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Why model?

George E. P. Box (1919–):

All models are wrong, but some models are useful.

� Some reasons we construct models:

– to simplify reality (efficient representation);

– to gain understanding;

– to compare scientific, economic, . . . theories;

– to predict future events/data;

– to control a process.

� We (statisticians!) rarely believe in our models, but regard them as temporary constructs subject
to improvement.

� Often we have several and must decide which is preferable, if any.
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Criteria for model selection

� Substantive knowledge, from prior studies, theoretical arguments, dimensional or other general
considerations (often qualitative)

� Sensitivity to failure of assumptions (prefer models that are robustly valid)

� Quality of fit—residuals, graphical assessment (informal), or goodness-of-fit tests (formal)

� Prior knowledge in Bayesian sense (quantitative)

� Generalisability of conclusions and/or predictions: same/similar models give good fit for many
different datasets

� . . . but often we have just one dataset . . .

APTS: Statistical Modelling March 2011 – slide 6

Motivation

Even after applying these criteria (but also before!) we may compare many models:

� linear regression with p covariates, there are 2p possible combinations of covariates (each in/out),
before allowing for transformations, etc.— if p = 20 then we have a problem;

� choice of bandwidth h > 0 in smoothing problems

� the number of different clusterings of n individuals is a Bell number (starting from n = 1): 1, 2,
5, 15, 52, 203, 877, 4140, 21147, 115975, . . .

� we may want to assess which among 5× 105 SNPs on the genome may influence reaction to a
new drug;

� . . .

For reasons of economy we seek ‘simple’ models.

APTS: Statistical Modelling March 2011 – slide 7

Albert Einstein (1879–1955)

‘Everything should be made as simple as possible, but no simpler.’

APTS: Statistical Modelling March 2011 – slide 8
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William of Occam (?1288–?1348)

Occam’s razor: Entia non sunt multiplicanda sine necessitate: entities should not be multiplied
beyond necessity.

APTS: Statistical Modelling March 2011 – slide 9

Setting

� To focus and simplify discussion we will consider parametric models, but the ideas generalise to
semi-parametric and non-parametric settings

� We shall take generalised linear models (GLMs) as example of moderately complex parametric
models:

– Normal linear model has three key aspects:

⊲ structure for covariates: linear predictor η = xTβ;

⊲ response distribution: y ∼ N(µ, σ2); and

⊲ relation η = µ between µ = E(y) and η.

– GLM extends last two to

⊲ y has density

f(y; θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y;φ)

}
,

where θ depends on η; dispersion parameter φ is often known; and

⊲ η = g(µ), where g is monotone link function.

APTS: Statistical Modelling March 2011 – slide 10
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Logistic regression

� Commonest choice of link function for binary reponses:

Pr(Y = 1) = π =
exp(xTβ)

1 + exp(xTβ)
, Pr(Y = 0) =

1

1 + exp(xTβ)
,

giving linear model for log odds of ‘success’,

log

{
Pr(Y = 1)

Pr(Y = 0)

}
= log

(
π

1− π

)
= xTβ.

� Log likelihood for β based on independent responses y1, . . . , yn with covariate vectors x1, . . . , xn is

ℓ(β) =
n∑

j=1

yjx
T

j β −
n∑

j=1

log
{
1 + exp(xT

j β)
}

� Good fit gives small deviance D = 2
{
ℓ(β̃)− ℓ(β̂)

}
, where β̂ is model fit MLE and β̃ is

unrestricted MLE.

APTS: Statistical Modelling March 2011 – slide 11

Nodal involvement data

Table 1: Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r),
with five binary covariates age etc.

m r age stage grade xray acid

6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 0 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0

2 1 0 1 0 0 1
2 1 0 0 1 0 0
1 1 1 1 1 1 1
...

...
...

...
...

...
1 1 0 0 1 0 1
1 0 0 0 0 1 1
1 0 0 0 0 1 0

APTS: Statistical Modelling March 2011 – slide 12
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Nodal involvement deviances

Deviances D for 32 logistic regression models for nodal involvement data. + denotes a term included
in the model.

age st gr xr ac df D age st gr xr ac df D

52 40.71 + + + 49 29.76
+ 51 39.32 + + + 49 23.67

+ 51 33.01 + + + 49 25.54
+ 51 35.13 + + + 49 27.50

+ 51 31.39 + + + 49 26.70
+ 51 33.17 + + + 49 24.92

+ + 50 30.90 + + + 49 23.98
+ + 50 34.54 + + + 49 23.62
+ + 50 30.48 + + + 49 19.64
+ + 50 32.67 + + + 49 21.28

+ + 50 31.00 + + + + 48 23.12
+ + 50 24.92 + + + + 48 23.38
+ + 50 26.37 + + + + 48 19.22

+ + 50 27.91 + + + + 48 21.27
+ + 50 26.72 + + + + 48 18.22

+ + 50 25.25 + + + + + 47 18.07

APTS: Statistical Modelling March 2011 – slide 13

Nodal involvement
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� Adding terms

– always increases the log likelihood ℓ̂ and so reduces D,

– increases the number of parameters,

so taking the model with highest ℓ̂ (lowest D) would give the full model

� We need to trade off quality of fit (measured by D) and model complexity (number of parameters)

APTS: Statistical Modelling March 2011 – slide 14
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Log likelihood

� Given (unknown) true model g(y), and candidate model f(y; θ), Jensen’s inequality implies
that

∫
log g(y)g(y) dy ≥

∫
log f(y; θ)g(y) dy, (1)

with equality if and only if f(y; θ) ≡ g(y).

� If θg is the value of θ that maximizes the expected log likelihood on the right of (1), then it is
natural to choose the candidate model that maximises

ℓ(θ̂) = n−1
n∑

j=1

log f(y; θ̂),

which should be an estimate of
∫
log f(y; θ)g(y) dy. However as ℓ(θ̂) ≥ ℓ(θg), by definition of θ̂,

this estimate is biased upwards.

� We need to correct for the bias, but in order to do so, need to understand the properties of
likelihood estimators when the assumed model f is not the true model g.

APTS: Statistical Modelling March 2011 – slide 15

Wrong model

Suppose the true model is g, that is, Y1, . . . , Yn
iid∼ g, but we assume that Y1, . . . , Yn

iid∼ f(y; θ). The
log likelihood ℓ(θ) will be maximised at θ̂, and

ℓ(θ̂) = n−1ℓ(θ̂)
a.s.−→

∫
log f(y; θg)g(y) dy, n→ ∞,

where θg minimizes the Kullback–Leibler discrepancy

KL(fθ, g) =

∫
log

{
g(y)

f(y; θ)

}
g(y) dy.

θg gives the density f(y; θg) closest to g in this sense, and θ̂ is determined by the finite-sample version
of ∂KL(fθ, g)/∂θ, i.e.

0 = n−1
n∑

j=1

∂ log f(yj; θ̂)

∂θ
.

APTS: Statistical Modelling March 2011 – slide 16
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Wrong model II

Theorem 1 Suppose the true model is g, that is, Y1, . . . , Yn
iid∼ g, but we assume that

Y1, . . . , Yn
iid∼ f(y; θ). Then under mild regularity conditions the maximum likelihood estimator θ̂

satisfies

θ̂
·∼ Np

{
θg, I(θg)

−1K(θg)I(θg)
−1

}
, (2)

where fθg is the density minimising the Kullback–Leibler discrepancy between fθ and g, I is the Fisher
information for f , and K is the variance of the score statistic. The likelihood ratio statistic

W (θg) = 2
{
ℓ(θ̂)− ℓ(θg)

}
·∼

p∑

r=1

λrVr,

where V1, . . . , Vp
iid∼ χ2

1, and the λr are eigenvalues of K(θg)
1/2Ig(θg)

−1K(θg)
1/2. Thus

E{W (θg)} = tr{I(θg)−1K(θg)}.

Under the correct model, θg is the ‘true’ value of θ, K(θ) = I(θ), λ1 = · · · = λp = 1, and we recover
the usual results.

APTS: Statistical Modelling March 2011 – slide 17

Out-of-sample prediction

� We need to fix two problems with using ℓ(θ̂) to choose the best candidate model:

– upward bias, as ℓ(θ̂) ≥ ℓ(θg) because θ̂ is based on Y1, . . . , Yn;

– no penalisation if the dimension of θ increases.

� If we had another independent sample Y +
1 , . . . , Y

+
n

iid∼ g and computed

ℓ
+
(θ̂) = n−1

n∑

j=1

log f(Y +
j ; θ̂),

then both problems disappear, suggesting that we choose the candidate model that maximises

Eg

[
E+
g

{
ℓ
+
(θ̂)

}]
,

where the inner expectation is over the distribution of the Y +
j , and the outer expectation is over

the distribution of θ̂.

APTS: Statistical Modelling March 2011 – slide 18
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Information criteria

� Previous results on wrong model give

Eg

[
E+
g

{
ℓ
+
(θ̂)

}]
.
=

∫
log f(y; θg)g(y) dy −

1

2n
tr{Ig(θg)−1K(θg)},

where the second term is a penalty that depends on the model dimension.

� We want to estimate this based on Y1, . . . , Yn only, and get

Eg

{
ℓ(θ̂)

}
.
=

∫
log f(y; θg)g(y) dy +

1

2n
tr{Ig(θg)−1K(θg)},

� To remove the bias, we aim to maximise

ℓ(θ̂)− 1

n
tr(Ĵ−1K̂),

where

K̂ =

n∑

j=1

∂ log f(yj; θ̂)

∂θ

∂ log f(yj; θ̂)

∂θT
, Ĵ = −

n∑

j=1

∂2 log f(yj; θ̂)

∂θ∂θT
;

the latter is just the observed information matrix.

APTS: Statistical Modelling March 2011 – slide 19

Information criteria

� Let p = dim(θ) be the number of parameters for a model, and ℓ̂ the corresponding maximised log
likelihood.

� For historical reasons we choose models that minimise similar criteria

– 2(p − ℓ̂) (AIC—Akaike Information Criterion)

– 2{tr(Ĵ−1K̂)− ℓ̂} (NIC—Network Information Criterion)

– 2(12p log n− ℓ̂) (BIC—Bayes Information Criterion)

– AICc, AICu, DIC, EIC, FIC, GIC, SIC, TIC, . . .

– Mallows Cp = RSS/s2 + 2p− n commonly used in regression problems, where RSS is
residual sum of squares for candidate model, and s2 is an estimate of the error variance σ2.

APTS: Statistical Modelling March 2011 – slide 20
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Nodal involvement data

AIC and BIC for 25 models for binary logistic regression model fitted to the nodal involvement data.
Both criteria pick out the same model, with the three covariates st, xr, and ac, which has deviance
D = 19.64. Note the sharper increase of BIC after the minimum.
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Theoretical aspects

� We may suppose that the true underlying model is of infinite dimension, and that by choosing
among our candidate models we hope to get as close as possible to this ideal model, using the
data available.

� If so, we need some measure of distance between a candidate and the true model, and we aim to
minimise this distance.

� A model selection procedure that selects the candidate closest to the truth for large n is called
asymptotically efficient.

� An alternative is to suppose that the true model is among the candidate models.

� If so, then a model selection procedure that selects the true model with probability tending to one
as n→ ∞ is called consistent.

