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Introduction

Two notions in probability

“. . . you never learn anything unless you are willing to take a risk and tolerate a little
randomness in your life.” – Heinz Pagels, The Dreams of Reason, 1988.

Probability provides one of the major underlying languages of statistics, and purely
probabilistic concepts often cross over into the statistical world. So statisticians need to
acquire some fluency in the general language of probability and to build their own mental
map of the subject. The Applied Stochastic Processes module aims to contribute towards this
end.

This module is intended to introduce students to two important no-
tions in stochastic processes — reversibility and martingales — identifying
the basic ideas, outlining the main results and giving a flavour of some
significant ways in which these notions are used in statistics.

These notes outline the content of the module; they represent work-in-
progress and will grow, be corrected, and be modified as time passes.

The notes illustrate typical features of probability: the interplays between theory and
practice, between rigour and intuition. The following quote is not intended to imply that we
are great probabilists, but it nicely illustrates the point that the perceived conflicts between
these interplays are often illusory:

Some people complain that the great probabilists have no intuition. But they
do have intuition. The real problem is, they have so much of it. – David
Williams

Corrections and suggestions are of course welcome! Email stephen.connor@york.
ac.uk or w.s.kendall@warwick.ac.uk.

Every image in these notes has been either constructed by the author or released into
the public domain.

Learning outcomes

What you should be able to do after working through this module
After successfully completing this module an APTS student will be able

to:

• describe and calculate with the notion of a reversible Markov chain,
both in discrete and continuous time;

• describe the basic properties of discrete-parameter martingales and
check whether the martingale property holds;

• recall and apply some significant concepts from martingale theory;

• explain how to use Foster-Lyapunov criteria to establish recurrence
and speed of convergence to equilibrium for Markov chains.

These outcomes interact interestingly with various topics in applied statistics. However
the most important aim of this module is to help students to acquire general awareness of
further ideas from probability as and when that might be useful in their further research.
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An important instruction

First of all, read the preliminary notes . . .
They provide notes and examples concerning a basic framework cover-

ing:

• Probability and conditional probability;

• Expectation and conditional expectation;

• Discrete-time countable-state-space Markov chains;

• Continuous-time countable-state-space Markov chains;

• Poisson processes.

The purpose of the preliminary notes is not to provide all the information you might
require concerning probability, but to serve as a prompt about material you may need to
revise, and to introduce and to establish some basic choices of notation.

The polish sausage syndrome, or when all else fails read the manual
www.hci.com.au/hcisite3/journal/Whenallelsefails.htm

PLEASE READ THIS OWNER’S MANUAL BEFORE UNPACKING THE DEVICE.
You’ve already unpacked it, haven’t you? You’ve unpacked it and plugged

it in and turned it on and fiddled with the knobs, and now your four-year old
child, the same child who once shoved a Polish sausage into your new VCR
and pressed fast forward, this child is also fiddling with the knobs, right? We
might as well just break these devices right at the factory before we ship them
out, you know that?

Books

Some useful texts (I)

“There is no such thing as a moral or an immoral book. Books are well written or badly
written.” – Oscar Wilde (1854–1900), The Picture of Dorian Gray, 1891, preface

The next three slides list various useful textbooks.
At increasing levels of mathematical sophistication:

1. Häggström (2002) “Finite Markov chains and algorithmic applications”.

Häggström (2002) is a delightful introduction to finite state-space discrete-time Markov

chains, starting from the point of view of computer algorithms.

2. Grimmett and Stirzaker (2001) “Probability and random processes”.

Grimmett and Stirzaker (2001) is the standard undergraduate text on mathematical

probability. This is the book I advise my undergraduate students to buy, because it

contains so much material.

3. Breiman (1992) “Probability”.

Breiman (1992) is a first-rate graduate-level introduction to probability.
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4. Norris (1998) “Markov chains”.

Norris (1998) presents the theory of Markov chains at a more graduate level of sophis-

tication, revealing what I have concealed, namely the full gory story aboutQ-matrices.

5. Williams (1991) “Probability with martingales”.

Williams (1991) provides an excellent if mathematically demanding graduate treat-

ment of the theory of martingales.

Some useful texts (II): free on the web
The moon belongs to everyone;
The best things in life are free.
The stars belong to everyone;
They gleam there for you and me.
“The Best Things in Life are Free” – George Gard “Buddy” DeSylva (27/01/1895 – 11/07/1950)

1. Doyle and Snell (1984) “Random walks and electric networks” avail-
able on web at
www.arxiv.org/abs/math/0001057.

Doyle and Snell (1984) lay out (in simple and accessible terms) an important approach

to Markov chains using relationship to resistance in electrical networks.

2. Kindermann and Snell (1980) “Markov random fields and their appli-
cations” available on web at
www.ams.org/online_bks/conm1/.

Kindermann and Snell (1980) is a sublimely accessible treatment of Markov random

fields (Markov property, but in space not time).

3. Meyn and Tweedie (1993) “Markov chains and stochastic stability”
available on web at
www.probability.ca/MT/.

Consult Meyn and Tweedie (1993) if you need to get informed about theoretical re-

sults on rates of convergence for Markov chains (eg, because you are doing MCMC).

4. Aldous and Fill (2001) “Reversible Markov Chains and Random Walks
on Graphs” only available on web at
www.stat.berkeley.edu/~aldous/RWG/book.html.

Aldous and Fill (2001) is the best unfinished book on Markov chains known to me (at

the time of writing these notes).

Some useful texts (III): going deeper
Here are a few of the many texts which go much further

1. Kingman (1993) “Poisson processes”.

Kingman (1993) gives a very good introduction to the wide circle of ideas surrounding

the Poisson process.
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2. Kelly (1979) “Reversibility and stochastic networks”.

We’ll cover reversibility briefly in the lectures, but Kelly (1979) shows just how pow-

erful the technique can be.

3. Steele (2004) “The Cauchy-Schwarz master class”.

Steele (2004) is the book to read if you decide you need to know more about (mathe-

matical) inequality.

4. Aldous (1989) “Probability approximations via the Poisson clumping
heuristic”.

Aldous (1989) is a book full of what ought to be true; hence good for stimulating

research problems and also for ways of computing heuristic answers. See

www.stat.berkeley.edu/~aldous/Research/research80.html.

