APTS Statistical Computing: Lab Problems

Here are some practical problems which aim to explore and reinforce some of the course material. They all use R. This is for convenience: many statistical numerical analysis tasks are best approached with a mixture of compiled code, using a language like C , and code in a high level language such as R or Matlab. But for exploratory purposes the high level languages are best. The problems here all use simulated data: when developing statistical modelling code, it is often best to start out with data where you know what the truth is (and can generate further replicates).

1. This question revisits the third example in section 1.1 of the notes. First simulate the data used in that example.
(a) Write code to reproduce the good and bad fits produced by calls to 1 m in the example.
(b) Examine the condition numbers of the model matrices in the two cases (lm computes the fit using the QR decomposition approach, not by direct solution of the normal equations). Why was the second 1 m fit so bad?
(c) Plot the second and third columns of the model matrix against each other for the two cases, and use cor to examine their correlation. Why are the condition numbers so high here?
(d) Since the linear model says simply that the expected value vector $E(\mathbf{y})$ lies in the space spanned by the columns of \mathbf{X}, one possibility is to attempt to arrive at a better conditioned \mathbf{X} by linear rescaling and/or recombination of its columns. This is always equivalent to a linear re-parameterization. Try this on the model matrix of the model that causes 1 m to fail. In particular, for each column (except the intercept column) subtract the column mean. Then divide each column (except the intercept column) by its standard deviation. Find the condition number of the new model matrix. Fit the model with this model matrix using something like $\operatorname{lm}(\mathrm{y} \sim \mathrm{Xs}-1)$ where Xs is the re-scaled model matrix. Produce a plot that confirms that the resulting fit is sensible now.
(e) An alternative fix is to subtract the mean x value from the x vector before fitting. Try this and see what happens to the condition number and column correlations of the model matrix now.
(f) If we want good condition numbers then the best thing would be have a model matrix made up of columns from an orthogonal matrix. Orthogonal polynomials provide a way of achieving this. Try fitting with $\operatorname{lm}(y \sim \operatorname{poly}(x, 2))$ to see these in action. Look at the correlation between the model matrix columns now, and the condition number.
(g) The model matrix produced in the last part is not quite (column) orthogonal (meaning orthonormal), but to correct this we could rescale and use a model matrix $\mathrm{X}<-\operatorname{cbind}\left(\mathrm{n}^{\wedge}-.5, \operatorname{poly}(\mathrm{x}, 2)\right.$) where n is the number of data. Without computing anything new, find a QR decomposition of this new model matrix? Show how the new model matrix can be used directly to find the fitted values in this case, without any need for an 1 m call. Check that it works.
2. Consider the linear mixed model for a response vector \mathbf{y} :

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\mathbf{Z} \mathbf{b}+\boldsymbol{\epsilon}, \quad \mathbf{b} \sim N\left(\mathbf{0}, \mathbf{I} \sigma_{b}^{2}\right), \quad \boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \mathbf{I} \sigma^{2}\right)
$$

\mathbf{X} and \mathbf{Z} are (fixed) model matrices, $\boldsymbol{\beta}, \sigma_{b}^{2}$ and σ^{2} are parameters, and \mathbf{b} and $\boldsymbol{\epsilon}$ are independent.
(a) First simulate some data from a model of this sort, taking care to relate the code back to the mathematical statement of the model...

```
set.seed(10)
n <- 100;n.b <- 10;n.beta <- 5
## X and Z are fixed in the model, not random. Random numbers
## used only to generate arbitrary examples, here....
```

```
X <- cbind(1,matrix(runif(n*n.beta-n),n,n.beta-1))
z <- matrix(runif(n*n.b),n,n.b)
beta <- rep(1,n.beta)
b <- rnorm(n.b)
y <- X%*%beta + Z%*%b + rnorm(n)
```

You'll use the data, \mathbf{y}, simulated here, along with the corresponding X and Z , to experiment with fitting linear mixed models (so from now on pretend that you don't know what values $\boldsymbol{\beta}, \sigma_{b}$ and σ had).
(b) With pencil ${ }^{1}$ and paper, find the (marginal) expectation, $\boldsymbol{\mu}$, and covariance matrix, \mathbf{V}, of \mathbf{y}. State the (marginal) distribution of \mathbf{y}.
(c) Write an R function to evaluate the \log likelihood of $\boldsymbol{\theta}^{\top}=\left(\boldsymbol{\beta}^{\top}, \sigma_{b}^{2}, \sigma^{2}\right)$ given data \mathbf{y}. Make sure that $\boldsymbol{\theta}$ is the first argument of the function.
(d) To maximize the log likelihood of the model using unconstrained methods, it is better to use a parameterization that guarantees positive variances. Modify your function to accept a parameter vector $\boldsymbol{\theta}^{\boldsymbol{\top}}=\left(\boldsymbol{\beta}^{\boldsymbol{\top}}, \rho_{b}, \rho\right)$ where $\rho=\log (\sigma)$ and $\rho_{b}=\log \left(\sigma_{b}\right)$.
(e) Use opt im to maximize your likelihood (note that optim minimizes by default).
(f) Actually, using general purpose optimization methods to find the optimizing $\boldsymbol{\beta}$ is a bit wasteful. Given the variance parameters, closed form expressions for the $\boldsymbol{\beta}$ maximizing the likelihood are available, and might as well be used. Then it is only necessary to use general methods for the variance parameters. The likelihood considered only as a function of the variance parameters, with the corresponding MLEs of $\boldsymbol{\beta}$ 'plugged in' is termed a 'profile likelihood'. Show that, given the variance parameters, the loglikelihood is maximized by the $\boldsymbol{\beta}$ minimizing

$$
(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\mathrm{T}} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\left\|\mathbf{R}^{-\mathrm{T}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})\right\|^{2}
$$

where $\mathbf{R}^{\top} \mathbf{R}=\mathbf{V}$. ($\|\mathbf{x}\|^{2}=\mathbf{x}^{\top} \mathbf{x}$ here.) Hence, produce a 'profile log likelihood' function equivalent to your previous \log likelihood function. Your function should accept a vector of variance parameters as its first argument, and should return the corresponding profile log likelihood value. You might want to return the corresponding $\boldsymbol{\beta}$ values as an attribute of the return value. e.g.

```
attr(ll, "beta") <- beta
    return(ll)
}
```

(g) Use optim to maximize your profiled log likelihood function, and confirm that you get near identical parameter estimates to those from part (e).
(h) Only if you have masses of time left over and would like a further challenge: Forming \mathbf{V} explicitly is rather wasteful. Figure out how to evaluate the log likelihood without doing this, by making use of the QR decomposition of \mathbf{Z}.
3. Write your own code to optimize Rosenbrock's function by Newton's method.
4. optim will optionally return a finite difference approximation to the Hessian of its objective. Using this fact, try repeating the Laplace approximation and Laplace importance sampling parts of the example in section 4.4.8. using opt im to find the $\hat{\mathbf{b}}$ and the approximate Hessian.
5. Experiment with model fitting by maximizing the log likelihood from the previous question.

[^0]
[^0]: ${ }^{1}$ pen is acceptable.