APTS: Statistical Modelling March 2011 – slide 22
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Properties of AIC, NIC, BIC

� We seek to find the correct model by minimising IC = c(n, p)− 2ℓ̂, where the penalty c(n, p)
depends on sample size n and model dimension p

� Crucial aspect is behaviour of differences of IC.

� We obtain IC for the true model, and IC+ for a model with one more parameter. Then

Pr(IC+ < IC) = Pr
{
c(n, p + 1)− 2ℓ̂+ < c(n, p)− 2ℓ̂

}

= Pr
{
2(ℓ̂+ − ℓ̂) > c(n, p+ 1)− c(n, p)

}
.

and in large samples

for AIC, c(n, p+ 1)− c(n, p) = 2

for NIC, c(n, p+ 1)− c(n, p)
·∼ 2

for BIC, c(n, p+ 1)− c(n, p) = log n

� In a regular case 2(ℓ̂+ − ℓ̂)
·∼ χ2

1, so as n→ ∞,

Pr(IC+ < IC) →
{
0.16, AIC,NIC,

0, BIC.

Thus AIC and NIC have non-zero probability of over-fitting, even in very large samples, but BIC
does not.
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Linear Model slide 24

Variable selection

� Consider normal linear model

Yn×1 = X†
n×pβp×1 + εn×1, ε ∼ Nn(0, σ

2In),

where design matrix X† has full rank p < n and columns xr, for r ∈ X = {1, . . . , p}. Subsets S
of X correspond to subsets of columns.

� Terminology

– the true model corresponds to subset T = {r : βr 6= 0}, and |T | = q < p;

– a correct model contains T but has other columns also, corresponding subset S satisfies
T ⊂ S ⊂ X and T 6= S;

– a wrong model has subset S lacking some xr for which βr 6= 0, and so T 6⊂ S.
� Aim to identify T .

� If we choose a wrong model, have bias; if we choose a correct model, increase variance—seek to
balance these.

APTS: Statistical Modelling March 2011 – slide 25
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Stepwise methods

� Forward selection: starting from model with constant only,

1. add each remaining term separately to the current model;

2. if none of these terms is significant, stop; otherwise

3. update the current model to include the most significant new term; go to 1

� Backward elimination: starting from model with all terms,

1. if all terms are significant, stop; otherwise

2. update current model by dropping the term with the smallest F statistic; go to 1

� Stepwise: starting from an arbitary model,

1. consider 3 options—add a term, delete a term, swap a term in the model for one not in the
model;

2. if model unchanged, stop; otherwise go to 1

APTS: Statistical Modelling March 2011 – slide 26

Nuclear power station data

> nuclear

cost date t1 t2 cap pr ne ct bw cum.n pt

1 460.05 68.58 14 46 687 0 1 0 0 14 0

2 452.99 67.33 10 73 1065 0 0 1 0 1 0

3 443.22 67.33 10 85 1065 1 0 1 0 1 0

4 652.32 68.00 11 67 1065 0 1 1 0 12 0

5 642.23 68.00 11 78 1065 1 1 1 0 12 0

6 345.39 67.92 13 51 514 0 1 1 0 3 0

7 272.37 68.17 12 50 822 0 0 0 0 5 0

8 317.21 68.42 14 59 457 0 0 0 0 1 0

9 457.12 68.42 15 55 822 1 0 0 0 5 0

10 690.19 68.33 12 71 792 0 1 1 1 2 0

...

32 270.71 67.83 7 80 886 1 0 0 1 11 1
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Nuclear power station data

Full model Backward Forward
Est (SE) t Est (SE) t Est (SE) t

Constant −14.24 (4.229) −3.37 −13.26 (3.140) −4.22 −7.627 (2.875) −2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 4.91 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR −0.092 (0.077) −1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) −0.080 (0.046) −1.74 −0.088 (0.042) −2.11
PT −0.224 (0.123) −1.83 −0.226 (0.114) −1.99 −0.490 (0.103) −4.77

s (df) 0.164 (21) 0.159 (25) 0.195 (28)

Backward selection chooses a model with seven covariates also chosen by minimising AIC.
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Stepwise Methods: Comments

� Systematic search minimising AIC or similar over all possible models is preferable—not always
feasible.

� Stepwise methods can fit models to purely random data—main problem is no objective function.

� Sometimes used by replacing F significance points by (arbitrary!) numbers, e.g. F = 4

� Can be improved by comparing AIC for different models at each step—uses AIC as objective
function, but no systematic search.
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Prediction error

� To identify T , we fit candidate model

Y = Xβ + ε,

where columns of X are a subset S of those of X†.

� Fitted value is

Xβ̂ = X{(XTX)−1XTY } = HY = H(µ+ ε) = Hµ+Hε,

where H = X(XTX)−1XT is the hat matrix and Hµ = µ if the model is correct.

� Following reasoning for AIC, suppose we also have independent dataset Y+ from the true model,
so Y+ = µ+ ε+

� Apart from constants, previous measure of prediction error is

∆(X) = n−1E E+

{
(Y+ −Xβ̂)T(Y+ −Xβ̂)

}
,

with expectations over both Y+ and Y .
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Prediction error II

� Can show that

∆(X) =





n−1µT(I −H)µ+ (1 + p/n)σ2, wrong model,

(1 + q/n)σ2, true model,

(1 + p/n)σ2, correct model;

(6)

recall that q < p.

� Bias: n−1µT(I −H)µ > 0 unless model is correct, and is reduced by including useful terms

� Variance: (1 + p/n)σ2 increased by including useless terms

� Ideal would be to choose covariates X to minimise ∆(X): impossible—depends on unknowns
µ, σ.

� Must estimate ∆(X)
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Example

5 10 15

0
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8
10

Number of parameters
∆

∆(X) as a function of the number of included variables p for data with n = 20, q = 6, σ2 = 1. The
minimum is at p = q = 6:

� there is a sharp decrease in bias as useful covariates are added;

� there is a slow increase with variance as the number of variables p increases.

APTS: Statistical Modelling March 2011 – slide 32

Cross-validation

� If n is large, can split data into two parts (X ′, y′) and (X∗, y∗), say, and use one part to estimate
model, and the other to compute prediction error; then choose the model that minimises

∆̂ = n
′−1(y′ −X ′β̂∗)T(y′ −X ′β̂∗) = n

′−1
n′∑

j=1

(y′j − x′j β̂
∗)2.

� Usually dataset is too small for this; use leave-one-out cross-validation sum of squares

n∆̂CV = CV =
n∑

j=1

(yj − xT

j β̂−j)
2,

where β̂−j is estimate computed without (xj , yj).

� Seems to require n fits of model, but in fact

CV =
n∑

j=1

(yj − xT

j β̂)
2

(1− hjj)2
,

where h11, . . . , hnn are diagonal elements of H, and so can be obtained from one fit.
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Cross-validation II

� Simpler (more stable?) version uses generalised cross-validation sum of squares

GCV =
n∑

j=1

(yj − xT

j β̂)
2

{1− tr(H)/n}2 .

� Can show that

E(GCV) = µT(I −H)µ/(1 − p/n)2 + nσ2/(1 − p/n) ≈ n∆(X) (7)

so try and minimise GCV or CV.

� Many variants of cross-validation exist. Typically find that model chosen based on CV is
somewhat unstable, and that GCV or k-fold cross-validation works better. Standard strategy is to
split data into 10 roughly equal parts, predict for each part based on the other nine-tenths of the
data, and find model that minimises this estimate of prediction error.
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Other selection criteria

� Corrected version of AIC for models with normal responses:

AICc ≡ n log σ̂2 + n
1 + p/n

1− (p + 2)/n
,

where σ̂2 = RSS/n. Related (unbiased) AICu replaces σ̂2 by S2 = RSS/(n − p).

� Mallows suggested

Cp =
SSp
s2

+ 2p− n,

where SSp is RSS for fitted model and s2 estimates σ2.

� Comments:

– AIC tends to choose models that are too complicated; AICc cures this somewhat

– BIC chooses true model with probability → 1 as n→ ∞, if the true model is fitted.
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Simulation experiment

Number of times models were selected using various model selection criteria in 50 repetitions using
simulated normal data for each of 20 design matrices. The true model has p = 3.

n Number of covariates
1 2 3 4 5 6 7

10 Cp 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AICc 15 398 565 18 4

20 Cp 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 577 144 104 76 97
AICc 8 859 94 30 8 1

40 Cp 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AICc 786 105 52 41 16
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Simulation experiment

Twenty replicate traces of AIC, BIC, and AICc, for data simulated with n = 20, p = 1, . . . , 16, and
q = 6.
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Simulation experiment

Twenty replicate traces of AIC, BIC, and AICc, for data simulated with n = 40, p = 1, . . . , 16, and
q = 6.
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Simulation experiment

Twenty replicate traces of AIC, BIC, and AICc, for data simulated with n = 80, p = 1, . . . , 16, and
q = 6.
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As n increases, note how

� AIC and AICc still allow some over-fitting, but BIC does not, and

� AICc approaches AIC.
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Sparse Variable Selection slide 40

Motivation

� ‘Traditional’ analysis methods presuppose that p < n, so the number of observations exceeds the
number of covariates: tall thin design matrices

� Many modern datasets have design matrices that are short and fat: p≫ n, so the number of
covariates (far) exceeds the number of observations—e.g., survival data (n a few hundred) with
genetic information on individuals (p many thousands)

� Need approaches to deal with this

� Only possibility is to drop most of the covariates from the analysis, so the model has many fewer
active covariates

– usually impracticable in fitting to have p > n

– anyway impossible to interpret when p too large

� Seek sparse solutions, in which coefficients of most covariates are set to zero, and only covariates
with large coefficients are retained. One way to do this is by thresholding: kill small coefficients,
and keep the rest.
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Desiderata

Would like variable selection procedures that satisfy:

� sparsity—small estimates are reduced to zero by a threshold procedure; and

� near unbiasedness—the estimators almost provide the true parameters, when these are large and
n→ ∞;

� continuity—the estimator is continuous in the data, to avoid instability in prediction.

None of the previous approaches is sparse, and stepwise selection (for example) is known to be highly
unstable. To overcome this, we consider a regularised (or penalised) log likelihood of the form

1
2

n∑

j=1

ℓj(x
T

j β; yj)− n

p∑

r=1

pλ(|βr|),

where pλ(|β|) is a penalty discussed below.
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Example: Lasso

� The lasso (least absolute selection and shrinkage operator) chooses β to minimise

(y −Xβ)T(y −Xβ) such that

p∑

r=1

|βr| ≤ λ,

for some λ > 0; call resulting estimator β̃λ.

� λ→ 0 implies β̃λ → 0, and λ→ ∞ implies β̃λ → β̂ = (XTX)−1XTy.

� Simple case: orthogonal design matrix XTX = Ip, gives

β̃λ,r =

{
0, |β̂r| < γ,

sign(β̂r)(|β̂r | − γ), otherwise,
r = 1, . . . , p. (8)

� Call this soft thresholding.