5. Øksendal (2003) “Stochastic differential equations”.

Øksendal (2003) provides an accessible introduction to Brownian motion and stochas-

tic calculus, which we do not cover at all.

6. Stoyan, Kendall, and Mecke (1987) “Stochastic geometry and its appli-
cations”.

Stoyan et al. (1987) discuss a range of techniques used to handle probability in geo-

metric contexts.
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1 Markov chains and reversibility

We begin our module with the important, simple and subtle idea of a reversible Markov
chain, and the associated notion of detailed balance; we will return to these ideas periodi-
cally through the module. This first major theme isolates a class of Markov chains for which
computation of the equilibrium distribution is relatively straightforward. (Remember from
the pre-requisites: if a chain is irreducible and positive-recurrent then it has an equilibrium
distribution π ; and if it is aperiodic then π is also the limiting long-time empirical distribu-
tion. Moreover π · P = π . However if there are k states then these matrix equation presents
k equations each potentially involving all k unknowns . . . a complexity issue if k is large!)
We will see a delicate interplay of

1. time-reversibility;

2. (greater) accessibility of equilibrium calculations;

3. subtle but significant dependence considerations.

In this section we’ll discuss many examples together with animations.

Markov chains and reversibility

“People assume that time is a strict progression of cause to effect, but actually from a
non-linear, non-subjective viewpoint, it’s more like a big ball of wibbly-wobbly, timey-
wimey . . . stuff.” The Tenth Doctor, Doctor Who, in the episode “Blink”, 2007

1.1 Introduction to reversibility

In a nutshell . . .
We dive straight in, presuming prerequisite knowledge.

Here is detailed balance in a nutshell: Suppose we could solve (nontriv-
ially, please!) for π in πxpxy = πypyx (discrete-time) or πxqxy = πyqyx
(continuous-time). In both cases simple algebra then shows π solves the
equilibrium equations.

NOTICE: the trivial solution πx ≡ 0 won’t do, as we also need
∑
x πx = 1.

So on a prosaic level it is always worth trying this easy route; if the de-
tailed balance equations are insoluble then revert to the more complicated
equilibrium equations π · P = π , respectively π · Q = 0. We will con-

sider reversibility of Markov chains in both discrete and continuous time,
the computation of equilibrium distributions for such chains, and discuss
applications to some illustrative examples.

We will consider progressively more and more complicated Markov chains:

• simple symmetric random walk;

• the birth-death-immigration process;

• the M/M/1 queue;

• a discrete-time chain on a 8× 8 state space;

• Gibbs’ samplers (briefly);

• and Metropolis-Hastings samplers (briefly).

“Test understanding”: a phrase signalling good questions you should ask yourself, to
check you know what is going on.

Test understanding: show the detailed balance equations (discrete-case) lead to equilib-
rium equations by applying them to

∑
x πxpxy and then using

∑
x pyx = 1.
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Simplest non-trivial example (I)
Consider doubly-reflected simple symmetric random walk X on {0,1, . . . , k},

with reflection “by prohibition”: moves 0 → −1, k → k + 1 are replaced by
0→ 0, k→ k.

1. X is irreducible and aperiodic, so there is a unique equilibrium distri-
bution π = (π0, π1, . . . , πk).

Test understanding: explain why X is aperiodic when non-reflected simple symmetric random

walk has period 2. Getting boundary conditions right is crucial both for this and for reversibility.

2. The equilibrium equations π · P = π are solved by πi = 1
k+1 for all i.

Test understanding: verify solution of equilibrium equations.

3. Consider X in equilibrium and run backwards in time. Calculation:
ANIMATION P

[
Xn−1 = x|Xn = y

] = πx P
[
Xn = y|Xn−1 = x

]
/πy =

P
[
Xn = y|Xn−1 = x

]
so here by symmetry of the kernel the equilib-

rium chain has the same transition kernel (so looks the same) whether
run forwards or backwards.

• Develop Markov property to deduce X0, X1, . . . , Xn−1 is conditionally independent of
Xn+1, Xn+2, . . . given Xn. Hence reversed Markov chain is still Markov (though not nec-
essarily time-homogeneous in more general circumstances). Suppose the reversed chain
has kernel py,x .

• Use definition of conditional probability to compute py,x = P
[
Xn−1 = x , Xn = y

]
/P

[
Xn = y

]
,

• then P
[
Xn−1 = x , Xn = y

]
/P

[
Xn = y

] = P [Xn−1 = x]px,y/P
[
Xn = y

]
.

• now substitute, using P [Xn = i] = 1
k+1 for all i so py,x = px,y .

• Symmetry of kernel (px,y = py,x ) then shows backwards kernel py,x is same as forwards
kernel py,x = py,x .

The construction generalizes . . . so link between reversibility and detailed balance holds gen-
erally. In particular, above still works even if random walk is asymmetric: the p = q = 1

2
symmetry is not the point here!

Simplest non-trivial example (II)
There is a computational aspect to this.

1. Even in more general cases, if the πi depend on i then above compu-
tations show reversibility holds if equilibrium distribution exists and
equations of detailed balance hold: πxpx,y = πypy,x .

Test understanding: check this.

2. Moreover if one can solve for πi in πxpx,y = πypy,x then it is easy to
show π · P = π .

Test understanding: check this.

3. Consequently if one can solve the equations of detailed balance, and
if the solution can be normalized to have unit total probability, then
the result also solves the equilibrium equations.
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Even in this simple example reversibility helps us deal with complexity. Detailed bal-
ance involves k equations each with two unknowns, easily “chained together”. The
equilibrium equations involve k equations of which k− 2 involve three unknowns.
In general the detailed balance equations can be solved unless “chaining together
by different routes” delivers inconsistent results. Kelly (1979) goes into more detail
about this.
Test understanding: show detailed balance doesn’t work for 3-state chain with tran-
sition probabilities 1

3 for 0 → 1, 1 → 2, 2 → 0 and 2
3 for 2 → 1, 1 → 0, 0 → 2.

