

APTS-ASP $L_{\text {Preliminary material }}$ $\left\llcorner_{\text {Expectation and probability }}\right.$	
Probability	
1. Sample space Ω of possible outcomes; 2. Probability \mathbb{P} assigns a number between 0 and 1 inclusive (the probability) to each (sensible) subset $A \subseteq \Omega$ (we say A is an event); 3. Advanced (measure-theoretic) probability takes great care to specify what sensible means: \boldsymbol{A} has to belong to a pre-determined σ-algebra \mathcal{F}, a family of subsets closed under countable union and complements, often generated by open sets. We shall avoid these technicalities, though it will later be convenient to speak of σ-algebras \mathcal{F}_{t} in short-hand for "information provided by time t ". 4. Rules of probability: Normalization: $\mathbb{P}[\Omega]=1$; σ-additivity: if $A_{1}, A_{2} \ldots$ form a disjoint sequence of events then $\mathbb{P}\left[A_{1} \cup A_{2} \cup \ldots\right]=\sum_{i} \mathbb{P}\left[A_{i}\right] .$	1. Example: $\Omega=(-\infty, \infty)$. 2. We could for example start with $\mathbb{P}[(a, b)]=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-u^{2} / 2} d u$ and then use the rules of probability to determine probabilities for all manner of sensible subsets of $(-\infty, \infty)$. 3. In our example a "natural" choice for \mathcal{F} is the family of all sets generated from intervals by indefinitely complicated countably infinite combinations of countable unions and complements. 4. Test understanding: use these rules to explain (a) why $\mathbb{P}[\varnothing]=0$, (b) why $\mathbb{P}\left[A^{c}\right]=1-\mathbb{P}[A]$ if $A^{c}=\Omega \backslash A$, and (c) why it makes no sense in general to try to extend σ-additivity to uncountable unions such as $(-\infty, \infty)=\bigcup_{x}\{x\}$.
$\underset{\substack{\text { a } \\ \text { APTS-ASP } \\ \text { Preliminary material } \\ \text { Expectation and probability }}}{\text { a }}$	
Conditiona	
1. We declare the conditional probability of A given B to be $\mathbb{P}[A \mid B]=\mathbb{P}[A \cap B] / \mathbb{P}[B]$, and declare the case when $\mathbb{P}[B]=0$ as undefined. 2. Bayes: if B_{1}, B_{2}, \ldots is an exhaustive disjoint partition of Ω then $\mathbb{P}\left[B_{i} \mid A\right]=\frac{\mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right]}{\sum_{j} \mathbb{P}\left[A \mid B_{j}\right] \mathbb{P}\left[B_{j}\right]} .$ 3. Conditional probabilities are clandestine random variables! Let X be the Bernoulli ${ }^{2}$ random variable which indicates ${ }^{3}$ event B. Consider the conditional probability of A given information of whether or not B occurs: it is random, being $\mathbb{P}[A \mid B]$ if $X=1$ and $\mathbb{P}\left[A \mid B^{C}\right]$ if $X=0$.	1. Actually we often use limiting arguments to make sense of cases when $\mathbb{P}[B]=0$. 2. Hence all of Bayesian statistics ... Test understanding: write out an explanation of why Bayes' theorem is a completely obvious consequence of the definitions of probability and conditional probability. 3. The idea of conditioning is developed in probability theory to the point where this notion (that conditional probabilities are random variables) becomes entirely natural not artificial. Test understanding: establish the law of inclusion and exclusion: if A_{1}, \ldots, A_{n} are potentially overlapping events then $\begin{aligned} \mathbb{P} & {\left[A_{1} \cup \ldots \cup A_{n}\right]=\mathbb{P}\left[A_{1}\right]+\ldots+\mathbb{P}\left[A_{n}\right] } \\ & -\left(\mathbb{P}\left[A_{1} \cap A_{2}\right]+\ldots+\mathbb{P}\left[A_{i} \cap A_{j}\right]+\ldots+\mathbb{P}\left[A_{n-1} \cap A_{n}\right]\right) \end{aligned}$
${ }^{2}$ Taking values only 0 or 1 . ${ }^{3} X=1$ exactly when B happens.	Hint: represent RHS as expectation of expansion of $1-\left(1-X_{1}\right) \ldots\left(1-X_{n}\right)$ for suitable Bernoulli random variables X_{i} indicating various A_{i}.
