
Preliminary material for APTS
Nonparametric Smoothing module1

Density estimation and regression problems are two of the most important types of problem
encountered by statisticians. Nonparametric approaches to these problems have gained
enormous popularity in the last fifty years or so, as they make far weaker assumptions than
parametric methods. In this module, we introduce some of the fundamental nonparametric
techniques. We aim to understand these methods in both theory and practice.

Basic properties of statistical estimators in parametric contexts (bias, variance, mean squared
error etc.), familiarity with standard statistical models (e.g. the linear model and weighted
least squares), and a general comfort with basic concepts in analysis and probability will
be assumed. Measure theory is not necessary, though this will mean that some of the
proofs will be a little longer than would otherwise be the case, and I may include occasional
optional exercises for people who are familiar with this material.

On the computational side, basic familiarity with R will also be assumed. Those who have
been to the Statistical Computing module will certainly have sufficient background here.

1 Taylor expansions

Asymptotic approximations lie at the heart of much theoretical work in statistics, and we
will see how they aid understanding of complicated expressions. The most fundamental
tool for developing them is Taylor expansion, which describes the way in which smooth
functions can be approximated by polynomials. It is crucial in any such approximation to
have control over the error in the approximation, and Taylor’s theorem comes in different
forms, to reflect different expressions for the error term. For simplicity, we will work with
functions defined on a subset of the real line, though multi-dimensional versions are also
available.

Theorem 1.1 (Taylor’s theorem with Young form for the remainder). Let f : (x−δ, x+δ) →
R be n-times differentiable at x. Then for |h| < δ,

f(x + h) =

n
∑

j=0

f (j)(x)

j!
hj + ǫ(h)|h|n,

where ǫ(h) → 0 as h → 0.

Proof. Burkill (1962, Theorem 4.81, p.80).
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Theorem 1.2 (Taylor’s theorem with mean value form for the remainder). Let f : [x, x +
h] → R be n-times differentiable on (x, x+h), and suppose f and its derivatives up to order

n − 1 are continuous on [x, x + h]. Then

f(x + h) =

n−1
∑

j=0

f (j)(x)

j!
hj +

f (n)(c)

n!
hn,

for some c ∈ (x, x + h).

Proof. Burkill (1962, Theorem 4.82, p.81).

2 Basic properties of random variables

As random variables are functions, there are many different ways in which the notion of
convergence makes sense. Here we briefly mention three, and discuss the relationships
between them.

2.1 Modes of convergence

Definition: We say a sequence of random vectors (Xn) converges almost surely to X, and
write Xn

a.s.
→ X, if P(Xn → X) = 1; equivalently, if for every ǫ > 0,

P

(

sup
m≥n

‖Xm − X‖ > ǫ
)

→ 0

as n → ∞.

Definition: We say (Xn) converges in probability to X, and write Xn
p
→ X, if for every

ǫ > 0,
P(‖Xn − X‖ > ǫ) → 0

as n → ∞.

Definition: We say (Xn) converges in distribution to X, and write Xn
d
→ X, if E{f(Xn)} →

E{f(X)} for all bounded, continuous, real-valued functions f . In fact, it is enough that the
convergence occurs when f is bounded and Lipschitz – i.e. there exists L > 0 such that

|f(x) − f(y)| ≤ L‖x − y‖ for all x, y. Equivalently, Xn
d
→ X if and only if

P(Xn ≤ x) → P(X ≤ x)

at all points x where the distribution function of X is continuous. Proofs of these equiva-
lences can be found in van der Vaart (1998, Lemma 2.2, p.6).
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2.2 Relations between different types of convergence

Theorem 2.1. We have Xn
a.s.
→ X =⇒ Xn

p
→ X =⇒ Xn

d
→ X. The reverse implications

are false.

Proof. Grimmett and Stirzaker (1992, pp. 274–280).

The following theorem may be given in greater generality than you have seen in the past,
so we give its proof.

Theorem 2.2 (Slutsky’s theorem). Let (Xn, Yn) be a sequence of random vectors in R
d

with Xn
d
→ X and Yn

p
→ c, where c is a constant. If g : R

d → R is continuous, then

g(Xn, Yn)
d
→ g(X, c).