Test understanding: show detailed balance does work for doubly reflected asymmet-
ric simple random walk. We will see there are still major computational issues for
more general Markov chains, connected with determining the normalizing constant
to ensure

∑
iπi = 1.

1.2 Population transitions

Birth-death-immigration process

The same idea works for continuous-time Markov chains: replace
transition probabilities px,y by rates qx,y and equilibrium equation
π · P = π by differentiated variant using Q-matrix: π ·Q = 0. (Recall:

Q = d
d t P t .)

Definition 1. The birth-death-immigration process has transitions:

– Birth (X → X + 1 at rate λX);

– Death (X → X − 1 at rate µX);

– plus an extra Immigration term (X → X + 1 at rate α).

Note that for this population process the rates qx,x±1 make sense and are defined

only for x = 0,1,2, . . ..

Reversibility here is decidedly non-trivial. We need 0 ≤ λ < µ and α > 0.

Hence qx,x+1 = λx +α; qx,x−1 = µx. ANIMATION

Equilibrium is easily derived from detailed balance:

πx = λ(x−1)+α
µx · λ(x−2)+α

µ(x−1) · . . . · αµ ·π0 .

Detailed balance equations:

πx × µx = πx−1 × (λ(x − 1)+α) .
Normalizing constant can be computed exactly when λ < µ via generalized Binomial

theorem:

π−1
0 =

∞∑

x=0

λ(x−1)+α
µx · λ(x−2)+α

µ(x−1) · . . . · αµ =
(

µ
µ − λ

)α
λ
.

If the condition λ < µ is not satisfied then the sum does not converge and therefore there
can be no equilibrium!

Note carefully: if α = 0 then equilibrium = extinction.
Poisson process: λ = µ = 0.
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1.3 A key theorem

Detailed balance and reversibility
We summarise the notion of detailed balance in a definition and a theorem.

Definition 2. The Markov chain X satisfies detailed balance if

Discrete time: there is a non-trivial solution of πxpx,y = πypy,x ;

Continuous time: there is a non-trivial solution of πxqx,y = πyqy,x .

Theorem 3. The irreducible Markov chain X satisfies detailed balance and
the solution {πx} can be normalized by

∑
x πx = 1 if and only if {πx} is an

equilibrium distribution for X and X started in equilibrium is statistically the
same whether run forwards or backwards in time.

Proof of the theorem is routine: see example of random walk above.

The reversibility phenomenon has surprisingly deep ramifications! Consider birth-death-

immigration example above and ask yourself whether it is immediately apparent that the

time-reversed process in equilibrium should look statistically the same as the original pro-

cess. (Note: both immigrations and births convert to deaths, and vice versa . . . .)

In general, if
∑
x πx < ∞ is not possible then we end up with an invariant measure

rather than an invariant probability distribution.

1.4 Queuing for insight

M/M/1 queue
We recall the M/M/1 queue example discussed in the preliminary notes.

Here we have

• Arrivals: X → X + 1 at rate λ;

• Departures: X → X − 1 at rate µ if X > 0.

Hence detailed balance: µπx = λπx−1 and therefore when λ < µ (stability)
the equilibrium distribution is πx = ρx(1−ρ) for x = 0,1, . . ., where ρ = λ

µ
(the traffic intensity). ANIMATION

Reversibility/detailed balance is more than a computational device: con-
sider Burke’s theorem, if a stable M/M/1 queue is in equilibrium then peo-
ple leave according to a Poisson process of rate λ.

Hence if a stable M/M/1 queue feeds into another stable ·/M/1 queue then in equilibrium the
second queue on its own behaves as an M/M/1 queue in equilibrium.

Birth-death-immigration processes and queueing processes are both examples of gener-
alized birth-death processes; only X → X ± 1 transitions, hence detailed balance equations
easily solved.

Note: the M/M/1 queue is non-linear. Linearity allows solution of forwards equations:
we do not discuss this here.

Detailed balance is also a subtle and important tool for the study of Markovian queueing
networks (e.g. Kelly 1979).

The argument connecting reversibility to detailed balance runs both ways. If detailed
balance equations can be solved to derive equilibrium then the process is reversible if run in
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equilibrium. Hence a one-line proof of Burke’s theorem: if queue is run backwards in time
then departures become arrivals.

Burke’s theorem has deep consequences, with surprising applications (for example in
the theory of random matrices).

Test understanding: use Burke’s theorem for a feed-forward ·/M/1 queueing network
(no loops) to show that in equilibrium each queue viewed in isolation is M/M/1. This uses
the fact that independent thinnings and superpositions of Poisson processes are still Pois-
son . . . .

1.5 A simple multidimensional example

Random chess (Aldous and Fill 2001, Ch1, Ch3§2)
Now we turn to a multi-dimensional and less generic example.

Example 4 (A mean Knight’s tour). Place a chess Knight at the corner of
a standard 8 × 8 chessboard. Move it randomly, at each move choosing
uniformly from available legal chess moves independently of the past.

This chain is periodic of period 2, and it is necessary in computation to take care about
this. One can sub-sample the chain at even times to obtain an aperiodic chain, or (alternative
approach) establish detailed balance between πeven and πodd.

1. What is the equilibrium distribution?
(use detailed balance)

Use πv/dv = πu/du = c if u ∼ v , where du is the degree of u. Also use fact, there

are 168 = (1 × 2 + 2 × 3 + 5 × 4 + 4 × 6 + 4 × 8) × 4/2 different edges. So total

degree is 2× 168, 1 = c∑black dv = 168c and thus equilibrium probability at corner

is 2c = 2/168.

2. Is the resulting Markov chain periodic?
(what if you sub-sample at even times?)

Period 2 (white versus black). Sub-sampling at even times makes chain aperiodic on

squares of one colour.

3. What is the mean time till the Knight returns to its starting point?
(inverse of equilibrium probability)

Inverse of equilibrium probability shows that mean return time to corner (allowing
for periodicity!) is 168. Test understanding: follow through these calculations to
check that you really do understand detailed balance. The following table gives a
clue:

2 3 4 4
3 4 6 6
4 6 8 8
4 6 8 8
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ANIMATION

1.6 Ising model

Gibbs’ sampler for Ising model (I) Ising model

• Pattern of spins Si = ±1 on (finite fragment of) lattice (here i is typical
node of lattice).
Sample applications: idealized model for magnetism, simple binary image. Physics:
interest in fragment expanding to fill whole lattice: cases of zero-interaction, sub-

critical, critical ( kTJ = 2.269185), super-critical. The Ising model is the nexus for a
whole variety of scientific approaches, each bringing their own rather different ques-
tions.