Expectation	
1. If $X \geq 0$ is a non-negative random variable then we can define its (possibly infinite) expectation $\mathbb{E}[X]$. 2. If $X=X^{+}-X^{-}=\max \{X, 0\}-\max \{-X, 0\}$ is such that $\mathbb{E}\left[X^{ \pm}\right]$are both finite ${ }^{4}$ then set $\mathbb{E}[X]=\mathbb{E}\left[X^{+}\right]-\mathbb{E}\left[X^{-}\right]$. 3. Familiar properties of expectation follow from linearity $(\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y])$ and monotonicity $(\mathbb{P}[X \geq a]=1$ implies $\mathbb{E}[X] \geq a$) for constants a, b. 4. Useful notation: for an event A write $\mathbb{E}[X ; A]=\mathbb{E}\left[X \square_{[A]}\right]$, where $\square_{[A]}$ is the Bernoulli random variable indicating A. We can then consider specific constructions: 5. If X has countable range then $\mathbb{E}[X]=\sum_{x} x \mathbb{P}[X=x]$. 6. If X has probability density f_{X} then $\mathbb{E}[X]=\int x f_{X}(x) \mathrm{d} x$. ${ }^{4}$ We wish to avoid having to make sense of $\infty-\infty$!	1. Full definition of expectation takes 3 steps: obvious definition for Bernoulli random variables, finite range random variables by linearity, general case by monotonic limits $X_{n} \uparrow X$. The hard work lies in proving this is all consistent 2. Any decomposition as difference of integrable random variables will do. 3. Test understanding: using these properties - deduce $\mathbb{E}[a]=a$ for constant a. - show Markov's inequality $\mathbb{P}[X \geq a] \leq \frac{1}{a} \mathbb{E}[X]$ for $X \geq 0, a>0$. 4. So in absolutely continuous case $\mathbb{E}[X ; A]=\int_{A} x f_{X}(x) \mathrm{d} x$ and in discrete case $\mathbb{E}[X ; X=k]=k \mathbb{P}[X=k]$. 5. Countable [=discrete] case: expectation defined exactly when sum converges absolutely. 6. Density [=(absolutely) continuous] case: expectation defined exactly when integral converges absolutely.
(${ }^{\text {APTS-ASP }} \mathrm{L}_{\text {Preliminary material }}\left\llcorner_{\text {Expectation and probability }}\right.$	
Conditional Expectation (I): property-based definition	
1. Conventional definitions treat two separate cases (discrete and absolutely continuous): - $\mathbb{E}[X \mid Y=y]=\sum_{x} x \mathbb{P}[X=x \mid Y=y]$, - $\mathbb{E}[X \mid Y=y]=\int x f_{X \mid Y=y}(x) \mathrm{d} x$. \ldots... but what if X is mixed discrete/continuous? or worse? Focus on properties to get unified approach: 2. If $\mathbb{E}[X]<\infty$, we say $Z=\mathbb{E}[X \mid Y]$ if: (a) $\mathbb{E}[Z]<\infty$; (b) Z is a function of Y; (c) $\mathbb{E}[Z ; A]=\mathbb{E}[X ; A]$ for events A defined in terms of Y. This defines $\mathbb{E}[X \mid Y]$ uniquely, up to events of prob 0 . 3. We can now define $\mathbb{E}\left[X \mid Y_{1}, Y_{2}, \ldots\right]$ simply by using "is a function of Y_{1}, Y_{2}, \ldots " and "defined in terms of Y_{1}, Y_{2}, \ldots ", etc. Indeed we often write $\mathbb{E}[X \mid G]$, where (σ-algebra) \mathcal{G} represents information conveyed by a specified set of random variables and events.	Conditional expectation needs careful definition to capture all cases. But focus on properties to build intuitive understanding. 1. Notice that conditional expectation is also properly viewed as a random variable. 2. - " $\mathbb{E}[Z]<\infty$ " is needed to get a good definition of any kind of expectation; - We could express " Z is a function of Y " etc more formally using measure theory if we had to; - We need (b) to rule out $Z=X$, for example. Test understanding: verify that the discrete definition of conditional expectation satisfies the three properties (a), (b), (c). Hint: use A running through events $A=[Y=y]$ for y in the range of Y. 3. Test understanding: suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent and identically distributed, with finite absolute mean $\mathbb{E}\left[\left\|X_{i}\right\|\right]<\infty$. Use symmetry and linearity to show $\mathbb{E}\left[X_{1} \mid X_{1}+\ldots+X_{n}\right]=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)$.