� Computed using least angle regression algorithm (Efron et al., 2004, Annals of Statistics).
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Soft thresholding
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Graphical explanation

In each case aim to minimise the quadratic function subject to remaining inside the shaded region.
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Lasso: Nuclear power data

Left: traces of coefficient estimates β̂λ as constraint λ is relaxed, showing points at which the
different covariates enter the model. Right: behaviour of Mallows’ Cp as λ increases.
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Penalties

Some (of many) possible penalty functions pλ(|β|), all with λ > 0:

� ridge regression takes λ|β|2;
� lasso takes λ|β|;
� elastic net takes λ{(1 − α)|β| + α|β|2}, with 0 ≤ α < 1;

� bridge regression takes λ|β|q, for q > 0;

� hard threshold takes λ2 − (|β| − λ)2I(|β| < λ);

� smoothly clipped absolute deviation (SCAD) takes





λ|β|, |β| < λ,

−(β2 − 2aλ|β|+ λ2)/{2(a − 1)}, λ < |β| < aλ,

(a+ 1)λ2/2, |β| > aλ,

for some a > 2.

In least squares case with a single observation seek to minimise 1
2 (z − β)2 + pλ(|β|), whose derivative

sign(β){|β| + ∂pλ(|β|)/∂β} − z

determines the properties of the estimator.
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Some threshold functions

� Ridge—shrinkage but no selection; hard threshold—subset selection, unstable; soft
threshold—lasso, biased; SCAD—continuous, selection, unbiased for large β, but non-monotone.
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Properties of penalties

It turns out that to achieve

� sparsity, the minimum of the function |β|+ ∂pλ(|β|)/∂β must be positive;

� near unbiasedness, the penalty must satisfy ∂pλ(|β|)/∂β → 0 when |β| is large, so then the
estimating function approaches β − z; and

� continuity, the minimum of |β|+ ∂pλ(|β|)/∂β must be attained at β = 0.

The SCAD is constructed to have these properties, but there is no unique minimum to the resulting
objective function, so numerically it is awkward.
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Oracle

� Oracle:

A person or thing regarded as an infallible authority or guide.

� A statistical oracle says how to choose the model or bandwidth that will give us optimal
estimation of the true parameter or function, but not the truth itself.

� In the context of variable selection, an oracle tells us which variables we should select, but not
their coefficients.

� It turns out that under mild conditions on the model, and provided λ ≡ λn → 0 and
√
nλn → ∞

as n→ ∞, variable selection using the hard and SCAD penalties has an oracle property: the
estimators of β work as well as if we had known in advance which covariates should be excluded.

� Same ideas extend to generalised linear models, survival analysis, and many other regression
settings (Fan and Li, 2001, JASA).

� Harder: what happens when p→ ∞ also?
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Bayesian Inference slide 51

Thomas Bayes (1702–1761)

Bayes (1763/4) Essay towards solving a problem in the doctrine of chances. Philosophical
Transactions of the Royal Society of London.

APTS: Statistical Modelling March 2011 – slide 52

Bayesian inference

Parametric model for data y assumed to be realisation of Y ∼ f(y; θ), where θ ∈ Ωθ.
Frequentist viewpoint (cartoon version):

� there is a true value of θ that generated the data;

� this ‘true’ value of θ is to be treated as an unknown constant;

� probability statements concern randomness in hypothetical replications of the data (possibly
conditioned on an ancillary statistic).

Bayesian viewpoint (cartoon version):

� all ignorance may be expressed in terms of probability statements;

� a joint probability distribution for data and all unknowns can be constructed;

� Bayes’ theorem should be used to convert prior beliefs π(θ) about unknown θ into posterior
beliefs π(θ | y), conditioned on data;

� probability statements concern randomness of unknowns, conditioned on all known quantities.
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Mechanics

� Separate from data, we have prior information about parameter θ summarised in density π(θ)

� Data model f(y | θ) ≡ f(y; θ)

� Posterior density given by Bayes’ theorem:

π(θ | y) = π(θ)f(y | θ)∫
π(θ)f(y | θ) dθ .

� π(θ | y) contains all information about θ, conditional on observed data y

� If θ = (ψ, λ), then inference for ψ is based on marginal posterior density

π(ψ | y) =
∫
π(θ | y) dλ
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Encompassing model

� Suppose we have M alternative models for the data, with respective parameters
θ1 ∈ Ωθ1 , . . . , θm ∈ Ωθm . Typically dimensions of Ωθm are different.

� We enlarge the parameter space to give an encompassing model with parameter

θ = (m, θm) ∈ Ω =
M⋃

m=1

{m} × Ωθm .

� Thus need priors πm(θm | m) for the parameters of each model, plus a prior π(m) giving pre-data
probabilities for each of the models; overall

π(m, θm) = π(θm | m)π(m) = πm(θm)πm,

say.

� Inference about model choice is based on marginal posterior density

π(m | y) =
∫
f(y | θm)πm(θm)πm dθm∑M

m′=1

∫
f(y | θm′)πm′(θm′)πm′ dθm′

=
πmf(y | m)

∑M
m′=1 πm′f(y | m′)

.
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Inference

� Can write
π(m, θm | y) = π(θm | y,m)π(m | y),

so Bayesian updating corresponds to

π(θm | m)π(m) 7→ π(θm | y,m)π(m | y)

and for each model m = 1, . . . ,M we need

– posterior probability π(m | y), which involves the marginal likelihood
f(y | m) =

∫
f(y | θm,m)π(θm | m) dθm; and

– the posterior density f(θm | y,m).

� If there are just two models, can write

π(1 | y)
π(2 | y) =

π1
π2

f(y | 1)
f(y | 2) ,

so the posterior odds on model 1 equal the prior odds on model 1 multiplied by the Bayes factor
B12 = f(y | 1)/f(y | 2).
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Sensitivity of the marginal likelihood

Suppose the prior for each θm is N (0, σ2Idm), where dm = dim(θm). Then, dropping the m subscript
for clarity,

f(y | m) = σ−d/2(2π)−d/2

∫
f(y | m, θ)

∏

r

exp
{
−θ2r/(2σ2)

}
dθr

≈ σ−d/2(2π)−d/2

∫
f(y | m, θ)

∏

r

dθr,

for a highly diffuse prior distribution (large σ2). The Bayes factor for comparing the models is
approximately

f(y | 1)
f(y | 2) ≈ σ(d2−d1)/2g(y),

where g(y) depends on the two likelihoods but is independent of σ2. Hence, whatever the data tell us
about the relative merits of the two models, the Bayes factor in favour of the simpler model can be
made arbitrarily large by increasing σ.
This illustrates Lindley’s paradox, and implies that we must be careful when specifying prior
dispersion parameters to compare models.
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Model averaging

� If a quantity Z has the same interpretation for all models, it may be necessary to allow for model
uncertainty:

– in prediction, each model may be just a vehicle that provides a future value, not of interest
per se;

– physical parameters (means, variances, etc.) may be suitable for averaging, but care is needed.

� The predictive distribution for Z may be written

f(z | y) =
M∑

m=1

f(z | y,m)Pr(m | y)

where

Pr(m | y) = f(y | m)Pr(m)
∑M

m′=1 f(y | m′)Pr(m′)
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Example: Cement data

Percentage weights in clinkers of 4 four constitutents of cement (x1, . . . , x4) and heat evolved y in
calories, in n = 13 samples.
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Example: Cement data

> cement

x1 x2 x3 x4 y

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.8

12 11 66 9 12 113.3

13 10 68 8 12 109.4
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Example: Cement data

Bayesian model choice and prediction using model averaging for the cement data (n = 13, p = 4). For
each of the 16 possible subsets of covariates, the table shows the log Bayes factor in favour of that
subset compared to the model with no covariates and gives the posterior probability of each model.
The values of the posterior mean and scale parameters a and b are also shown for the six most
plausible models; (y+ − a)/b has a posterior t density. For comparison, the residual sums of squares
are also given.

Model RSS 2 logB10 Pr(M | y) a b

– – – – 2715.8 0.0 0.0000
1 – – – 1265.7 7.1 0.0000
– 2 – – 906.3 12.2 0.0000
– – 3 – 1939.4 0.6 0.0000
– – – 4 883.9 12.6 0.0000
1 2 – – 57.9 45.7 0.2027 93.77 2.31
1 – 3 – 1227.1 4.0 0.0000
1 – – 4 74.8 42.8 0.0480 99.05 2.58
– 2 3 – 415.4 19.3 0.0000
– 2 – 4 868.9 11.0 0.0000
– – 3 4 175.7 31.3 0.0002
1 2 3 – 48.11 43.6 0.0716 95.96 2.80
1 2 – 4 47.97 47.2 0.4344 95.88 2.45
1 – 3 4 50.84 44.2 0.0986 94.66 2.89
– 2 3 4 73.81 33.2 0.0004
1 2 3 4 47.86 45.0 0.1441 95.20 2.97
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Example: Cement data

Posterior predictive densities for cement data. Predictive densities for a future observation y+ with
covariate values x+ based on individual models are given as dotted curves. The heavy curve is the
average density from all 16 models.
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DIC

� How to compare complex models (e.g. hierarchical models, mixed models, Bayesian settings), in
which the ‘number of parameters’ may:

– outnumber the number of observations?

– be unclear because of the regularisation provided by a prior density?

� Suppose model has ‘Bayesian deviance’

D(θ) = −2 log f(y | θ) + 2 log f(y)

for some normalising function f(y), and suppose that samples from the posterior density of θ are
available and give θ = E(θ | y).

� One possibility is the deviance information criterion (DIC)

D(θ) + 2pD,

where the number of associated parameters is

pD = D(θ)−D(θ).

� This involves only (MCMC) samples from the posterior, no analytical computations, and
reproduces AIC for some classes of models.
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Minimum description length

Model selection can also be based on related ideas of minimum description length (MDL) or
minimum message length (MML), which use ideas from computer science—coding and
information theory:

� idea is to choose encoding of data that minimises length of equivalent binary sequence, regarding
all data as discrete;

� minimum message includes parameter estimates, data using optimal code based on parameter
estimates, (and prior information);

� close links to AIC, BIC, etc.;

� see http://www.mdl-research.org/ or tutorial on
http://homepages.cwi.nl/~pdg/ftp/mdlintro.pdf to learn more.
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Bayesian Variable Selection slide 65

Variable selection

� In Bayesian context, must determine prior probability for the inclusion (or not) of each variable in
the model.

� Common to use ‘spike and slab’ prior for coefficient θ:

θ =

{
0, with probability 1− p

N (0, τ2), with probability p,

corresponding to prior ‘density’

π(θ) = (1− p)δ(θ) + pτ−1φ(θ/τ), θ ∈ R,

where δ(θ) is the delta function putting unit mass at θ = 0.

� Now find posterior for β based on data.