• Probability mass function

P [Si = si all i] ∝




exp
(
J
∑∑

i∼j sisj
)
,

exp
(
J
∑∑

i∼j sisj +H
∑
i sis̃i

)

if external field s̃i .

i ∼ j if i and j are lattice neighbours. Note, physics treatments use a (physically
meaningful) over-parametrization J → J

kT , H → mH. The H
∑
i sis̃i term can be

interpreted physically as modelling an external magnetic field, or statistically as a
noisy image conditioning the image. In the latter case, s̃i can be viewed as a noisy
image pixel, interacting with the true image pixel si but constrained to be fixed. Then
H measures the “noisiness”. For a simulation physics view of the Ising model, see
the expository article by David Landau in Kendall et al. (2005).

Actually computing the normalizing constant here is hard in the sense of complexity
theory (see for example Jerrum 2003).

Gibbs’ sampler for Ising model (II) Gibbs’ sampler (or heat-bath)
A particular example of the Gibbs’ sampler in the special context of Ising models.

• Consider Markov chain with states which are Ising configurations on
an n×n lattice, moving as follows:

View configurations as vectors of ±1’s listing spins at different sites.

– Set s to be a given configuration, with s(i) obtained by flipping
spin i,

– Choose a site i in the lattice at random;

11



– Compute the conditional probability P
[
s
∣∣∣{s(i), s}

]
of current con-

figuration given configuration at other sites;

{s(i), s} is the event that we see configuration s except perhaps at state i.

– Flip the current value of Si with probability P
[
s(i)

∣∣∣{s(i), s}
]
, oth-

erwise leave unchanged.

In case of the Ising model, noting that s(i)i = −si, careful calculation yields

P
[
s
∣∣∣{s(i), s}

]
=

exp
(
J
∑
j:j∼i sisj

)

exp
(
J
∑
j:j∼i sisj

)
+ exp

(
−J∑j:j∼i sisj

) .

(Obvious changes if external field.)

• Simple general calculations show,

∑

i

1
n2
P
[
s(i)

]
× P

[
s
∣∣∣{s(i), s}

]
= P

[
s
]

so chain has Ising model as equilibrium distribution.
This is really a completely general computation! Note that the equilibrium equations
are complicated: n2 equations, each with n2 terms on left-hand side.

General pattern for Gibbs sampler: update individual random variables sequentially us-
ing conditional distributions given all other random variables.

Conditional distributions, so ratios, so normalizing constants cancel out.

Gibbs’ sampler for Ising model (III) Detailed balance

• Detailed balance calculations provide a much easier justification: merely
check

1
n2
P
[
s(i)

]
× P

[
s
∣∣∣{s(i), s}

]
= 1

n2
P
[
s
]× P

[
s(i)

∣∣∣{s(i), s}
]
.

Test understanding: check the detailed balance calculations. This also works for
processes obtained from:

– systematic scans

– coding (“simultaneous updates on alternate colours of a chessboard”)

but not for wholly simultaneous updates.

• Here is an animation of a Gibbs’ sampler producing an Ising model
conditioned by a noisy image, produced by systematic scans: 128 ×
128, with 8 neighbours. Noisy image to left, draw from Ising model to
right.

ANIMATION
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The example is taken from a discussion of “perfect simulation”, but that is another
story! See

www.warwick.ac.uk/go/wsk/ising-animations

for more on perfect sampling for the Ising model.

There is an immediate Bayesian interpretation: if the noisy pixels aren’t held fixed then

we get the underlying joint distribution of signal and noise as equilibrium distribution. If

they are held fixed then the equilibrium has (by reversibility) to be proportional to the joint

distribution subject to the restriction, and this is exactly the posterior distribution.

1.7 Metropolis-Hastings sampler

Metropolis-Hastings

1. An important alternative to the Gibbs’ sampler, even more closely
connected to detailed balance:

Actually the Gibbs’ sampler is a special case of the Metropolis-Hastings sampler.

• Suppose Xn = x;

• Pick y using a transition probability kernel q(x,y) (the proposal
kernel);

• accept the proposed transition x → y with probability

α(x,y) = min

{
1,
π(y)q(y,x)
π(x)q(x,y)

}
.

• if transition accepted, set Xn+1 = y ; otherwise set Xn+1 = x.

Test understanding: write down the transition probability kernel for X. Test

understanding: check that π solves the detailed balance equations.

2. Since π satisfies detailed balance therefore π is an equilibrium distri-
bution (if the chain converges to a unique equilibrium!).
Common variations on choice of proposal kernel:

• independence sampler : q(x,y) = f(y);
• random-walk sampler : q(x,y) = f(y − x);
• Langevin sampler : replace random-walk shift by shift depending on grad logπ .

Ratio π(x)/π(y), so normalizing constants cancel out.
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Slice sampler
Here is an attractive special case of MCMC.

• Suppose we wish to draw from a continuous density of bounded range.

• This is the same as drawing from the uniform distribution over the
region between density and x-axis.

• Given a point (X, Y) in this region, first discard X and draw uniformly
from segment of fixed Y under density.

• Then discard Y , and draw uniformly from vertical segment between
x-axis and density.

• Repeat: result is a Gibbs sampler from the uniform distribution under
the density. ANIMATION

This univariate case is rather trivial, but there are useful multivariate generalizations. It
turns out that the slice sampler is very amenable to calculation!
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2 Martingales

This is the second major theme of these notes: martingales are a class of random processes
which are closely linked to ideas of conditional expectation.

Briefly, martingales model your fortune if you are playing a fair game. (There are as-
sociated notions of “supermartingale”, for a game unfair to you, and “submartingale”, for
a game fair to you.) But martingales can do so much more! They are fundamental to the
theory of how one’s predictions should evolve as time progresses.

In this section we discuss a wide range of different martingales.