APTS-ASP 33 $L_{\text {Preliminary material }}$ $\quad L_{\text {Markov chains }}$	
Example: Markov tennis	
How does probability of win by B depend on $p=\mathbb{P}[B$ wins point $]$?	Use first passage equations, then solve linear equations for the $f_{i j}$, noting in particular $f \text { Game to A, Game to } \mathrm{B}=0, \quad f \text { Game to B, Game to } \mathrm{B}=1 .$ I obtain $f \text { Love-All,Game to B }=\frac{p^{4}\left(15-34 p+28 p^{2}-8 p^{3}\right)}{1-2 p+2 p^{2}},$ graphed against p below:
APTS-ASP LPreliminary material $L_{\text {Markov chains }}$	
Transience and recurrence	
1. Is it possible for a Markov chain X never to return to a starting state i ? If so then that state is said to be transient. 2. Otherwise the state is said to be recurrent. 3. Moreover if the return time T has finite mean then the state is said to be positive-recurrent. 4. Recurrent states which are not positive-recurrent are called null-recurrent. 5. States of an irreducible Markov chain are all recurrent if one is, all positive-recurrent if one is.	1. Example: asymmetric simple random walk (jumps ± 1): see Cox and Miller (1965) for a pretty explanation using strong law of large numbers. 2. Example: symmetric simple random walk (jumps ± 1). 3. As we will see, there exist infinite positive-recurrent chains (eg, "discrete AR(1)"). 4. Why "null", "positive"? Terminology is motivated by the limiting behaviour of probability of being found in that state at large time. (Asymptotically zero if null-recurrent or transient: tends to $1 / \mathbb{E}[T]$ if aperiodic positive-recurrent.) 5. This is based on the criterion for recurrence of state i : $\sum_{n} p_{i i}^{(n)}=\infty$, which in turn arises from an application of generating functions. The criterion amounts to asserting, the chain is sure to return to a state i exactly when the mean number of returns is infinite.
APTS-ASP LPreliminary material $L_{\text {Markov chains }}$	
Equilibrium of Markov chains	
1. If X is irreducible and positive-recurrent then it has a unique equilibrium distribution π : if X_{0} is random with distribution given by $\mathbb{P}\left[X_{0}=i\right]=\pi_{i}$ then $\mathbb{P}\left[X_{t}=i\right]=\pi_{i}$ for any t. 2. Moreover the equilibrium distribution viewed as a row vector solves the equilibrium equations: $\underline{\pi} \cdot \underline{\underline{P}}=\underline{\pi}, \quad \text { or } \quad \pi_{j}=\sum_{i} \pi_{i} p_{i j}$ 3. If in addition X is aperiodic then the equilibrium distribution is also the limiting distribution: $\mathbb{P}\left[X_{n}=i\right] \quad \rightarrow \quad \pi_{i} \quad \text { as } n \rightarrow \infty .$	1. In general the chain continues moving, but the marginal probabilities at time t do not change. 2. Test understanding: Show that the 2 -state Markov chain with transition probability matrix $\left[\begin{array}{ccc}0.1 & 0.9 \\ 0.8 & 0.2\end{array}\right]$ has equilibrium distribution $\underline{\pi}=(0.470588 \ldots, 0.529412 \ldots)$. Note that you need to use the fact that $\pi_{1}+\pi_{2}=1$: this is always an important extra fact to use in determining a Markov chain's equilibrium distribution! 3. This limiting result is of great importance in MCMC. If aperiodicity fails then it is always possible to sub-sample to convert to the aperiodic case on a subset of state-space. Note 4 of previous segment shows possibility of computing mean recurrence time using matrix arithmetic. NB: π_{i} can also be interpreted as "mean time in state i ".
	(\% APTS-ASP
Sums of limits and limits of sums 1. Finite state-space discrete Markov chains have a useful simplifying property: they are always positive-recurrent if they are irreducible. 2. This can be proved by using a result, that for null-recurrent or transient states j we find $p_{i j}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$, for all other states i. Hence a contradiction: $\sum_{j} \lim _{n \rightarrow \infty} p_{i j}^{(n)}=\lim _{n \rightarrow \infty} \sum_{j} p_{i j}^{(n)}$ and the right-hand sum equals 1 from "law of total probability", while left-hand sum equals $\sum 0=0$ by null-recurrence. 3. This argument fails for infinite state-space as it is incorrect arbitrarily to exchange infinite limiting operations: $\lim \sum \neq \sum \lim$ in general.	무
	1. Some argue that all Markov chains met in practice are finite, since we work on finite computers with finite floating point arithmetic. Do you find this argument convincing or not? 2. The result used here puts the "null" in null-recurrence. 3. We have earlier summarized the principal theorems which deliver checkable conditions as to when one can make this exchange. Note that the simple random walk (irreducible but null-recurrent or transient) is the simplest practical example of why one must not carelessly exchange infinite limiting operations!

