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The work provided here is intended to take students up to half a week to complete. Students
should talk to their supervisors to find out whether or not their department requires this work
as part of any formal accreditation process (APTS itself has no resources to assess or certify
students). It is anticipated that departments will decide on the appropriate level of assessment
locally, and may choose to drop some (or indeed all) of the parts, accordingly.

0. If you have not already done so, complete the three APTS week practical sessions.

1. In a Bayesian context, write the marginal density of the observed data y as

Pr(y) =

∫
f(y | θ)π(θ) dθ =

∫
exp{−h(θ)} dθ,

say, and suppose that the log likelihood is O(n), and the log prior is O(1). Apply the
Laplace approximation to the integral, and show that if O(1) terms are neglected, then

−2 log Pr(y)
.
= BIC = −2 log f(y | θ̂) + p log n, n → ∞,

where p is the dimension of θ, assumed fixed.

2. The data frame bacteria are discussed in Chapter 10 of Modern Applied Statistics with
S (4th edition) by Venables and Ripley (Springer, 2002). They are available in R by
loading the library MASS. The response y indicates presence or absence of a particular
bacteria when assessed on 50 individuals (ID) at each of up to 6 time points (week). Each
individual has received one of three treatments (trt: placebo/drug/drug+).

Model the dependence of y on trt and week using binary GLMs and GLMMs (to ac-
count for intra-subject dependence in the response), fitted by maximum likelihood and
associated approximations. Functions which you might wish to investigate for doing this
include glmmPQL (from the MASS library), glmmML (from the library of the same name)
and lmer (from the lme4 library). Use the library documentation provided to learn about
the required arguments of these functions. Compare the inferences obtained by different
fitting methods (quadrature, Laplace, PQL).

3. For the bacteria data Venables and Ripley (2002, p297) propose the binary GLMM
with

Yij ∼ Bernoulli(µij), g(µij) = β0 + β1x1ij + β2x2ij + β2x3ij + b0i, b0i ∼ N(0, σ2

b )

where X1, X2, X3 are the three binary explanatory variables I(trt = drug), I(trt =
drug+), and I(week > 2)) and g is the logit link function.

If g is the probit link (Φ−1), then a Bayesian analysis of this model, using a Gibbs sam-
pler, is straightforward, utilising the following latent variable formulation (also described
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briefly on slide 165 of the lecture notes): The GLMM above (with g = Φ−1) is equivalent
to

Yij = I(Zij > 0), Zij ∼ N(µij , 1), µij = β0+β1x1ij+β2x2ij+β2x3ij+b0i, b0i ∼ N(0, σ2

b )

where the Zij are latent continuous-valued variables, one for each observed Yij.

(a) Establish the equivalence above, and draw the DAG for the latent variable model,
and the corresponding undirected conditional independence graph for the vertices
(Y , Z, β, b, σ2).

As the Zij are unobserved, they can also be generated in any Gibbs sampler scheme. It is
immediately obvious that, given Z, the conditional distributions for β, b, σ2

b are exactly
as for a LMM (with known error variance σ2 = 1). Hence, a Gibbs sampler for this
GLMM can be obtained by a straightforward modification of our LMM Gibbs sampler
from Practical 3. We simply need to generate the Zij at each step.

(b) Show that the conditional distribution for Zij |Y, β, b, σ2 is N(µij), restricted to the
range (0,∞) when Yij = 1, or the range (−∞, 0] when Yij = 0.

A (not particularly efficient) way of generating a single N(µ, σ2) variable restricted to
the range (a, b) in R is

mu+sigma*qnorm(runif(1,pnorm(a,mu,sigma),pnorm(b,mu,sigma)))

(c) Modify the R function you used for an LMM Gibbs sampler in Practical 3, to perform

a Bayesian analysis of the model above. Use the initial diffuse priors βi
ind
∼ N(0, 25)

and σ−2

b ∼ Gamma(0.01, 0.01). It is reasonable to suppose a priori that the prob-
ability of bacteria presence decreases over time. Perform an alternative analysis
with the more informative prior distribution β3 ∼ N(−2, 4). How are your results
affected?

(d) Compare your results with the logit model results obtained by maximum likeli-
hood. [Note that, if g1 and g2 are logit and probit links respectively, then linear
approximation gives g1 ≈ 4g2/(2π)1/2.]

4. In the context of the EM algorithm, use the fact that
∫

f(u | y; θ) du = 1 for all y and θ
to show that

0 = E

{
∂ log f(U | Y ; θ)

∂θ

∣∣∣∣ Y = y; θ

}
,

0 = E

{
∂2 log f(U | Y ; θ)

∂θ∂θT
+

∂ log f(U | Y ; θ)

∂θ

∂ log f(U | Y ; θ)

∂θT

∣∣∣∣ Y = y; θ

}
.

Now establish that

∂ℓ(θ)

∂θ
=

∂Q(θ; θ′)

∂θ

∣∣∣∣
θ′=θ

,
∂2ℓ(θ)

∂θ∂θT
=

{
∂2Q(θ; θ′)

∂θ∂θT
+

∂2Q(θ; θ′)

∂θ∂θ′
T

}∣∣∣∣
θ′=θ

. (1)

Deduce that even if ℓ(θ) is inaccessible, its derivatives may be obtained from those of
Q(θ; θ′) and used in a generic maximization algorithm. The second of these formulae also
provides standard errors for the maximum likelihood estimate θ̂ when Q(θ; θ′) is known
but ℓ(θ) is not.

Check this in the special case of the negative binomial example of the lectures, and hence
give the Newton–Raphson step for maximization of the observed-data log likelihood, even
though ℓ(θ) itself is unknown. Write a program to compare the convergence of the EM
and Newton–Raphson algorithms in that example.
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