Martingales

“One of these days . . . a guy is going to come up to you and show you a nice brand-new
deck of cards on which the seal is not yet broken, and this guy is going to offer to bet
you that he can make the Jack of Spades jump out of the deck and squirt cider in your
ear. But, son, do not bet this man, for as sure as you are standing there, you are going
to end up with an earful of cider.” Frank Loesser, Guys and Dolls musical, 1950, script

2.1 Simplest possible example

Martingales pervade modern probability
We use X as a convenient abbreviation for the stochastic process {Xn : n ≥ 0}, et cetera.

1. We say the random process X is a martingale if it satisfies the martin-
gale property:

E [Xn+1|Xn, Xn−1, . . .] =
E
[
Xn plus jump at time n|Xn, Xn−1, . . .

] = Xn .

For a conversation with the inventor, see www.dartmouth.edu/~chance/Doob/
conversation.html.

2. Simplest possible example: simple symmetric random walk X0 = 0,
X1, X2, . . . . The martingale property follows from independence and
distributional symmetry of jumps.

Expected future level of X is current level.

3. For convenience and brevity, we often replace E [. . . |Xn, Xn−1, . . .] by
E [. . . |Fn] and think of “conditioning on Fn” as “conditioning on all
events which can be determined to have happened by time n”.
We use Fn notation without comment in future, usually representing conditioning by
X0, X1, . . . , Xn (if X is martingale in question). Sometimes further conditioning will
be added; but Fn+1 always represents at least as much conditioning as Fn. Crucially,
the “Tower property” of conditional expectation then applies:

E [E [Z|Fn+1] |Fn] = E [Z|Fn] .
Test understanding: deduce

E
[
Xn+k|Fn

] = Xn .
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There is an extensive theory about the notion of a filtration of σ -algebras (also called

σ -fields), {Fn : n ≥ 0}. We avoid going into details . . . .

University Boat Race results over 190 years

Could this represent a martingale?

WSK first became aware of the boat race in about 1970, at which time the martingale
property would have seemed not to apply.

There is now a much more satisfactory balance (especially for WSK, who studied at
Oxford!), but one might still doubt validity of martingale property here . . .

Suppose P [Oxford win] = p ≠ 1
2 . Where can one find a martingale in this asymmetric

case? Set Xn to be difference of wins minus losses and consider

E [X2020|Fn] = (2020−n)(2p − 1)+Xn ,
so (iterated expectations) Yn = (2020−n)(2p−1)+Xn is a martingale for 1830 ≤ n ≤ 2020
(if you forgive the occasional intermissions).

2.2 Thackeray’s martingale

Thackeray’s martingale

1. MARTINGALE:

• spar under the bowsprit of a sailboat;

• a harness strap that connects the nose piece to the girth; pre-
vents the horse from throwing back its head.
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2. MARTINGALE in gambling: The original sense is given in the OED: “a system in gam-

bling which consists in doubling the stake when losing in the hope of eventually recouping

oneself.” The oldest quotation is from 1815 but the nicest is from 1854: Thackeray in The

Newcomes I. 266 “You have not played as yet? Do not do so; above all avoid a martingale if you

do.”

This is the “doubling” strategy. The equestrian meaning resembles the probabilistic
definition to some extent.

Another nice quotation is the following:

“I thought there was something of wild talent in him, mixed with a due
leaven of absurdity, – as there must be in all talent, let loose upon the
world, without a martingale.” Lord Byron, Letter 401. to Mr Moore. Dec.
9. 1820, writing about an Irishman Muley Moloch.

Notice how the randomness of Thackeray’s martingale is the same as for a simple
symmetric random walk.
Test understanding: compute the expected value of Mn from first principles.

3. Result of playing Thackeray’s martingale system and stopping on first
win: ANIMATION set fortune at time n to be Mn. If X1 = −1, . . . ,
Xn = −n then Mn = −1− 2− . . .− 2n−1 = 1− 2n, otherwise Mn = 1.

Test understanding: what should be the value of E
[
M̃n

]
if M̃ is computed as for M

but stopping play ifM hits level 1−2N? (Think about this, but note that a satisfactory
answer has to await discussion of optional stopping theorem in next section.)

2.3 Populations

Martingales and populations

1. Consider a branching process Y : population at time n is Yn, where
Y0 = 1 (say) and Yn+1 is the sum Zn,1 + . . .+ Zn,Yn of Yn independent
copies of a non-negative integer-valued family-size r.v. Z .
New Yorker’s definition of branching process (to be read out aloud in strong New
York accent): “You are born. You live a while. You have a random number of kids.
You die. Your children are completely independent of you, but behave in exactly the
same way.” The formal definition requires the Zn,i to be independent of Y0, . . . , Yn.

2. Suppose E [Z] = µ <∞. Then Xn = Yn/µn defines a martingale.

Test understanding: check this example. Note, X measures relative deviation from the deter-

ministic Malthusian model of growth.

3. Suppose E
[
sZ
] = G(s). LetHn = Y0+. . .+Yn be total of all populations

up to time n. Then sHn/(G(s)Hn−1) defines a martingale.

Test understanding: check this example. What interpretation can you put on sHn ?

4. In all these examples we can use E [. . . |Fn], representing conditioning
by all Zm,i for m ≤ n.

Indeed, we can also generalize to general Y0.
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2.4 Definitions

Definition of a martingale
It is useful to have a general definition of expectation here (see the section on conditional

expectation in the preliminary notes).

Formally:

Definition 5. X is a martingale if E [|Xn|] <∞ (for all n) and

Xn = E [Xn+1|Fn] .

It is important that the Xn are integrable.

It is a consequence that Xn is part of the conditioning expressed by Fn.
Sometimes we expand the reference to Fn:

Xn = E [Xn+1|Xn, Xn−1, . . . , X1, X0] .

Supermartingales and submartingales
Two associated definitions

Definition 6. {Xn} is a supermartingale if E [|Xn|] <∞ (for all n) and

Xn ≥ E [Xn+1|Fn] ,

(and Xn forms part of conditioning expressed by Fn).
It is important that the Xn are integrable. It is now not automatic that Xn forms part

of the conditioning expressed by Fn, and it is therefore important that this requirement is
part of the definition.