Remark: As important special cases of Slutsky’s theorem, we have that when Xn and Yn

have the same dimension, Xn + Yn
d
→ X + c, and if Yn is real-valued, then XnYn

d
→ cX and

Xn/Yn
d
→ X/c, provided c 6= 0.

Proof. Let f be a function that is bounded by A > 0, and is Lipschitz with Lipschitz
constant L. Given ǫ > 0, let δ = ǫ/{3(L + 1)} and choose n0 ∈ N such that P(‖Yn − c‖ >
δ) ≤ ǫ/(6A) for n ≥ n0. Finally, since f(·, c) is bounded and continuous, we may choose
n1 ∈ N such that |E{f(Xn, c)} − E{f(X, c)}| < ǫ/3 for n ≥ n1. Then, for n ≥ max(n0, n1),

∣

∣E{f(Xn, Yn)} − E{f(X, c)}
∣

∣

≤
∣

∣E
{(

f(Xn, Yn) − f(Xn, c)
)1{‖Yn−c‖≤δ}

}
∣

∣ +
∣

∣E
{(

f(Xn, Yn) − f(Xn, c)
)1{‖Yn−c‖>δ}

}
∣

∣

+
∣

∣E{f(Xn, c)} − E{f(X, c)}
∣

∣

≤ LE{‖Yn − c‖1{‖Yn−c‖≤δ}

}

+ 2AP(‖Yn − c‖ > δ) + ǫ/3

≤ ǫ/3 + ǫ/3 + ǫ/3 = ǫ.

Thus (Xn, Yn)
d
→ (X, c).

If g is a continuous real-valued function and f is a bounded, continuous function, then f ◦g
is bounded and continuous, so E{f(g(Xn, Yn))} → E{f(g(X, c))}. But this means that

g(Xn, Yn)
d
→ g(X, c).

2.3 Other useful results

The next inequality is a very useful way of bounding tail probabilities in terms of moments.
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Theorem 2.3. Let f : [0,∞) → [0,∞) be a non-decreasing function. Then

P(|X| ≥ x) ≤
E{f(X)}

f(x)

for all x such that f(x) > 0.

Remark: As important special cases, we obtain P(|X| ≥ x) ≤ x−r
E(|X|r) for any r > 0

(Markov’s inequality) and P(|X − E(X)| ≥ x) ≤ x−2Var(X) (Chebychev’s inequality).

Proof. Since f(X) ≥ f(x)1{|X|≥x}, we can take expectations on both sides to give the
result.

Theorem 2.4 (Strong law of large numbers). If (Xn) are independent and identically

distributed with finite mean µ, then n−1
∑n

i=1 Xi
a.s.
→ µ.

Proof. Billingsley (1995, pp. 282–284).

Theorem 2.5 (Central limit theorem). If (Xn) are independent and identically distributed

with mean µ and variance σ2 ∈ (0,∞), then

n1/2(X̄n − µ)
d
→ N(0, σ2),

where X̄n = n−1
∑n

i=1 Xi.

Proof. Gut (2005, Theorem 7.1.1, p.330).

Theorem 2.6 (Multi-dimensional central limit theorem). If (Xn) are independent and

identically distributed in R
d with mean vector µ and covariance matrix Σ, then

n1/2(X̄n − µ)
d
→ Nd(0,Σ),

where X̄n = n−1
∑n

i=1 Xi.

Exercise: Prove this theorem using the univariate central limit theorem and the Cramér–

Wold device, which says that Xn
d
→ X if and only if tT Xn

d
→ tT X for all t ∈ R

d.

In fact, we often need a further generalisation of the central limit theorem in statistical
applications.

Theorem 2.7 (Triangular array central limit theorem). Let {(Xn,i : n ∈ N, i = 1, . . . , n}
be a triangular array of random variables that are independent within each row. Let µn,i =
E(Xn,i) and σ2

n,i = Var(Xn,i), and write µn =
∑n

i=1 µn,i and s2
n =

∑n
i=1 σ2

n,i. Suppose the

Lindeberg condition holds for each row, i.e. for every ǫ > 0,

1

s2
n

n
∑

i=1

E
{

(Xn,i − µn,i)
21{|Xn,i−µn,i|>ǫsn}

}

→ 0
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as n → ∞. Then Sn =
∑n

i=1 Xn,i satisfies

Sn − µn

sn

d
→ N(0, 1).