� Usually independent priors for each covariate, and typically need clever (dimension-jumping)
MCMC.
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Example: NMR data
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Left: original data, with n = 1024
Right: orthogonal transformation into n = 1024 coefficients at different resolutions
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Orthogonal transformation

� Model: original data X ∼ Nn(µ, σ
2In), where signal µn×1 is perturbed by normal noise, giving

noisy data Xn×1

� set Yn×1 =Wn×nXn×1, where W
TW =WW T = In is orthogonal

� choose W so that θ =Wµ should be ‘sparse’ (i.e. most elements of θ are zero)—good choice is
wavelet coefficients (mathematical compression properties)

� ‘kill’ small coefficients of Y , which correspond to noise, giving θ̃n×1 = kill(Y ) = kill(WX), say,
then

� estimate signal µ by
µ̃ =W Tθ̃ =W T(kill(WX)).
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Posterior

If given θ, Y ∼ N (θ, σ2), then the posterior ‘density’ is of form

π(θ | y) = (1− py)δ(θ) + pyb
−1φ

(
θ − ay

b

)
, θ ∈ R,

where
a = τ2/(τ2 + σ2), b2 = 1/(1/σ2 + 1/τ2),

and

py =
p(σ2 + τ2)−1/2φ{y/(σ2 + τ2)1/2}

(1− p)σ−1φ(y/σ) + p(σ2 + τ2)−1/2φ{y/(σ2 + τ2)1/2}
is the posterior probability that θ 6= 0.
Summary statistic: posterior median θ̃, for which Pr(θ ≤ θ̃ | y) = 0.5. For small |y|, this gives
θ̃ = 0. (Next slide)
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Shrinkage

Prior CDF of θ (left), and posterior CDFs when p = 0.5, σ = τ = 1, and y = −2.5 (centre), and
y = −1 (right).
Red horizontal line: cumulative probability=0.5
Blue vertical line: data y
Green vertical line: posterior median θ̃
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Empirical Bayes

The parameters p, σ, τ are unknown. We estimate them by empirical Bayes:

� we note that the marginal density of y is

f(y) = (1− p)σ−1φ(y/σ) + p(σ2 + τ2)−1/2φ{y/(σ2 + τ2)1/2}, y ∈ R,

so if we have y1, . . . , yn
iid∼ f we estimate p, σ, τ by maximising the log likelihood

ℓ(p, σ, τ) =

n∑

j=1

log f(yj; p, σ, τ).

� Here we obtain p̃ = 0.04, σ̃ = 2.1, and τ̃ = 52.1.

� Now compute the posterior medians θ̃j corresponding to each yj.
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Example: NMR data
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Example: NMR data
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Comments

� Large and rapidly-growing literature on Bayesian ‘variable’ selection, now particularly focused on
‘large p, small n’ paradigm

� Close relation to classical ‘super-efficient’ estimation: James–Stein theorem, Hodges–Lehmann
estimator, biased (but lower loss) estimation

APTS: Statistical Modelling March 2011 – slide 74

35



2. Beyond the Generalised Linear Model slide 75

Overview

1. Generalised linear models

2. Overdispersion

3. Correlation

4. Random effects models

5. Conditional independence and graphical representations
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Generalised Linear Models slide 77

GLM recap

y1, . . . , yn are observations of response variables Y1, . . . , Yn assumed to be independently generated by
a distribution of the same exponential family form, with means µi ≡ E(Yi) linked to explanatory
variables X1,X2, . . . ,Xp through

g(µi) = ηi ≡ β0 +

p∑

r=1

βrxir ≡ xT

i β

GLMs have proved remarkably effective at modelling real world variation in a wide range of
application areas.
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GLM failure

However, situations frequently arise where GLMs do not adequately describe observed data.
This can be due to a number of reasons including:

� The mean model cannot be appropriately specified as there is dependence on an unobserved (or
unobservable) explanatory variable.

� There is excess variability between experimental units beyond that implied by the mean/variance
relationship of the chosen response distribution.

� The assumption of independence is not appropriate.

� Complex multivariate structure in the data requires a more flexible model class
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Overdispersion slide 80

Example 1: toxoplasmosis

The table below gives data on the relationship between rainfall (x) and the proportions of people with
toxoplasmosis (y/m) for 34 cities in El Salvador.

City y x City y x City y x

1 5/18 1620 12 3/5 1800 23 3/10 1973
2 15/30 1650 13 8/10 1800 24 1/6 1976
3 0/1 1650 14 0/1 1830 25 1/5 2000
4 2/4 1735 15 53/75 1834 26 0/1 2000
5 2/2 1750 16 7/16 1871 27 7/24 2050
6 2/8 1750 17 24/51 1890 28 46/82 2063
7 2/12 1756 18 3/10 1900 29 7/19 2077
8 6/11 1770 19 23/43 1918 30 9/13 2100
9 33/54 1770 20 3/6 1920 31 4/22 2200
10 8/13 1780 21 0/1 1920 32 4/9 2240
11 41/77 1796 22 3/10 1936 33 8/11 2250

34 23/37 2292
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Example
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Example

Fitting various binomial logistic regression models relating toxoplasmosis incidence to rainfall:

Model df deviance

Constant 33 74.21
Linear 32 74.09
Quadratic 31 74.09
Cubic 30 62.62

So evidence in favour of the cubic over other models, but a poor fit (X2 = 58.21 on 30df).

This is an example of overdispersion where residual variability is greater than would be predicted by
the specified mean/variance relationship

var(Y ) =
µ(1− µ)

m
.
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Example
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Quasi-likelihood

A quasi-likelihood approach to accounting for overdispersion models the mean and variance, but stops
short of a full probability model for Y .

For a model specified by the mean relationship g(µi) = ηi = xT

i β, and variance
var(Yi) = σ2V (µi)/mi, the quasi-likelihood equations are

n∑

i=1

xi
yi − µi

σ2V (µi)g′(µi)/mi
= 0

If V (µi)/mi represents var(Yi) for a standard distribution from the exponential family, then these
equations can be solved for β using standard GLM software.

Provided the mean and variance functions are correctly specified, asymptotic normality for β̂ still holds.
The dispersion parameter σ2 can be estimated using

σ̂2 ≡ 1

n− p− 1

n∑

i=1

mi(yi − µ̂i)
2

V (µ̂i)
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Quasi-likelihood for toxoplasmosis data

Assuming the same mean model as before, but var(Yi) = σ2µi(1− µi)/mi, we obtain σ̂2 = 1.94 with
β̂ (and corresponded fitted mean curves) as before.

Comparing cubic with constant model, one now obtains

F =
(74.21 − 62.62)/3

1.94
= 1.99

which provides much less compelling evidence in favour of an effect of rainfall on toxoplasmosis
incidence.
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Reasons

To construct a full probability model in the presence of overdispersion, it is necessary to consider why
overdispersion might be present.

Possible reasons include:

� There may be an important explanatory variable, other than rainfall, which we haven’t observed.

� Or there may be many other features of the cities, possibly unobservable, all having a small
individual effect on incidence, but a larger effect in combination. Such effects may be individually
undetectable – sometimes described as natural excess variability between units.
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Reasons: unobserved heterogeneity

When part of the linear predictor is ‘missing’ from the model,

ηtruei = ηmodel
i + ηdiffi

We can compensate for this, in modelling, by assuming that the missing ηdiffi ∼ F in the population.
Hence, given ηmodel

i

µi ≡ g−1(ηmodel
i + ηdiffi ) ∼ G

where G is the distribution induced by F . Then

E(Yi) = EG[E(Yi | µi)] = EG(µi)

var(Yi) = EG(V (µi)/mi) + varG(µi)
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Direct models

One approach is to model the Yi directly, by specifying an appropriate form for G.

For example, for the toxoplasmosis data, we might specify a beta-binomial model, where

µi ∼ Beta(kµ∗i , k[1 − µ∗i ])

leading to

E(Yi) = µ∗i , var(Yi) =
µ∗i (1− µ∗i )

mi

(
1 +

mi − 1

k + 1

)

with (mi − 1)/(k + 1) representing an overdispersion factor.
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Direct models: fitting

Models which explicitly account for overdispersion can, in principle, be fitted using your preferred
approach, e.g. the beta-binomial model has likelihood

f(y | µ∗, k) ∝
n∏

i=1

Γ(kµ∗i +miyi)Γ{k(1 − µ∗i ) +mi(1− yi)}Γ(k)
Γ(kµ∗i )Γ{k(1 − µ∗i )}Γ(k +mi)

.

Similarly the corresponding model for count data specifies a gamma distribution for the Poisson mean,
leading to a negative binomial marginal distribution for Yi.

However, these models have limited flexibility and can be difficult to fit, so an alternative approach is
usually preferred.
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A random effects model for overdispersion

A more flexible, and extensible approach models the excess variability by including an extra term in
the linear predictor

ηi = xT

i β + ui (9)

where the ui can be thought of as representing the ‘extra’ variability between units, and are called
random effects.

The model is completed by specifying a distribution F for ui in the population – almost always, we use

ui ∼ N(0, σ2)

for some unknown σ2.
We set E(ui) = 0, as an unknown mean for ui would be unidentifiable in the presence of the intercept
parameter β0.
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Random effects: likelihood

The parameters of this random effects model are usually considered to be (β, σ2) and therefore the
likelihood is given by

f(y | β, σ2) =

∫
f(y | β, u, σ2)f(u | β, σ2)du

=

∫
f(y | β, u)f(u | σ2)du

=

∫ n∏

i=1

f(yi | β, ui)f(ui | σ2)dui (10)

where f(yi | β, ui) arises from our chosen exponential family, with linear predictor (9) and f(ui | σ2)
is a univariate normal p.d.f.

Often no further simplification of (10) is possible, so computation needs careful consideration – we
will come back to this later.
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Dependence slide 93

Toxoplasmosis example revisited

We can think of the toxoplasmosis proportions Yi in each city (i) as arising from the sum of binary
variables, Yij, representing the toxoplasmosis status of individuals (j), so miYi =

∑mi

j=1 Yij.
Then

var(Yi) =
1

m2
i

mi∑

j=1

var(Yij) +
1

m2
i

∑

j 6=k

cov(Yij , Yik)

=
µi(1− µi)

mi
+

1

m2
i

∑

j 6=k

cov(Yij , Yik)

So any positive correlation between individuals induces overdispersion in the counts.
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Dependence: reasons

There may be a number of plausible reasons why the responses corresponding to units within a given
cluster are dependent (in the toxoplasmosis example, cluster = city)

One compelling reason is the unobserved heterogeneity discussed previously.
In the ‘correct’ model (corresponding to ηtruei ), the toxoplasmosis status of individuals, Yij , are
independent, so

Yij ⊥⊥ Yik | ηtruei ⇔ Yij ⊥⊥ Yik | ηmodel
i , ηdiffi

However, in the absence of knowledge of ηdiffi

Yij ⊥⊥/ Yik | ηmodel
i

Hence conditional (given ηdiffi ) independence between units in a common cluster i becomes marginal
dependence, when marginalised over the population distribution F of unobserved ηdiffi .
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Random effects and dependence

The correspondence between positive intra-cluster correlation and unobserved heterogeneity suggests
that intra-cluster dependence might be modelled using random effects, For example, for the
individual-level toxoplasmosis data

Yij
ind∼ Bernoulli(µij), log

µij
1− µij

= xT

ijβ + ui, ui ∼ N(0, σ2)

which implies
Yij ⊥⊥/ Yik | β, σ2

Intra-cluster dependence arises in many applications, and random effects provide an effective way of
modelling it.
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Marginal models

Random effects modelling is not the only way of accounting for intra-cluster dependence.

A marginal model models µij ≡ E(Yij) as a function of explanatory variables, through
g(µij) = xT

ijβ, and also specifies a variance relationship var(Yij) = σ2V (µij)/mij and a model for
corr(Yij , Yik), as a function of µ and possibly additional parameters.

It is important to note that the parameters β in a marginal model have a different interpretation from
those in a random effects model, because for the latter

E(Yij) = E(g−1[xT

ijβ + ui]) 6= g−1(xT

ijβ) (unless g is linear).

� A random effects model describes the mean response at the subject level (‘subject specific’)

� A marginal model describes the mean response across the population (‘population averaged’)
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GEEs

As with the quasi-likelihood approach above, marginal models do not generally provide a full
probability model for Y . Nevertheless, β can be estimated using generalised estimating equations
(GEEs).

