APTS ASP Simple Exercises 3

Wilfrid Kendall

May 2011

1. Suppose that N is a Poisson process of rate α. Working with the result

$$
\mathbb{P}\left[N_{t}=k\right] \quad=\quad \frac{(\alpha t)^{k}}{k!} e^{-\alpha t} \quad \text { for } k=0,1,2, \ldots
$$

show that
(i) $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}\left[N_{t}>0\right] \rightarrow \alpha$ as $t \rightarrow 0$,
(ii) $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}\left[N_{t}>1\right] \rightarrow 0$ as $t \rightarrow 0$,
(iii) $\frac{\mathrm{d}}{\mathrm{d} t} \mathbb{P}\left[N_{t}=0\right] \rightarrow-\alpha$ as $t \rightarrow 0$.
2. In the context of question 1 , show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbb{P}\left[N_{t}>k\right] \quad=\quad \alpha \times \frac{(\alpha t)^{k}}{k!} e^{-\alpha t} \quad \text { for } k=0,1,2, \ldots
$$

Hence deduce that the time to the $k^{\text {th }}$ incident has a Gamma distribution, and write down the Gamma distribution parameters.
3. In the context of question 1 , show that

$$
X_{t}=N_{t}-\alpha t
$$

determines a martingale.
4. In the context of question 1 , show that

$$
Y_{t}=X_{t}^{2}-\alpha t
$$

determines a martingale (X given as in question 3).
5. Suppose now that X is merely a nonnegative random variable, and h is an integrable function on $[0, t]$. Show that

$$
\mathbb{E}\left[\int_{0}^{\min \{t, X\}} h(u) \mathrm{d} u\right]=\int_{0}^{t} \mathbb{P}[X>u] h(u) \mathrm{d} u
$$

6. with X as in question 5 , suppose that

$$
\mathbb{P}[X>t]=\exp \left(-\int_{0}^{t} h(s) \mathrm{d} s\right)
$$

Show that

$$
\mathbb{I}_{[X \leq t]}-\int_{0}^{\min \{t, X\}} h(u) \mathrm{d} u
$$

determines a martingale.
7. Suppose that X_{1}, X_{2}, \ldots are independent mean-zero unit-variance random variables, such that for some constant C we have $\mathbb{E}\left[\left|X_{i}\right|^{3}\right]<C$ for all i. Show that the sequence X_{1}, X_{2}, \ldots satisfies the Lindeberg condition (so that $\left(X_{1}+\ldots+X_{n}\right) / \sqrt{\operatorname{Var}\left[X_{1}+\ldots+X_{n}\right]}$ tends to normality).
(HINT: $\mathbb{E}\left[X_{i}^{2} ; X_{i}^{2}>\varepsilon^{2} n\right] \leq \frac{1}{\varepsilon \sqrt{n}} \mathbb{E}\left[\left|X_{i}\right|^{3}\right]$.)
8. Show that in general the Lyapunov condition implies the Lindeberg condition.