Proof. Gut (2005, Theorem 7.2.4, p. 345).

The mapping theorems below are not surprising, but they are very useful.

Theorem 2.8 (Mapping theorems). Let g : R
d → R

m be a continuous function.

1. If Xn
a.s.
→ X, then g(Xn)

a.s.
→ g(X)

2. If Xn
p
→ X, then g(Xn)

p
→ g(X)

3. If Xn
d
→ X, then g(Xn)

d
→ g(X).

In fact, g may have a set of discontinuities Dg, provided that P(X ∈ Dg) = 0.

Proof. van der Vaart (1998, Theorem 2.3, pp. 7–8).

Theorem 2.9 (The delta method). Suppose that Xn−µ
σn

d
→ N(0, 1), where σn → 0 as

n → ∞, and that g : R → R is differentiable at µ with g′(µ) 6= 0. Then

g(Xn) − g(µ)

g′(µ)σn

d
→ N(0, 1).

Remark: It is good intuition to think of g(Xn) − g(µ) ≈ g′(µ)(Xn − µ). It is interesting
that no further conditions are required on g to control the error in this approximation.

Proof. By Slutsky’s theorem, it suffices to show that

g(Xn) − g(µ)

g′(µ)σn
−

Xn − µ

σn

p
→ 0.

Define

h(x) =

{

g(x)−g(µ)
x−µ − g′(µ) if x 6= µ

0 if x = µ.

Then by differentiability of g at µ, the function h is continuous at µ. Since (Xn − µ) =

σn

(Xn−µ
σn

) p
→ 0, we have by the mapping theorem that h(Xn)

p
→ h(µ) = 0. Hence, by

Slutsky’s theorem again,

g(Xn) − g(µ)

g′(µ)σn
−

Xn − µ

σn
=

h(Xn)

g′(µ)

(Xn − µ

σn

)

p
→ 0.
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Exercise: Suppose that (θ̂n) is sequence of estimators of a positive parameter θ satisfying

n1/2(θ̂2
n − θ2)

d
→ N(0, σ2). Describe the asymptotic behaviour of n1/2(θ̂n − θ).

3 Stochastic order notation

We use o and O (‘little o’ and ‘big o’) notation for error terms in asymptotic expansions as
a valuable and rigorous shorthand.

Let (an) be a sequence of real numbers, and let (bn) be a sequence of positive real numbers.
We write an = O(bn) as n → ∞ to mean that there exists C ∈ [0,∞) such that

|an|

bn
≤ C

for all sufficiently large n. Equivalently, an = O(bn) if

lim sup
n→∞

|an|

bn
< ∞.

We write an = o(bn) as n → ∞ to mean an/bn → 0 as n → ∞. Thus we can write the
conclusion of Taylor’s theorem with the Young form of the remainder as

f(x + h) =

n
∑

j=0

f (j)(x)

j!
hj + o(|h|n),

as n → ∞.

There are analogous definitions for random variables: if (Xn) is a sequence of random
variables and (an) is a sequence of positive real numbers, we write Xn = Op(an) as n → ∞
if, given ǫ > 0, there exists C > 0 such that

P

( |Xn|

an
> C

)

< ǫ

for all sufficiently large n. This is the same as asking that the sequence (|Xn|/an) is tight.

We write Xn = op(an) if Xn/an
p
→ 0.

Example: It is useful to know that if Xn
d
→ X, then Xn = Op(1). To see this, let Fn denote

the distribution function of Xn, and let F denote the distribution function of X. Given
ǫ > 0, choose x0 > 0 such that F is continuous at x0 and −x0 (this is possible because F
has only countably many discontinuities – every jump of F is over a different rational), and
large enough that F (−x0) < ǫ/4 and F (x0) > 1 − ǫ/4. There exists n0 ∈ N such that for
n ≥ n0, we have Fn(−x0) < ǫ/2 and Fn(x0) > 1 − ǫ/2. But then, for n ≥ n0,

P(|Xn| ≥ x0) ≤ ǫ.
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As an application of this result, note that if (Xn) is a sequence of independent and identi-
cally distributed random variables with mean µ and finite variance, then

∑n
i=1(Xi − µ) =

Op(n
1/2), by the central limit theorem.
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