The GEE for estimating β in a marginal model is of the form

∑

i

(
∂µi
∂β

)
T

var(Yi)
−1(Yi − µi) = 0

where Yi = (Yij) and µi = (µij)

Consistent covariance estimates are available for GEE estimators.

Furthermore, the approach is generally robust to mis-specification of the correlation structure.

For the rest of this module, we focus on fully specified probability models.
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Clustered data

Examples where data are collected in clusters include:

� Studies in biometry where repeated measures are made on experimental units. Such studies can
effectively mitigate the effect of between-unit variability on important inferences.

� Agricultural field trials, or similar studies, for example in engineering, where experimental units are
arranged within blocks

� Sample surveys where collecting data within clusters or small areas can save costs

Of course, other forms of dependence exist, for example spatial or serial dependence induced by
arrangement in space or time of units of observation. This will be a focus of APTS: Spatial and
Longitudinal Data Analysis.
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Example 2: Rat growth

The table below is extracted from a data set giving the weekly weights of 30 young rats.

Week
Rat 1 2 3 4 5

1 151 199 246 283 320
2 145 199 249 293 354
3 147 214 263 312 328
4 155 200 237 272 297
5 135 188 230 280 323
6 159 210 252 298 331
7 141 189 231 275 305
8 159 201 248 297 338
· · · · · · · · · · · · · · · · · ·
30 153 200 244 286 324
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Example
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A simple model

Letting Y represent weight, and X represent week, we can fit the simple linear regression

yij = β0 + β1xij + ǫij

with resulting estimates β̂0 = 156.1 (2.25) and β̂1 = 43.3 (0.92)
Residuals show clear evidence of an unexplained difference between rats
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Model elaboration

Naively adding a (fixed) effect for animal gives

yij = β0 + β1xij + ui + ǫij.

Residuals show evidence of a further unexplained difference between rats in terms of dependence on x.
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More complex cluster dependence required.
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Random Effects and Mixed Models slide 104

Linear mixed models

A linear mixed model (LMM) for observations y = (y1, . . . , yn) has the general form

Y ∼ N(µ,Σ), µ = Xβ + Zb, b ∼ N(0,Σb), (11)

where X and Z are matrices containing values of explanatory variables. Usually, Σ = σ2In.
A typical example for clustered data might be

Yij
ind∼ N(µij , σ

2), µij = xT

ijβ + zT

ijbi, bi
ind∼ N(0,Σ∗

b), (12)

where xij contain the explanatory data for cluster i, observation j and (normally) zij contains that
sub-vector of xij which is allowed to exhibit extra between cluster variation in its relationship with Y .
In the simplest (random intercept) case, zij = (1), as in equation (9).
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LMM example

A plausible LMM for k clusters with n1, . . . , nk observations per cluster, and a single explanatory
variable x (e.g. the rat growth data) is

yij = β0 + b0i + (β1 + b1i)xij + ǫij , (b0i, b1i)
T ind∼ N(0,Σ∗

b).

This fits into the general LMM framework (11) with Σ = σ2In and

X =




1 x11
...

...
1 xknk


 , Z =




Z1 0 0

0
. . . 0

0 0 Zk


 , Zi =




1 xi1
...

...
1 xini


 ,

β =

(
β0
β1

)
, b =




b1
...
bk


 , bi =

(
b0i
b1i

)
, Σb =




Σ∗
b 0 0

0
. . . 0

0 0 Σ∗
b




where Σ∗
b is an unspecified 2× 2 positive definite matrix.
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Variance components

The term mixed model refers to the fact that the linear predictor Xβ + Zb contains both fixed
effects β and random effects b.
Under an LMM, we can write the marginal distribution of Y directly as

Y ∼ N(Xβ,Σ + ZΣbZ
T) (13)

where X and Z are matrices containing values of explanatory variables.
Hence var(Y ) is comprised of two variance components.

Other ways of describing LMMs for clustered data, such as (12) (and their generalised linear model
counterparts) are as hierarchical models or multilevel models. This reflects the two-stage structure
of the model, a conditional model for Yij | bi, followed by a marginal model for the random effects bi.

Sometimes the hierarchy can have further levels, corresponding to clusters nested within clusters, for
example, patients within wards within hospitals, or pupils within classes within schools.
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Discussion: Why random effects?

It would be perfectly possible to take a model such as (12) and ignore the final component, leading to
fixed cluster effects (as we did for the rat growth data).

The main issue with such an approach is that inferences, particularly predictive inferences can then
only be made about those clusters present in the observed data.
Random effects models, on the other hand, allow inferences to be extended to a wider population (at
the expense of a further modelling assumption).

It also can be the case, as in (9) with only one observation per ‘cluster’, that fixed effects are not
identifiable, whereas random effects can still be estimated. Similarly, some treatment variables must
be applied at the cluster level, so fixed treatment and cluster effects are aliased.

Finally, random effects allow ‘borrowing strength’ across clusters by shrinking fixed effects towards a
common mean.
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Discussion: A Bayesian perspective

A Bayesian LMM supplements (11) with prior distributions for β, Σ and Σb.

In one sense the distinction between fixed and random effects is much less significant, as in the full
Bayesian probability specification, both β and b, as unknowns have probability distributions, f(β) and
f(b) =

∫
f(b | Σb)f(Σb)dΣb

Indeed, prior distributions for ‘fixed’ effects are sometimes constructed in a hierarchical fashion, for
convenience (for example, heavy-tailed priors are often constructed this way).

The main difference is the possibility that random effects for which we have no relevant data (for
example cluster effects for unobserved clusters) might need to be predicted.
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LMM fitting

The likelihood for (β,Σ,Σb) is available directly from (13) as

f(y | β,Σ,Σb) ∝ |V |−1/2 exp
(
1
2 (y −Xβ)TV −1(y −Xβ)

)
(14)

where V = Σ+ ZΣbZ
T. This likelihood can be maximised directly (usually numerically).

However, mles for variance parameters of LMMs can have large downward bias (particularly in cluster
models with a small number of observed clusters).
Hence estimation by REML – REstricted (or REsidual) Maximum Likelihood is usually preferred.

REML proceeds by estimating the variance parameters (Σ,Σb) using a marginal likelihood based on
the residuals from a (generalised) least squares fit of the model E(Y ) = Xβ.
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REML

In effect, REML maximizes the likelihood of any linearly independent sub-vector of (In −H)y where
H = X(XTX)−1XT is the usual hat matrix. As

(In −H)y ∼ N(0, (In −H)V (In −H))

this likelihood will be free of β. It can be written in terms of the full likelihood (14) as

f(r | Σ,Σb) ∝ f(y | β̂,Σ,Σb)|XTV X|1/2 (15)

where

β̂ = (XTV −1X)−1XTV −1y (16)

is the usual generalised least squares estimator given known V .
Having first obtained (Σ̂, Σ̂b) by maximising (15), β̂ is obtained by plugging the resulting V̂ into (16).

Note that REML maximised likelihoods cannot be used to compare different fixed effects
specifications, due to the dependence of ‘data’ r in f(r | Σ,Σb) on X.
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Estimating random effects

A natural predictor b̃ of the random effect vector b is obtained by minimising the mean squared
prediction error E[(b̃− b)T(b̃− b)] where the expectation is over both b and y.
This is achieved by

b̃ = E(b | y) = (ZTΣ−1Z +Σ−1
b )−1ZTΣ−1(y −Xβ) (17)

giving the Best Linear Unbiased Predictor (BLUP) for b, with corresponding variance

var(b | y) = (ZTΣ−1Z +Σ−1
b )−1

The estimates are obtained by plugging in (β̂, Σ̂, Σ̂b), and are shrunk towards 0, in comparison with
equivalent fixed effects estimators.

Any component, bk of b with no relevant data (for example a cluster effect for an as yet unobserved
cluster) corresponds to a null column of Z, and then b̃k = 0 and var(bk | y) = [Σb]kk, which may be
estimated if, as is usual, bk shares a variance with other random effects.
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Bayesian estimation: the Gibbs sampler

Bayesian estimation in LMMs (and their generalised linear model counterparts) generally proceeds
using Markov Chain Monte Carlo (MCMC) methods, in particular approaches based on the Gibbs
sampler. Such methods have proved very effective.

MCMC computation provides posterior summaries, by generating a dependent sample from the
posterior distribution of interest. Then, any posterior expectation can be estimated by the
corresponding Monte Carlo sample mean, densities can be estimated from samples etc.

MCMC will be covered in detail in APTS: Computer Intensive Statistics. Here we simply describe the
(most basic) Gibbs sampler.

To generate from f(y1, . . . , yn), (where the component yis are allowed to be multivarate) the Gibbs
sampler starts from an arbitrary value of y and updates components (sequentially or otherwise) by
generating from the conditional distributions f(yi | y\i) where y\i are all the variables other than yi,
set at their currently generated values.

Hence, to apply the Gibbs sampler, we require conditional distributions which are available for
sampling.
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Bayesian estimation for LMMs

For the LMM

Y ∼ N(µ,Σ), µ = Xβ + Zb, b ∼ N(0,Σb)

with corresponding prior densities f(β), f(Σ), f(Σb), we obtain the conditional posterior distributions

f(β | y, rest) ∝ φ(y − Zb;Xβ,Σ)f(β)

f(b | y, rest) ∝ φ(y −Xβ;Zb,Σ)φ(b; 0,Σb)

f(Σ | y, rest) ∝ φ(y −Xβ − Zb; 0,Σ)f(Σ)

f(Σb | y, rest) ∝ φ(b; 0,Σb)f(Σb)

where φ(y;µ,Σ) is a N(µ,Σ) p.d.f. evaluated at y.

We can exploit conditional conjugacy in the choices of f(β), f(Σ), f(Σb) making the conditionals
above of known form and hence straightforward to sample from. The conditional independence
(β,Σ) ⊥⊥ Σb | b is also helpful.

See Practical 3 for further details.

APTS: Statistical Modelling March 2011 – slide 114

Example: Rat growth revisited

Here, we consider the model

yij = β0 + b0i + (β1 + b1i)xij + ǫij , (b0i, b1i)
T ind∼ N(0,Σb)

where ǫij
iid∼ N (0, σ2) and Σb is an unspecified covariance matrix. This model allows for random

(cluster specific) slope and intercept.