Definition 7. {Xn} is a submartingale if E [|Xn|] <∞ (for all n) and

Xn ≤ E [Xn+1|Fn] ,

(and Xn forms part of conditioning expressed by Fn).
It is important that the Xn are integrable. Again it is important that Xn forms part of

the conditioning expressed by Fn. How to remember the difference between “sub-” and
“super-”? Suppose {Xn} measures your fortune in a casino gambling game. Then “sub-” is
bad and “super-” is good for the casino!

Wikipedia: life is a supermartingale, as one’s expectations are always no greater than
one’s present state.

Examples of supermartingales and submartingales
Test understanding: check all these examples.
In each case the general procedure is as follows: compare E [Xn+1|Fn] to Xn.

1. Consider asymmetric simple random walk: supermartingale if jumps
have negative expectation, submartingale if jumps have positive ex-
pectation.

2. This holds even if the walk is stopped on first return to 0.
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3. Consider Thackeray’s martingale based on asymmetric random walk.
This is a supermartingale or a submartingale depending on whether
jumps have negative or positive expectation.

4. Consider branching process {Yn} and consider Yn on its own instead
of Yn/µn. This is a supermartingale if µ < 1 (sub-critical case), a
submartingale if µ > 1 (super-critical case), a martingale if µ = 1
(critical case).
Note that all martingales are automatically both sub- and supermartingales, and
moreover they are the only processes to be both sub- and supermartingales.

2.5 More martingale examples

More martingale examples
Test understanding: check both of these examples.
It is instructive to try to figure out why it is “obvious” that the second example is a

martingale. (Hint: it’s about symmetry . . . )
On the other hand, the first example yields a martingale because

p ×
(

1− p
p

)
+ (1− p)×

(
1− p
p

)−1

= 1 .

After some training, one can often spot martingales like this almost on sight.

1. Repeatedly toss a coin, with probability of heads equal to p: each
Head earns £1 and each Tail loses £1. Let Xn denote your fortune at
time n, with X0 = 0. Then

(
1− p
p

)Xn
defines a martingale.

2. A shuffled pack of cards contains b black and r red cards. The pack
is placed face down, and cards are turned over one at a time. Let
Bn denote the number of black cards left just before the nth card is
turned over:

Bn
r + b − (n− 1)

,

the proportion of black cards left just before the nth card is revealed,
defines a martingale.

2.6 Finance example

An example of importance in finance
Here (modifications of) Yn provides the simplest model for market price fluctuations

appropriately discounted.
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1. Suppose N1, N2, . . . are independent identically distributed normal
random variables of mean 0 and variance σ 2, and put Sn = N1 +
. . .+Nn.

In fact {Sn} is a martingale, though this is not the point here.

2. Then the following is a martingale:

Yn = exp
(
Sn − n

2σ
2
)
.

ANIMATION

Test understanding: Prove this! Hint: E [exp(N1)] = eσ2/2.

3. A modification exists for which the Ni have non-zero mean µ. Hint:
Sn → Sn −nµ.

Test understanding: figure out the modification!

A continuous-time variation on this (using Brownian motion) is an important baseline
model in mathematical finance. Note that the martingale can be expressed as

Yn+1 = Yn exp
(
Nn+1 − σ2

2

)
.

2.7 Martingales and likelihood

Martingales and likelihood

• Suppose independent random variables X1, X2, . . . are observed at
times 1, 2, . . . . Write down likelihood at time n:

L(θ;X1, . . . , Xn) = p(X1, . . . , Xn|θ) .

Simple case of normal data with unknown mean θ:

L(θ;X1, . . . , Xn) ∝ exp


− 1

2σ2

n∑

1

(Xi − θ)2

 .

• If θ0 is “true” value then (computing expectation with θ = θ0)

E
[
L(θ1;X1, . . . , Xn+1)
L(θ0;X1, . . . , Xn+1)

∣∣∣Fn
]

= L(θ1;X1, . . . , Xn)
L(θ0;X1, . . . , Xn)

Hence likelihood ratios are really the same thing as martingales.

The martingale in the finance example can also arise in this way, as the likelihood
ratio between two different values of θ if the model is that the Xi are independent
identically distributed N(θ,σ2).
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2.8 Chicken Little

The “Chicken Little” example

1. A comet may or may not collide with Earth in n days time. Chaotic
dynamics: model by supposing comet may follow one of n possible
paths, of which just one leads to collision at day n.
Considerable simplification of chaotic dynamics, but not unreasonable.

2. Each day, new observations eliminate exactly one of possible paths:
path to be eliminated on day r is chosen from n − r + 1 surviving
paths uniformly at random and independently of the past.
This models the fact that observations are hard to come by, and do not provide much
information. For example, see http://en.wikipedia.org/wiki/99942_
Apophis. This near-Earth asteroid, when discovered in 2004, was estimated to have
a 2.7% chance of hitting the Earth in 2029. Further observations have reduced this
figure, and as of 16/04/08, the impact probability for April 13 2036 (the most likely
collision date) fell to 1 in 45,000. More recently (07/10/09) risk has been downgraded
to 4 × 10−6. See http://neo.jpl.nasa.gov/news/news146.html for an
informative contemporary account.

3. Compute conditional collision probability at day r , supposing col-
lision path is not yet eliminated. Deduce that conditional collision
probabilities at days r = 0,1, . . . , n form a martingale.
Let D be indicator random variable indicating event that collision occurs, and com-
pute E [D|Fr ] where Fr captures information of whether or not collision occurs by
day r . Probability of collision grows more and more rapidly ( 1

n−r on day r ) till either
it suddenly falls to zero (if collision path eliminated before n) or collision actually
occurs (if collision path not eliminated before day n). Therefore collision probability
increases day by day (engendering increasing despair), until it (hopefully) falls to zero
(engendering mass relief).
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3 Stopping times

Playing a fair game, what happens if you adopt a strategy of leaving the game at a random
time? For “reasonable” random times, this should offer you no advantage. Here we seek to
make sense of the term “reasonable”. Note that the gambling motivation is less frivolous
than it might appear. Mathematical finance is about developing trading strategies (complex
gambles!) aimed at controlling uncertainty.