APTS-ASP LPreliminary material $L_{\text {Markov chains }}$	
1. Definition of continuous-time (countable) discrete state-space (time-homogeneous) Markov chain $X=\left\{X_{t}: t \geq 0\right\}$: for $s, t>0$ $p_{t}(x, y)=\mathbb{P}\left[X_{s+t}=y \mid X_{s}=x, X_{u} \text { for various } u \leq s\right]$ depends only on x, y, t, not on rest of past. 2. Organize $p_{t}(x, y)$ into matrices $\underline{\underline{P}}(t)=\left\{p_{t}(x, y)\right.$: states $\left.x, y\right\}$; as in discrete case $\underline{\underline{\bar{P}}}(t) \cdot \underline{\underline{P}}(s)=\underline{\underline{P}}(t+s)$ and $\underline{\underline{P}}(0)$ is identity matrix. 3. (Try to) compute time derivative: $\underline{\underline{Q}}=\left.(d / d t) \underline{\underline{P}}(t)\right\|_{t=0}$ is matrix of transition rates $q(x, y)$.	This is a very rough guide: I pondered for a while whether to add this to prerequisites, since most of what I want to talk about will be in discrete time. I decided to add it in the end because sometimes the easiest examples in Markov chains are in continuous-time. The important point to grasp is that if we know the transition rates $q(x, y)$ then we can write down differential equations to define the transition probabilities and so the chain. We don't necessarily try to solve the equations.... 1. For short, write $p_{t}(x, y)=\mathbb{P}\left[X_{s+t}=y \mid X_{s}=x, \mathcal{F}_{s}\right]$ where \mathcal{F}_{s} represents all possible information about the past at time s. 2. From here on I omit many "under sufficient regularity" statements. Norris (1998) gives a careful treatment. 3. The row-sums of $\underline{\underline{P}}(t)$ all equal 1 ("law of total probability"). Hence the row sums of $\underline{\underline{Q}}$ ought to be 0 with non-positive diagonal entries $q(x, x)=-q(x)$ measuring rate of leaving x.
APTS-ASP $L_{\text {Preliminary material }}$ $L_{\text {Markov chains }}$	
Continuous-time countable state-space Markov chains	
For suitably regular continuous-time countable state-space Markov chains, we can use the Q-matrix $\underline{\underline{Q}}$ to simulate the chain as follows: 1. rate of leaving state x is $q(x)=\sum_{y \neq x} q(x, y)$ (since row sums of $\underline{\underline{Q}}$ should be zero). Time till departure is Exponential $(q(x))$; 2. on departure from x, go straight to state $y \neq x$ with probability $q(x, y) / q(x)$.	1. Why an exponential distribution? Because an effect of the Markov property is to require the holding time until the first transition to have a memory-less property-which characterizes Exponential distributions. Here it is relevant to note that "minimum of independent Exponential random variables is Exponential". 2. This also follows rather directly from the Markov property. Note that this shows two strong limitations of continuous-time Markov chains as stochastic models: the Exponential distribution of holding times may be unrealistic; and the state to which a transition is made does not depend on actual length of holding time. Of course, people have worked on generalizations (keyword: semi-Markov processes).