Estimates obtained by REML (ML in brackets) are

Parameter Estimate Standard error

β0 156.05 2.16 (2.13)
β1 43.27 0.73 (0.72)

Σ
1/2
00 = s.d.(b0) 10.93 (10.71)

Σ
1/2
11 = s.d.(b1) 3.53 (3.46)
Corr(b0, b1) 0.18 (0.19)

As expected ML variances are smaller, but not by much.
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Example: Fixed v. random effect estimates

The shrinkage of random effect estimates towards a common mean is clearly illustrated.
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Random effects estimates ‘borrow strength’ across clusters, due to the Σ−1
b term in (17). Extent of

this is determined by cluster similarity. This is usually considered to be a desirable behaviour.
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Random effect shrinkage

The following simple example illustrates (from a Bayesian perspective) why and how random effects
are shrunk to a common value.
Suppose that y1, . . . , yn satisfy

yj | θj ind∼ N(θj , vj), θ1, . . . , θn | µ iid∼ N(µ, σ2), µ ∼ N(µ0, τ
2),

where v1, . . . , vn, σ
2, µ0 and τ2 are assumed known here. Then, the usual posterior calculations give

us

E(µ | y) = µ0/τ
2 +

∑
yj/(σ

2 + vj)

1/τ2 +
∑

1/(σ2 + vj)
, var(µ | y) = 1

1/τ2 +
∑

1/(σ2 + vj)
,

and
E(θj | y) = (1− w)E(µ | y) + wyj ,

where

w =
σ2

σ2 + vj
.
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Example: Diagnostics

Normal Q-Q plots of intercept (panel 1) and slope (panel 2) random effects and residuals v. week
(panel 3)
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Evidence of a common quadratic effect, confirmed by AIC (1036 v. 1099) and BIC (1054 v. 1114)
based on full ML fits. AIC would also include a cluster quadratic effect (BIC equivocal).
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Generalised linear mixed models

Generalised linear mixed models (GLMMs) generalise LMMs to non-normal data, in the obvious way:

Yi
ind∼ F (· | µi, σ2), g(µ) ≡




g(µ1)
...

g(µn)


 = Xβ + Zb, b ∼ N(0,Σb) (18)

where F (· | µi, σ2) is an exponential family distribution with E(Y ) = µ and var(Y ) = σ2V (µ)/m for
known m. Commonly (e.g. Binomial, Poisson) σ2 = 1, and we shall assume this from here on.

It is not necessary that the distribution for the random effects b is normal, but this usually fits. It is
possible (but beyond the scope of this module) to relax this.
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GLMM example

A plausible GLMM for binary data in k clusters with n1, . . . , nk observations per cluster, and a single
explanatory variable x (e.g. the toxoplasmosis data at individual level) is

Yij
ind∼ Bernoulli(µi), log

µi
1− µi

= β0 + b0i + β1xij, b0i
ind∼ N(0, σ2b ) (19)

[note: no random slope here]. This fits into the general GLMM framework (18) with

X =




1 x11
...

...
1 xknk


 , Z =




Z1 0 0

0
. . . 0

0 0 Zk


 , Zi =




1
...
1


 ,

β = (β0, β1)
T, b = (b01, . . . , b0k)

T, Σb = σ2b Ik

[or equivalent binomial representation for city data, with clusters of size 1.]

APTS: Statistical Modelling March 2011 – slide 120

52



GLMM likelihood

The marginal distribution for the observed Y in a GLMM does not usually have a convenient
closed-form representation.

f(y | β,Σb) =

∫
f(y | β, b,Σb)f(b | β,Σb)db

=

∫
f(y | β, b)f(b | Σb)db

=

∫ n∏

i=1

f
(
yi | g−1([Xβ + Zb]i)

)
f(b | Σb)db. (20)

For nested random effects structures, some simplification is possible. For example, for (19)

f(y | β, σ2b ) ∝
n∏

i=1

∫
exp(

∑
j yij(β0+b0i+β1xij))

{1+exp(
∑

j yij(β0+b0i+β1xij))}nk φ(b0i; 0, σ
2
b )db0i

a product of one-dimensional integrals.
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GLMM fitting: quadrature

Fitting a GLMM by likelihood methods requires some method for approximating the integrals
involved.

The most reliable when the integrals are of low dimension is to use Gaussian quadrature (see APTS:
Statistical computing). For example, for a one-dimensional cluster-level random intercept bi we might
use

∫ ∏

j

f
(
yij | g−1(xT

i β + bi)
)
φ(bi | 0, σ2b )dbi

≈
Q∑

q=1

wq

∏

j

f
(
yij | g−1(xT

i β + biq)
)

for suitably chosen weights (wq, q = 1, . . . , Q) and quadrature points (biq, q = 1, . . . , Q)

Effective quadrature approaches use information about the mode and dispersion of the integrand (can
be done adaptively).

For multi-dimensional bi, quadrature rules can be applied recursively, but performance (in fixed time)
diminishes rapidly with dimension.
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GLMM fitting: Penalised quasi-likelihood

An alternative approach to fitting a GLMM uses penalised quasi-likelihood (PQL).

The most straightforward way of thinking about PQL is to consider the adjusted dependent variable v
constructed when computing mles for a GLM using Fisher scoring

vi = (yi − µi)g
′(µi) + ηi

Now, for a GLMM,
E(v | b) = η = Xβ + Zb

and
var(v | b) =W−1 = diag

(
var(yi)g

′(µi)
2
)
,

where W is the weight matrix used in Fisher scoring.
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GLMM fitting: PQL continued

Hence, approximating the conditional distribution of v by a normal distribution, we have

v ∼ N(Xβ + Zb,W−1), b ∼ N(0,Σb) (21)

where v and W also depend on β and b.

PQL proceeds by iteratively estimating β, b and Σb for the linear mixed model (21) for v, updating v
and W at each stage, based on the current estimates of β and b.

An alternative justification for PQL is as using a Laplace-type approximation to the integral in the
GLMM likelihood.

A full Laplace approximation (expanding the complete log-integrand, and evaluating the Hessian
matrix at the mode) is an alternative, equivalent to one-point Gaussian quadrature.
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GLMM fitting: discussion

Using PQL, estimates of random effects b come ‘for free’. With Gaussian quadrature, some extra
effort is required to compute E(b | y) – further quadrature is an obvious possibility.

There are drawbacks with PQL, and the best advice is to use it with caution.

� It can fail badly when the normal approximation that justifies it is invalid (for example for binary
observations)

� As it does not use a full likelihood, model comparison should not be performed using PQL
maximised ‘likelihoods’

Likelihood inference for GLMMs remains an area of active research and vigorous debate. Recent
approaches include HGLMs (hierarchical GLMs) where inference is based on the h-likelihood
f(y | β, b)f(b | Σ).
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Bayesian estimation for GLMMs

Bayesian estimation in GLMMs, as in LMMs, is generally based on the Gibbs sampler. For the GLMM

Yi
ind∼ F (· | µ), g(µ) = Xβ + Zb, b ∼ N(0,Σb)

with corresponding prior densities f(β) and f(Σb), we obtain the conditional posterior distributions

f(β | y, rest) ∝ f(β)
∏

i

f(yi | g−1(Xβ + Zb))

f(b | y, rest) ∝ φ(b; 0,Σb)
∏

i

f(yi | g−1(Xβ + Zb))

f(Σb | y, rest) ∝ φ(b; 0,Σb)f(Σb)

For a conditionally conjugate choice of f(Σb), f(Σb | y, rest) is straightforward to sample from. The
conditionals for β and b are not generally available for direct sampling, but there are a number of ways
of modifying the basic approach to account for this.
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Toxoplasmosis revisited

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the individual-level
model

Yij
ind∼ Bernoulli(µi), log

µi
1− µi

= β0 + b0i + β1xij, b0i
ind∼ N(0, σ2b )

Parameter Estimate (s.e.)
ML Laplace PQL

β0 −0.1343 (1.440) −0.1384 (1.488) −0.150 (1.392)
β1 (×106) 5.930 (745.7) 7.215 (770.2) −5.711 (721.7)

σb 0.5132 0.5209 0.4911
AIC 65.75 65.96 ‘65.98’

APTS: Statistical Modelling March 2011 – slide 127

55



Toxoplasmosis continued

Estimates and standard errors obtained by ML (quadrature), Laplace and PQL for the extended model

log
µi

1− µi
= β0 + b0i + β1xij + β1x

2
ij + β1x

3
ij.

Parameter Estimate (s.e.)
ML Laplace PQL

β0 −335.5 (136.6) −335.0 (136.3) −330.8 (140.7)
β1 0.5238 (0.2118) 0.5231 (0.2112) 0.5166 (0.2180)

β2 (×104) −2.710 (1.089) −2.706 (1.086) −2.674 (1.121)
β3 (×108) 4.463 (1.857) 4.636 (1.852) 4.583 (1.910)

σb 0.4232 0.4171 0.4508
AIC 63.84 63.97 ‘64.03’

So for this example, a good agreement between the different computational methods. Some evidence
for the cubic model over the linear model.
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Conditional independence and graphical representations slide 129

The role of conditional independence

In modelling clustered data, the requirement is often (as in the toxoplasmosis example above) to
construct a model to incorporate both non-normality and dependence. There are rather few ‘off-the
shelf’ models for dependent observations (and those that do exist, such as the multivariate normal,
often require strong assumptions which may be hard to justify in practice).

The ‘trick’ with GLMMs was to model dependence via a series of conditionally independent
sub-models for the observations y given the random effects b, with dependence induced by
marginalising over the distribution of b.

De Finetti’s theorem provides some theoretical justification for modelling dependent random
variables as conditionally independent given some unknown parameter (which we here denote by φ).
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De Finetti’s theorem

De Finetti’s theorem states (approximately) that any y1, . . . , yn which can be thought of as a finite
subset of an exchangeable infinite sequence of random variables y1, y2 . . ., has a joint density which
can be written as

f(y) =

∫
f(φ)

n∏

i=1

f(yi | φ)dφ

for some f(φ), f(yi | φ). Hence the yi can be modelled as conditionally independent given φ.

An exchangeable infinite sequence is one for which any finite subsequence has a distribution which is
invariant under permutation of the lablels of its components.

We can invoke this as an argument for treating as conditionally independent any set of variables about
which our prior belief is symmetric.
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Complex stochastic models

In many applications we want to model a multivariate response and/or to incorporate a complex
(crossed or hierarchically nested) cluster structure amongst the observations.

The same general approach, splitting the model up into small components, with a potentially rich
conditional independence structure linking them facilitates both model construction and
understanding, and (potentially) computation.
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Conditional independence graphs

An extremely useful tool, for model description, model interpretation, and to assist identifying efficient
methods for computation is the directed acyclic graph (DAG) representing the model.

Denote by Y = (Y1, . . . , Yℓ) the collection of elements of the model which are considered random
(given a probability distribution). Then the model is a (parametric) description of the joint
distribution f(y), which we can decompose as

f(y) = f(y1)f(y2 | y1) · · · f(yℓ | y1, . . . , yℓ−1) =
∏

i

f(yi | y<i)

where y<i = {y1, . . . , yi−1}. Now, for certain orderings of the variables in Y , the model may admit
conditional independences, exhibited through f(yi | y1, . . . , yi−1) being functionally free of yj for one
or more j < i. This is expressed as

Yi ⊥⊥ Yj | Y<i\j

where Y<i\j = {Y1, . . . , Yj−1, Yj+1, . . . , Yi−1}.
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DAGs

The directed acyclic graph (DAG) representing the probability model, decomposed as

f(y) =
∏

i

f(yi | y<i)

consists of a vertex (or node) for each Yi, together with an directed edge (arrow) to each Yj from
each Yi, i < j such that f(yj | y<j) depends on yi. For example, the model

f(y1, y2, y3) = f(y1)f(y2 | y1)f(y3 | y2)

is represented by the DAG
 

Y3 Y1 Y2 

The conditional independence of Y1 and Y3 given Y2 is represented by the absence of a directed edge
from Y1 to Y3.
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DAG for a GLMM

The DAG for the general GLMM

Yi
ind∼ F (· | µi, σ2), g(µ) = Xβ + Zb, b ∼ N(0,Σb)

consists, in its most basic form of two nodes:  b  Y 

It can be informative to include parameters and explanatory data in the DAG. Such fixed
(non-stochastic) quantities are often denoted by a different style of vertex.

 b  Y !b 

"
2 

# 

 X 

 Z 

It may also be helpful to consider the components of Y as separate vertices.
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DAG for a Bayesian GLMM

A Bayesian model is a full joint probability model, across both the variables treated as stochastic in a
classical approach, and any unspecified model parameters. The marginal probability distribution for
the parameters represents the prior (to observing data) uncertainty about these quantities.