Stopping times

“Hurry please it’s time.” T. S. Eliot, The Waste Land, 1922

Stopping times
Martingales M stopped at “nice” times are still martingales. In particu-

lar, for a “nice” random T ,

E [MT ] = E [M0] .

How can T fail to be “nice”? Consider simple symmetric random walk X begun at 0.

For a random time T to be “nice”, two things are required:

1. T must not “look ahead”;

Example of “looking ahead”: Set S = sup{Xn : 0 ≤ n ≤ 10} and set T2 = inf{n : Xn =
S}. Then E

[
XT2

]
≥ P [S > 0] > 0 = E [X0]

2. T must not be “too big”. ANIMATION

Example of being “too big”: T1 = inf{n : Xn = 1} so (assuming T1 is almost surely

finite) E
[
XT1

]
= 1 > 0 = E [X0]. This is the nub of the matter for the Thackeray

example.

3. Note that random times T turning up in practice often have positive
chance of being infinite.

Example of possibly being infinite: asymmetric simple random walk X begun at 0,

E [X1] < 0, T1 = inf{n : Xn = 1} as above.

3.1 “No-look-ahead” condition

Non-obvious “no-look-ahead” condition

Definition 8. A non-negative integer-valued random variable T is said to be
a stopping time if (equivalently) for all n

• [T ≤ n] is determined by information at time n;

• or [T ≤ n] ∈ Fn
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• or we can write rules (Bernoulli random variables) ζ0, ζ1, . . . with ζn
in Fn, such that

[ζn = 1] = [T ≤ n] .
Note that we need to have a clear notion of exactly what might be Fn, information

revealed by time n.

Here is a poetical illustration of a non-stopping time, due to David Kendall:

There is a rule for timing toast, You never need to guess; Just wait until it
starts to smoke, And then ten seconds less.

(Adapted from a “grook” by Piet Hein, Grooks II MIT Press, 1968.)

Recall the example on previous slide of T being the time to hit 1 for a negatively-biased
simple random walk begun at 0: stopping times can have positive chance of being infinite.

3.2 Random walk example

Example using random walks

Let X be a random walk begun at 0.

X need not be symmetric, need not be simple. Indeed a Markov chain or even a

general random process would do.

• The random time T = inf{n > 0 : Xn ≥ 10} is a stopping time.

We could replace n > 0 by n ≥ 0, X ≥ 10 by X ∈ A for some subset A of state-space,

. . . : thus we could have TA = inf{n > 0 : Xn ∈ A} (the “hitting time on A”).

• Indeed [T ≤ n] is clearly determined by information at time n:

[T ≤ n] = [X1 ≥ 10]∪ . . .∪ [Xn ≥ 10] .

In case of hitting time on A,

[TA ≤ n] = [X1 ∈ A]∪ . . .∪ [Xn ∈ A]
so [TA ≤ n] is determined by information at time n, so TA is a stopping time.

• Finally, T is typically “too big”: so long as it is almost surely finite, we
find that 0 = E [X0] < E [XT ].
Finiteness is the case if E [X1] > 0 or if E [X1] = 0 and P [X1 > 0] > 0.

General hitting times TA need not be “too big”: example if X is simple symmetric
random walk begun at 0 and A = {±10}.

3.3 Branching process example

Example using branching processes

Let Y be a branching process of mean-family-size µ (so Xn = Yn/µn
determines a martingale), with Y0 = 1.

So Yn = Zn−1,1 + . . .+ Zn−1,Yn−1 for independent family sizes Zm,j .
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• The random time T = inf{n : Yn = 0} = inf{n : Xn = 0} is a stopping
time.
For a more interesting example, consider

S = inf{n : at least one family of size 0 before n}

• Indeed [T ≤ n] is clearly determined by information at time n:

[T ≤ n] = [Yn = 0]

since Yn−1 = 0 implies Yn = 0 et cetera.
In case of S, consider

[S ≤ n] = A0 ∪A1 ∪ . . .∪An−1

where Ai = [Zi,j = 0 for some j ≤ Yi]. Thus [S ≤ n] is determined by information at

time n, so S is a stopping time.

• Again T here is “too big”: so long as it is almost surely finite then
1 = E [X0] > E [XT ].
Finiteness occurs if µ < 1, or if µ = 1 and there is positive chance of zero family size.

It is important to be clear about what is information provided at time n. Here we
suppose it to be made up only of the sizes of families produced by individuals in
generations 0, 1, . . . , n− 1. Other choices are possible, of course.

3.4 Events revealed by stopping time

Events revealed by the time of a stopping time T
Suppose T is a stopping time.

Definition 9. The “pre-T σ -algebra” FT is composed of events which, if
T does not occur later than time n, are themselves determined at time n.
Thus:

A ∈ FT if A∩ [T ≤ n] ∈ Fn for all n .

Here we are very close to having to take measure theory seriously . . . . Measure theory is
required to unwrap the meaning of the word “determined” in the definition.

Consider random walk X begun at 0 and the stopping time T = inf{n : Xn ≥ 10}. Then
the event [X15 < 5 and T > 15] is in the pre-T σ -algebra FT .

Definition 10. Random variables Z are said to be “FT -measurable” if events
made up from them ([Z ≤ z], . . . ) are in pre-T σ -algebra FT .

The random variable Xmin{15,T} is FT -measurable.
Consider the branching process example with S being the time at which a zero-size

family is first encountered. Then

Y0 + Y1 + . . .+ YS ∈ FS .
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3.5 Optional Stopping Theorem

Optional stopping theorem

Theorem 11. Suppose M is a martingale and S ≤ T are two bounded stop-
ping times. Then

E [MT |FS] = MS .

We can generalize to general stopping times S ≤ T either ifM is bounded
or (more generally) if M is “uniformly integrable”.

Uniform integrability: note we can take expectation of a single random variable X exactly
when E [|X|; |X| > n]→ 0 as n→∞. (This fails when E [|X|; |X| > n] = ∞!).

Uniform integrability requires this to hold uniformly for a whole collection of random
variables Xi:

lim
n→∞ sup

i
E
[|Xi|; |Xi| > n

] = 0 .

