes by default).

(f) Actually, using general purpose optimization methods to find the optimizing β is a bit wasteful.
Given the variance parameters, closed form expressions for the β maximizing the likelihood are
available, and might as well be used. Then it is only necessary to use general methods for the
variance parameters. The likelihood considered only as a function of the variance parameters,
with the corresponding MLEs of β ‘plugged in’ is termed a ‘profile likelihood’. Show that,
given the variance parameters, the log-likelihood is maximized by the β minimizing

(y −Xβ)TV−1(y −Xβ) = ‖R−T(y −Xβ)‖2

where RTR = V. (‖x‖2 = xTx here.) Hence, produce a ‘profile log likelihood’ function
equivalent to your previous log likelihood function. Your function should accept a vector of
variance parameters as its first argument, and should return the corresponding profile log
likelihood value. You might want to return the corresponding β values as an attribute of the
return value. e.g.

.

.
attr(ll, "beta") <- beta
return(ll)

}

(g) Use optim to maximize your profiled log likelihood function, and confirm that you get near
identical parameter estimates to those from part (e).

(h) Only if you have masses of time left over and would like a further challenge: Forming V
explicitly is rather wasteful. Figure out how to evaluate the log likelihood without doing this,
by making use of the QR decomposition of Z.

3. Write your own code to optimize Rosenbrock’s function by Newton’s method.

4. optim will optionally return a finite difference approximation to the Hessian of its objective. Us-
ing this fact, try repeating the Laplace approximation and Laplace importance sampling parts of
example in section 4.4.8. using optim to find the b̂ and the approximate Hessian.

5. Experiment with model fitting by maximizing the log likelihood from the previous question.
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