APTS-ASP $\left\llcorner_{\text {Preliminary material }}\right.$ $L_{\text {Markov chains }}$	
Continuous-time countable state-space Markov chains (a rough guide continued)	ㅇ chains
1. Compute the s-derivative of $\underline{\underline{P}}(s) \cdot \underline{\underline{P}}(t)=\underline{\underline{P}}(s+t)$. This yields the famous "Kolmogorov backwards equations": $\underline{\underline{Q}} \cdot \underline{\underline{P}}(t)=\underline{\underline{P}}(t)^{\prime}$ The other way round yields the "Kolmogorov forwards equations": $\underline{\underline{P}}(t) \cdot \underline{\underline{Q}}=\underline{\underline{P}}(t)^{\prime}$ 2. If statistical equilibrium holds then the transition probabilities should converge to limiting values as $t \rightarrow \infty$: applying this to the forwards equation we expect the equilibrium distribution $\underline{\pi}$ to solve $\underline{\pi} \cdot \underline{\underline{Q}}=\underline{0}$	1. Test understanding: use calculus to derive $\begin{aligned} & \sum_{z} p_{s}(x, z) p_{t}(z, y)=p_{s+t}(x, y) \text { gives } \sum_{z} q(x, z) p_{t}(z, y)=\frac{\partial}{\partial t} p_{t}(x, y), \\ & \sum_{z} p_{t}(x, z) p_{s}(z, y)=p_{t+s}(x, y) \text { gives } \sum_{z} p_{t}(x, z) q(z, y)=\frac{\partial}{\partial t} p_{t}(x, y) . \end{aligned}$ Note the shameless exchange of differentiation and summation over potentially infinite state-space 2. Test understanding: applying this idea to the backwards equation gets us nothing, as a consequence of the vanishing of row sums of Q. In extended form $\underline{\pi} \cdot \underline{\underline{Q}}=\underline{0}$ yields the important equilibrium equations $\sum_{z} \pi(z) q(z, y)=0 .$
APTS-ASP LPreliminary material LMarkov chains	
Example: the Poisson process	
We use the above theory to define chains by specifying the non-zero rates. Consider the case when X counts the number of people arriving at random at constant rate: 1. Stipulate that the number X_{t} of people in system at time t forms a Markov chain. 2. Transition rates: people arrive one-at-a-time at constant rate, so $q(x, x+1)=\lambda$. One can solve the Kolmogorov differential equations in this case: $\mathbb{P}\left[X_{t}=n \mid X_{0}=0\right]=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}$	For most Markov chains one makes progress without solving the differential equations. The interplay between the simulation method above and the distributional information here is exactly the interplay between viewing the Poisson process as a counting process ("Poisson counts") and a sequence of inter-arrival times ("Exponential gaps"). The classic relationships between Exponential, Poisson, Gamma and Geometric distributions are all embedded in this one process. Two significant extra facts are superposition: independent sum of Poisson processes is Poisson: thinning: if arrivals are censored i.i.d. at random then result is Poisson.

APTS-ASP LPreliminary material LMarkov chains	
Example: the $M / M / 1$ queue	$\underset{\sim}{\sim}$
Consider a queue in which people arrive and are served (in order) at constant rates by a single server. 1. Stipulate that the number X_{t} of people in system at time t forms a Markov chain. 2. Transition rates (I): people arrive one-at-a-time at constant rate, so $q(x, x+1)=\lambda$. 3. Transition rates (II): people are served in order at constant rate, so $q(x, x-1)=\mu$ if $x>0$. One can solve the equilibrium equations to deduce: the equilibrium distribution of X exists and is Geometric if and only if $\lambda<\mu$.	Don't try to solve the equilibrium equations at home (unless you enjoy that sort of thing). In this case it is do-able, but during the module we'll discuss a much quicker way to find the equilibrium distribution in favourable cases. Here is the equilibrium distribution in more explicit form: in equilibrium $\mathbb{P}[X=x]=\frac{\rho^{x}}{1-\rho} \quad \text { for } x=0,1, \ldots, .$ where $\rho=\lambda / \mu \in(0,1)$ (the traffic intensity).
APTS-ASP ${ }_{\text {L }} \mathrm{L}_{\text {Some useful texts }}$	
Some useful texts (I) At increasing levels of mathematical sophistication: 1. Häggström (2002) "Finite Markov chains and algorithmic applications". 2. Grimmett and Stirzaker (2001) "Probability and random processes". 3. Norris (1998) "Markov chains". 4. Williams (1991) "Probability with martingales".	1. Delightful introduction to finite state-space discrete-time Markov chains, from point of view of computer algorithms. 2. Standard undergraduate text on mathematical probability. This is the book I advise my students to buy, because it contains so much material. 3. Markov chains at a more graduate level of sophistication, revealing what I have concealed, namely the full gory story about Q-matrices. 4. Excellent graduate test for theory of martingales: mathematically demanding.