The appropriate DAG for a Bayesian GLMM reflects this, augmenting the DAG on the previous slide
to:

! 

"
2 

 b  Y  #b 

 X 

 Z 

$# 

$" 

$! 

where φσ, φΣ and φβ are hyperparameters – fixed inputs into the prior distributions for σ2, σb and β
respectively.
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DAG properties

Suppose we have a DAG representing our model for a collection of random variables Y = (Y1, . . . , Yℓ)
where the ordering of the Yis is chosen such that all edges in the DAG are from lower to higher
numbered vertices. [This must be possible for an acyclic graph, but there will generally be more than
one possible ordering]. Then the joint distribution for Y factorises as

f(y) =
∏

i

f(yi | pa[yi])

where pa[yi] represents the subset of {yj , j < i} with edges to yi. Such variables are called the
parents of yi.
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The local Markov property

A natural consequence of the DAG factorisation of the joint distribution of Y is the local Markov
property for DAGS. This states that any variable Yi is conditionally independent of its
non-descendents, given its parents.

A descendent of Yi is any variable in {Yj, j > i} which can be reached in the graph by following a
sequence of edges from Yi (respecting the direction of the edges).

For example, for the simple DAG above
 

Y3 Y1 Y2 

the conditional independence of Y3 and Y1 given Y2 is an immediate consequence of the local Markov
property.
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The local Markov property – limitations

Not all useful conditional independence properties of DAG models follow immediately from the local
Markov property. For example, for the Bayesian GLMM

! 

"
2 

 b  Y  #b 

 X 

 Z 

$# 

$" 

$! 

the posterior distribution is conditional on observed Y , for which the local Markov property is
unhelpful, as Y is not a parent of any other variable.

To learn more about conditional independences arising form a DAG, it is necessary to construct the
corresponding undirected conditional independence graph.
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Undirected graphs

An undirected conditional independence graph for Y consists of a vertex for each Yi, together with a
set of undirected edges (lines) between vertices such that absence of an edge between two vertices Yi
and Yj implies the conditional independence

Yi ⊥⊥ Yj | Y\{i,j}

where Y\{i,j} is the set of varables excluding Yi and Yj.

From a DAG, we can obtain the corresponding undirected conditional independence graph via a two
stage process

� First we moralise the graph by adding an (undirected) edge between (‘marrying’) any two vertices
which have a child in common, and which are not already joined by an edge.

� Then we replace all directed edges by undirected edges.
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Undirected graphs: examples

Y3 

Y1 

Y2 
Y3 

Y1 

Y2 

Y3 

Y1 

Y2 
Y3 

Y1 

Y2 

Y3 

Y1 

Y2 
Y3 

Y1 

Y2 Y3 

Y1 

Y2 
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Global Markov property

For an undirected conditional independence graph, the global Markov property states that any two
variables, Yi and Yj say, are conditionally independent given any subset Ysep of the other variables
which separate Yi and Yj in the graph.

We say that Ysep separates Yi and Yj in an undirected graph if any path from Yi to Yj via edges in
the graph must pass through a variable in Ysep.
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Undirected graph for Bayesian GLMM

The DAG for the Bayesian GLMM

! 

"
2 

 b  Y  #b 

 X 

 Z 

$# 

$" 

$! 

has corresponding undirected graph (for the stochastic vertices)

! 

"
2 

 b  Y  #b 

The conditional independence of (β, σ2) and Σb given b (and Y ) is immediately obvious.
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Markov equivalence

Any moral DAG (one which has no ‘unmarried’ parents) is Markov equivalent to its corresponding
undirected graph (i.e. it encodes exactly the same conditional independence structure).

Conversely, the vertices of any decomposable undirected graph (one with no chordless cycles of four
or more vertices) can be numbered so that replacing the undirected edges by directed edges from
lower to higher numbered vertices produces a Markov equivalent DAG.

Such a numbering is called a perfect numbering for the graph, and is not unique.

It immediately follows that the Markov equivalence classes for DAGs can have (many) more than one
member, each of which implies the same model for the data (in terms of conditional independence
structure)

The class of DAGs is clearly much larger than the class of undirected graphs, and encompasses a
richer range of conditional independence structures.
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3. Missing Data and Latent Variables slide 145

Overview

1. Missing data

2. Latent variables

3. EM algorithm
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Missing Data slide 147

Example 1: Birthweight and smoking

Data from the Collaborative Perinatal Project
Birth weight (known) Birth weight (unknown)
< 2500 ≥ 2500 < 2500 ≥ 2500

Mother smokes? Y 4512 21009 1049
(known) N 3394 24132 1135

Mother smokes? Y
(unknown) N

142 464 1224
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Example 2: Political opinions

Data extracted from the British General Election Panel Survey
Sex Social Intention known Intention unknown

class Con. Lab. Lib. Other Con. Lab. Lib. Other

1 26 8 7 0 11
2 87 37 30 6 64

M 3 66 77 23 8 77
4 14 25 15 1 12
5 6 6 2 0 7

1 1 1 0 1 2
2 63 34 32 2 68

F 3 102 52 22 4 77
4 10 32 10 2 38
5 20 25 8 2 19

1=Professional, 2=Managerial and technical, 3= Skilled, 4=Semi-skilled or unskilled, 5=Never
worked.
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Introduction

Missing data arises in many practical applications. Typically, our data might appear (with missing
observations indicated by ∗) as

Unit (i) Variable (j)
1 2 3 · · · p

1 y11 y12 y13 · · · y1p
2 y21 ∗ y23 · · · y2p
3 ∗ y32 ∗ · · · ∗
4 ∗ y42 y43 · · · y4p
...

...
...

...
...

...
n yn1 ∗ yn3 · · · ynp

Variables which have missing obervations in our data frame are said to be subject to item
nonresponse. When there are units with no available data whatsoever, that is referred to as unit
nonresponse.

If the variables can be ordered so that, for any unit i, (yij is missing) ⇒ (yik is missing for all k > j),
the missing data pattern is said to be monotone (e.g. longitudinal dropout, special cases like
Example 2).
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Issues

Missing data creates two major problems for analysis.

� Suppose that we have a model f(y | θ), for which the likelihood is tractable. When certain yij are
missing, the likelihood for inference must be based on the observed data distribution

f(yobs | θ) =
∫
f(yobs, ymis | θ)dymis (22)

where the subscripts obs and mis refer to observed and missing components, respectively. It is
typically much more difficult to compute (22) than f(y | θ) for fully observed data.

� Even when it can be computed, the likelihood (22) is only valid for inference about θ under the
assumption that the fact that certain observations are missing provides no information about θ.
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Models

To formalise this, it is helpful to introduce a series of binary response indicator variables r1, . . . , rp,
where

rij = 1 ⇔ yij is observed, i = 1, . . . , n; j = 1, . . . , p.

We factorise the joint distribution of (y, r) into a data model for y and a (conditional) response model
for r

f(y, r | θ, φ) = f(y | θ)f(r | y, φ).
Then the likelihood for the observed data, (yobs, r) is

f(yobs, r | θ, φ) =
∫
f(yobs, ymis | θ)f(r | yobs, ymis, φ)dymis. (23)

In this set-up inference for θ should be based on (23), but there are situations when it is valid to
ignore the missing data mechanism (and the corresponding variable r) and base inference for θ on the
simpler f(yobs | θ).
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Ignorability

If R ⊥⊥ Ymis | Yobs, φ then f(r | yobs, ymis, φ) in (23) can be replaced by f(r | yobs, φ), and (23) is
simplified to:

f(yobs, r | θ, φ) = f(yobs | θ)f(r | yobs, φ). (24)

Hence, the likelihood for (θ, φ) factorises and provided that θ and φ are independent (in a functional
sense for likelihood analysis, and in the usual stochastic sense for Bayesian analysis) inference for θ
can be based on f(yobs | θ).
� Any missing data model which satisfies the two requirements above, namely [R ⊥⊥ Ymis | Yobs, φ]

and [φ independent of θ] is said to be ignorable. Otherwise, it is nonignorable.

� Missing data which satisfies R ⊥⊥ Ymis | Yobs, φ is said to be missing at random (MAR)

� Missing data which satisfies the stronger condition R ⊥⊥ Ymis, Yobs | φ is said to be missing
completely at random (MCAR). For MCAR data, correct (but potentially highly sub-optimal)
inferences can be obtained by complete case analysis.
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Inference under ignorability

For monotone missing data patterns, it may be possible to deal with f(yobs | θ) directly.
For example, suppose that the Yi = (Yi1, . . . , Yip) are conditionally independent given θ, and
furthemore that

f(yi | θ) =
∏

j

f(yij | yi,<j, θj)

where θ = (θ1, . . . , θp) is a partition into distinct components. Then

f(yobs | θ) =
∏

i

f(yi,obs | θ) =
∏

i

ki∏

j=1

f(yij | yi,<j, θj)

where ki is the ‘last’ observed variable for unit i. Hence the likelihood for θ factorises into individual
components.

Otherwise, methods for inference in the presence of an ignorable missing data mechanism typically
exploit the fact the full data analysis, based on f(y | θ) is tractable (assuming that it is!)
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Gibbs sampler

For Bayesian analysis, this typically involves generating a sequence of values {θt, ytmis, t = 1, . . .} from
the joint posterior distribution f(θ, ymis | yobs) using a Gibbs sampler iteratively sampling

� the model-based conditional for Ymis | θ, yobs.
� the complete data posterior conditional for θ | Ymis, yobs

Often, both of these are convenient for sampling.

The subsample {θt, t = 1, . . .} may then be considered as being drawn from the marginal posterior for
θ | yobs, as required.
This is sometimes referred to as data augmentation.
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EM algorithm

For maximum likelihood, it is often the case that a corresponding iterative algorithm can be
constructed by taking the Gibbs sampler steps above and replacing generation from conditionals with
(i) taking expectation (for Ymis) and (ii) likelihood maximisation (for θ), respectively.

� for the current θt construct the expected log-likelihood E[log f(Ymis, yobs | θ) | yobs, θt]
� maximise this expected log-likelihood w.r.t. θ to obtain θt+1

This is the EM algorithm, of which more details will be presented shortly. The maximisation (M) step
is generally straightforward, and for many models, so is the expectation (E) step.

APTS: Statistical Modelling March 2011 – slide 156

66



Nonignorable models

If considered appropriate, then a nonignorable missing data mechanism can be incorporated in
f(y, r | θ, φ). A selection model utilises the decomposition

f(y, r | θ, φ) = f(y | θ)f(r | y, φ).
where a nonignorable model incorporates dependence of R on Ymis.

Alternatively, a pattern mixture model decomposes f(y, r | θ, φ) as

f(y, r | θ, φ) = f(y | r, θ)f(r | φ).

Pattern mixture models tend to be less intuitively appealing, but may be easier to analyse (particularly
for monotone missing data patterns).

Under either specification, inference must be based on the observed data likelihood

f(yobs, r | θ, φ) =
∫
f(yobs, ymis, r | θ, φ)dymis.