WARWVICK\%	
APTS-ASP ${ }_{\text {Some }}$ useful texts ${ }^{\text {a }}$	
Some useful texts (II): free on the web	
1. Doyle and Snell (1984) "Random walks and electric networks" available on web at http://arxiv.org/abs/math/0001057. 2. Kindermann and Snell (1980) "Markov random fields and their applications" available on web at http://www.ams.org/online_bks/conm1/. 3. Meyn and Tweedie (1993) "Markov chains and stochastic stability" available on web at http://probability.ca/MT/. 4. Aldous and Fill (2001) "Reversible Markov Chains and Random Walks on Graphs" only available on web at http://www.stat.berkeley.edu/~aldous/RWG/book.html. WARUGICK	1. Lays out (in simple and accessible terms) an important approach to Markov chains using relationship to resistance in electrical networks. 2. Sublimely accessible treatment of Markov random fields (Markov property, but in space not time). 3. The place to go if you need to get informed about theoretical results on rates of convergence for Markov chains (eg, because you are doing MCMC). 4. The best unfinished book on Markov chains known to me.
APTS-ASP ${ }_{\text {Some }}$	\qquad
Some useful texts (III): going deeper	
1. Kingman (1993) "Poisson processes". 2. Kelly (1979) "Reversibility and stochastic networks". 3. Steele (2004) "The Cauchy-Schwarz master class". 4. Aldous (1989) "Probability approximations via the Poisson clumping heuristic" see www.stat.berkeley.edu/~aldous/Research/research80. html. 5. Øksendal (2003) "Stochastic differential equations". 6. Stoyan, Kendall, and Mecke (1987) "Stochastic geometry and its applications".	Here are a few of the many texts which go much further 1. Very good introduction to the wide circle of ideas surrounding the Poisson process. 2. We'll cover reversibility briefly in the lectures, but this shows just how powerful the technique is. 3. The book to read if you decide you need to know more about (mathematical) inequality. 4. A book full of what ought to be true; hence good for stimulating research problems and also for ways of computing heuristic answers. 5. An accessible introduction to Brownian motion and stochastic calculus, which we do not cover at all. 6. Discusses a range of techniques used to handle probability in geometric contexts.

APTS-ASP 57 $L_{\text {Some useful texts }}$	APTS-ASP 58 $L_{\text {Some useful texts }}$ 58
Aldous, D. J. (1989). Probability approximations via the Poisson clumping heuristic, Volume 77 of Applied Mathematical Sciences. New York: Springer-Verlag. Aldous, D. J. and J. A. Fill (2001). Reversible Markov Chains and Random Walks on Graphs. Unpublished. Cox, D. R. and H. D. Miller (1965). The theory of stochastic processes. New York: John Wiley \& Sons Inc. Doyle, P. G. and J. L. Snell (1984). Random walks and electric networks, Volume 22 of Carus Mathematical Monographs. Washington, DC: Mathematical Association of America. Gardner, M. (1996). Word ladders: Lewis Carroll's doublets. The Mathematical Gazette 80(487), 195-198.	Grimmett, G. R. and D. R. Stirzaker (2001). Probability and random processes (Third ed.). New York: Oxford University Press. Häggström, O. (2002). Finite Markov chains and algorithmic applications, Volume 52 of London Mathematical Society Student Texts. Cambridge: Cambridge University Press. Kelly, F. P. (1979). Reversibility and stochastic networks. Chichester: John Wiley \& Sons Ltd. Wiley Series in Probability and Mathematical Statistics. Kindermann, R. and J. L. Snell (1980). Markov random fields and their applications, Volume 1 of Contemporary Mathematics. Providence, R.I.: American Mathematical Society. Kingman, J. F. C. (1993). Poisson processes, Volume 3 of Oxford Studies in Probability. New York: The Clarendon Press Oxford University Press. Oxford Science Publications.
APTS-ASP $L_{\text {Some useful texts }}$	APTS-ASP 60 $L_{\text {Some useful texts }}$ 60
Knuth, D. E. (1993). The Stanford GraphBase: a platform for combinatorial computing. New York, NY, USA: ACM. Meyn, S. P. and R. L. Tweedie (1993). Markov chains and stochastic stability. Communications and Control Engineering Series. London: Springer-Verlag London Ltd. Norris, J. R. (1998). Markov chains, Volume 2 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press. Reprint of 1997 original. Øksendal, B. (2003). Stochastic differential equations (Sixth ed.). Universitext. Berlin: Springer-Verlag. An introduction with applications.	Steele, J. M. (2004). The Cauchy-Schwarz master class. MAA Problem Books Series. Washington, DC: Mathematical Association of America. An introduction to the art of mathematical inequalities. Stoyan, D., W. S. Kendall, and J. Mecke (1987). Stochastic geometry and its applications. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Chichester: John Wiley \& Sons Ltd. With a foreword by D. G. Kendall. Williams, D. (1991). Probability with martingales. Cambridge Mathematical Textbooks. Cambridge: Cambridge University Press.