Gibbs sampling or EM can be used for computation, but convergence may be slow.
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A simple selection model

Consider the selection model

Y ∼ N(θ1, θ2), Pr(R = 1 | Y = y) = exp(φ0+φ1y)
1+exp(φ0+φ1y)

An example of f(y | r = 1), the marginal density for yobs is

−4 −2 0 2 4

y

for (θ1, θ2, φ0, φ1) = (0, 1, 0, 2).

The selection effect is quite subtle and will clearly be hard to estimate accurately.
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Nonignorable model issues

In the previous example, it will be impossible to distinguish, on the basis of observed data only,
between the proposed selection model, and an ignorable model where the population distribution of y
is naturally slightly skewed.

Generally, nonignorable model inferences are sensitive to model assumptions, and there exist
alternative models which cannot be effectively compared on the basis of fit to observed data alone.

Furthermore, inferences from alternative, equally well-fitting models may be very different, as the
following (artificial) example illustrates.

y2 (Observed) y2 (Missing)
y1 A B A B

1 6 18 16
2 3 9 8
3 3 27 10
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Sensitivity example

Missing data estimates based on the ignorable model R2 ⊥⊥ Y2 | Y1
y2 (Observed) y2 (Missing)

y1 A B A B

1 6 18 4 12
2 3 9 2 6
3 3 27 1 9

Missing data estimates based on the nonignorable model R2 ⊥⊥ Y1 | Y2
y2 (Observed) y2 (Missing)

y1 A B A B

1 6 18 14 2
2 3 9 7 1
3 3 27 7 3

Potentially very different inferences for the marginal distribution of y2.

Pragmatic approaches are based on investigating sensitivity to a range of missing data assumptions.
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Latent Variables slide 161

Basic idea

� Many statistical models simplify when written in terms of unobserved latent variable U in
addition to the observed data Y . The latent variable

– may really exist, for example, when Y = I(U > c) for some continuous U (‘do you earn less
than £c per year?’);

– may be imaginary—something called IQ is said to underlie scores on intelligence tests, but is
IQ just a cultural construct? (“Mismeasure of man” debate . . .);

– may just be a mathematical/computational device (e.g. in MCMC or EM algorithms).

� Examples include random effects models, use of hidden variables in probit regression, mixture
models.
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Galaxy data

Velocities (km/second) of 82 galaxies in a survey of the Corona Borealis region. The error is thought
to be less than 50 km/second.

9172 9350 9483 9558 9775 10227 10406 16084 16170 18419
18552 18600 18927 19052 19070 19330 19343 19349 19440 19473
19529 19541 19547 19663 19846 19856 19863 19914 19918 19973
19989 20166 20175 20179 20196 20215 20221 20415 20629 20795
20821 20846 20875 20986 21137 21492 21701 21814 21921 21960
22185 22209 22242 22249 22314 22374 22495 22746 22747 22888
22914 23206 23241 23263 23484 23538 23542 23666 23706 23711
24129 24285 24289 24366 24717 24990 25633 26960 26995 32065
32789 34279
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Galaxy data
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Mixture density

� Natural model for such data is a p-component mixture density

f(y; θ) =

p∑

r=1

πrfr(y; θ), 0 ≤ πr ≤ 1,

p∑

r=1

πr = 1,

where πr is the probability that Y comes from the rth component and fr(y; θ) is its density
conditional on this event.

� Can represent this using indicator variables U taking a value in 1, . . . , p with probabilities
π1, . . . , πp and indicating from which component Y is drawn.

� Widely used class of models, often with number of components p unknown.

� Aside: such models are non-regular for likelihood inference:

– non-identifiable under permutation of components;

– setting πr = 0 eliminates parameters of fr;

– maximum of likelihood can be +∞, achieved for several θ
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Other latent variable models

� Let [U ],D denote discrete random variables, and (U),X continuous ones. Then in notation for
graphical models:

– [U ] → X or [U ] → D denotes finite mixture models, hidden Markov models, changepoint
models, etc.;

– (U) → D denotes data coarsening (censoring, truncation, . . .);

– (U) → X or (U) → D denotes variance components and other hierarchical models.

� Binary regression: U ∼ N (xTβ, 1) and observed response Y = I(U ≥ 0), gives probit regression
model, log likelihood contribution

Y log Φ(xTβ) + (1− Y ) log{1− Φ(xTβ)},

and similarly if different continuous distribution is chosen for U (logistic, extreme-value, . . .).
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EM Algorithm slide 167

EM algorithm

� Aim to use observed value y of Y for inference on θ when we cannot easily compute

f(y; θ) =

∫
f(y | u; θ)f(u; θ) du

� The complete-data log likelihood

log f(y, u; θ) = log f(y; θ) + log f(u | y; θ), (25)

is based on (U, Y ), whereas the observed-data log likelihood is

ℓ(θ) = log f(y; θ).

� Take expectation in (25) with respect to f(u | y; θ′) to get

E
{
log f(Y,U ; θ) | Y = y; θ′

}
= ℓ(θ) + E

{
log f(U | Y ; θ) | Y = y; θ′

}
, (26)

or equivalently Q(θ; θ′) = ℓ(θ) + C(θ; θ′).
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EM algorithm II

Fix θ′ and consider how Q(θ; θ′) and C(θ; θ′) depend on θ.

� Note that C(θ′; θ′) ≥ C(θ; θ′), with equality only when θ = θ′ (Jensen’s inequality).

� Thus

Q(θ; θ′) ≥ Q(θ′; θ′) implies ℓ(θ)− ℓ(θ′) ≥ C(θ′; θ′)− C(θ; θ′) ≥ 0. (27)

� Under mild smoothness conditions, C(θ; θ′) has a stationary point at θ = θ′, so if Q(θ; θ′) is
stationary at θ = θ′, so too is ℓ(θ).

� Hence EM algorithm: starting from an initial value θ′ of θ,

1. compute Q(θ; θ′) = E {log f(Y,U ; θ) | Y = y; θ′}; then
2. with θ′ fixed, maximize Q(θ; θ′) over θ, giving θ†, say; and

3. check if the algorithm has converged, using ℓ(θ†)− ℓ(θ′) if available, or |θ† − θ′|, or both. If
not, set θ′ = θ† and go to 1.

Steps 1 and 2 are the expectation (E) and maximization (M) steps.

� The M-step ensures that Q(θ†; θ′) ≥ Q(θ′; θ′), so (27) implies that ℓ(θ†) ≥ ℓ(θ′): the log
likelihood never decreases.
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Convergence

� If ℓ(θ) has

– only one stationary point, and if Q(θ; θ′) eventually reaches a stationary value at θ̂, then θ̂
must maximize ℓ(θ);

– otherwise the algorithm may converge to a local maximum of the log likelihood or to a turning
point.

� The EM algorithm never decreases the log likelihood so is more stable than
Newton–Raphson-type algorithms.

� Rate of convergence depends on closeness of Q(θ; θ′) and ℓ(θ):

−∂
2ℓ(θ)

∂θ∂θT
= E

{
−∂

2 log f(y, U ; θ)

∂θ∂θT

∣∣∣∣Y = y; θ

}
− E

{
−∂

2 log f(U | y; θ)
∂θ∂θT

∣∣∣∣Y = y; θ

}
,

or J(θ) = Ic(θ; y)− Im(θ; y), giving the missing information principle: the observed
information equals the complete-data information minus the missing information.

� Rate of convergence slow if largest eigenvalue of Ic(θ; y)
−1Im(θ; y) ≈ 1; this occurs if the missing

information is a high proportion of the total.
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(Toy) Example: Negative binomial model

Conditional on U = u, Y ∼ Poiss(u) and U is gamma with mean θ and variance θ2/ν. Suppose
ν > 0 known and make inference for θ.

theta
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EM algorithm for negative binomial example. Left panel: observed-data log likelihood ℓ(θ) (solid) and
functions Q(θ; θ′) for θ′ = 1.5, 1.347 and 1.028 (dots, from right). The blobs show the values of θ
that maximize these functions, which correspond to the first, fifth and fortieth iterations of the EM
algorithm. Right: convergence of EM algorithm (dots) and Newton–Raphson algorithm (solid). The
panel shows how successive EM iterations update θ′ and θ̂. Notice that the EM iterates always
increase ℓ(θ), while the Newton–Raphson steps do not.

APTS: Statistical Modelling March 2011 – slide 171

72



Example: Mixture model

� Consider earlier p-component mixture density f(y; θ) =
∑p

r=1 πrfr(y; θ), for which likelihood

contribution from (y, u) would be
∏

r {fr(y; θ)πr}I(u=r), giving contribution

log f(y, u; θ) =

p∑

r=1

I(u = r) {log πr + log fr(y; θ)}

to the complete-data log likelihood.

� Must compute the expectation of log f(y, u; θ) over

wr(y; θ
′) = Pr(U = r | Y = y; θ′) =

π′rfr(y; θ
′)∑p

s=1 π
′
sfs(y; θ

′)
, r = 1, . . . , p, (28)

the weight attributable to component r if y has been observed.

� The expected value of I(U = r) with respect to (28) is wr(y; θ
′), so the expected value of the log

likelihood based on a random sample (y1, u1), . . . , (yn, un) is

Q(θ; θ′) =

n∑

j=1

p∑

r=1

wr(yj ; θ
′) {log πr + log fr(yj ; θ)}

=

p∑

r=1





n∑

j=1

wr(yj ; θ
′)



 log πr +

p∑

r=1

n∑

j=1

wr(yj ; θ
′) log fr(yj ; θ).
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Example: Galaxy data

p 1 2 3 4 5

ℓ̂ −240.42 −220.19 −203.48 −202.52 −192.42

Fitted mixture model with p = 4 normal components:

Velocity

P
D

F

0 10 20 30 40

0.
0

0.
05

0.
10

0.
15

0.
20
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Galaxy data
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AIC and BIC for the normal mixture models fitted to the galaxy data. BIC is minimised for p = 3
components, and AIC for p = 5 components.
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Exponential family

� Suppose the complete-data log likelihood is from an exponential family:

log f(y, u; θ) = s(y, u)Tθ − κ(θ) + c(y, u).

� For EM algorithm, need expected value of log f(y, u; θ) with respect to f(u | y; θ′). Final term
can be ignored, so M-step involves maximizing

Q(θ; θ′) = E
{
s(y, U)Tθ | Y = y; θ′

}
− κ(θ),

or equivalently solving for θ the equation

E
{
s(y, U) | Y = y; θ′

}
=
dκ(θ)

dθ
.

� Likelihood equation for θ based on the complete data is s(y, u) = dκ(θ)/dθ, so the EM algorithm
replaces s(y, u) by its conditional expectation E {s(y, U) | Y = y; θ′} and solves the likelihood
equation. Thus a routine to fit the complete-data model can readily be adapted for missing data
if the conditional expectations are available.
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Comments

� Often E-step requires numerical approximation:

– simulation from conditional distribution of U given Y ;

– importance sampling;

– Markov chain algorithm;

� M-step can be performed using Newton–Raphson or similar algorithm, using first and second
loglikelihood derivatives (exercise)—may need to be performed in parts, rather than overall

� Can obtain standard errors using these derivatives (exercise)

� In Bayesian analysis, may often be helpful to include latent variables, either

– because they have useful interpretation in terms of model—all parameters are hidden
variables, because unobservable in practice

– to simplify MCMC algorithm—Gibbs sampler is ‘Bayesian equivalent’ of EM algorithm
(exercise)
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