Examples: if the Xi are bounded; if there is a single non-negative random variable Z with

E [Z] <∞ and |Xi| ≤ Z for all i; if the p-moments E
[
Xpi

]
are bounded for some p > 1.

3.6 Application to gambling

Gambling: you shouldn’t expect to win
Suppose your fortune in a gambling game is X, a martingale begun at 0

(for example, a simple symmetric random walk). If N is the maximum time
you can spend playing the game, and if T ≤ N is a bounded stopping time,
then

E [XT ] = 0 .
There are exceptions, for example Blackjack (using card-counting: en.wikipedia.

org/wiki/Card_counting).
I find strategies proposed for other games to be less convincing, for example the Labouchére

system favoured by Ian Fleming (en.wikipedia.org/wiki/Labouch\%C3\%A8re_system):

The Labouchére system, also called the cancellation system, is a gambling strategy used
in roulette. The user of such a strategy decides before playing how much money they
want to win, and writes down a list of positive numbers that sum to the predetermined
amount. With each bet, the player stakes an amount equal to the sum of the first and
last numbers on the list. If only one number remains, that number is the amount of
the stake. If bet is successful, the two amounts are removed from the list. If the bet is
unsuccessful, the amount lost is appended to the end of the list. This process continues
until either the list is completely crossed out, at which point the desired amount of
money has been won, or until the player runs out of money to wager.

Contrast Fleming (1953):

“Then the Englishman, Mister Bond, increased his winnings to exactly three million over
the two days. He was playing a progressive system on red at table five. . . . It seems that
he is persevering and plays in maximums. He has luck.”

3.7 Hitting times

Martingales and hitting times
Suppose X1, X2, . . . are independent Gaussian random variables of mean

−µ < 0 and variance 1. Let Sn = X1 + . . .+Xn and let T be the time when S
first exceeds level ` > 0.
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So T = inf{n : Sn ≥ `}.
Then exp

(
α(Sn + µn)− α2

2 n
)

determines a martingale, and the optional
stopping theorem can be applied to show

E
[
exp

(−pT)] ∼ e−(µ+
√
µ2+2p)` .

Use the optional stopping theorem on the bounded stopping time min{T ,n}:
E
[

exp
(
αSmin{T ,n} +α(µ − α2 )min{T ,n}

)]
= 1 .

Use careful analysis of the left-hand side, letting n→∞, large `,

E
[

exp
(
α` +α(µ − α

2
)T
)]

∼ 1 .

(Smin{T ,n} is relatively close to `, min{T ,n} is relatively close to T )

Now set α = µ +
√
µ2 + 2p > 0, so α(µ − α

2 ) = −p:

E
[
exp

(−pT)] ∼ exp
(
−(µ +

√
µ2 + 2p)`

)
.

This improves to an equality, at the expense of using more advanced
theory, if we replace the Gaussian random walk S by Brownian motion.

Improvement: Brownian motion is continuous in time and so cannot jump over the level
` without hitting it.

3.8 Martingale convergence

Martingale convergence

Theorem 12. Suppose X is a non-negative supermartingale. Then Z =
limXn exists, moreover E [Z|Fn] ≤ Xn.

ANIMATION
At the heart of the argument here is the famous “upcrossings” result . . . : use the super-

martingale property and non-negativity to control the number of times a supermartingale
can cross up from a fixed low level to a fixed high level.

Consider symmetric simple random walk begun at 1 and stopped at 0: Xn = Ymin{n,T}
if T = inf{n : Yn = 0} and Y is symmetric simple random walk. Clearly Xn is non-negative;
clearly Xn = Ymin{n,T} → Z = 0, since Y will eventually hit 0; clearly 0 = E [Z|Fn] ≤ Xn
since Xn ≥ 0.

Theorem 13. Suppose X is a bounded martingale (or, more generally, uni-
formly integrable). Then Z = limXn exists, moreover E [Z|Fn] = Xn.

Thus symmetric simple random walk Y begin at 0 and stopped at ±10 must converge
to a limiting value Z . Evidently Z = ±10. Moreover since E [Z|Fn] = Yn we deduce
P [Z = 10|Fn] = Yn+10

20 .

Theorem 14. Suppose X is a martingale and E
[
X2
n
] ≤ K for some fixed

constant K. Then one can prove directly that Z = limXn exists, moreover
E [Z|Fn] = Xn.

Sketch argument: from martingale property

0 ≤ E
[
(Xm+n −Xn)2

∣∣∣Fn
]
= E

[
X2
m+n

∣∣∣Fn
]
−X2

n ;

hence E
[
X2
n

]
is non-decreasing; hence it converges to a limiting value; hence E

[
(Xm+n −Xn)2

]

tends to 0.
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Birth-death process revisited
Y is a discrete-time birth-death process absorbed at zero:

pk,k+1 = λ
λ+ µ , pk,k−1 = µ

λ+ µ , for k > 0, with 0 < λ < µ.

This is the discrete-time analogue of the birth-death-immigration process of Section 1
with α = 0 (so no immigration).

This is a non-negative supermartingale and so limYn exists.
Test understanding: show that Y is a supermartingale, and use the SLLN to show that

Yn → 0 almost surely as n → ∞. In Section 1 we computed the equilibrium distribution and
concluded that

π−1
0 =

(
µ

µ − λ

)α
λ
,

and so with α = 0 the equilibrium distribution is simply extinction of the process, in agree-
ment with what you have just shown.

Now let T = inf{n : Yn = 0}: T <∞ a.s. Then

Xn = Yn∧T +
(
µ − λ
µ + λ

)
(n∧ T)

is a non-negative (super)martingale converging to Z = µ−λ
µ+λT .

Here we have written n∧ T for min{n,T}.
Test understanding: show that X is a martingale.

Thus (recalling that X0 = Y0)

E [T] ≤
(
µ + λ
µ − λ

)
X0 .

Markov’s inequality then implies that

P [T > k] ≤
(
µ + λ
µ − λ

)
X0

k
.

Likelihood revisited
Suppose i.i.d. random variables X1, X2, . . . are observed at times 1, 2, . . . ,

and suppose the common density is f(θ;x). Recall that, if the “true” value
of θ is θ0, then

Mn = L(θ1;X1, . . . , Xn)
L(θ0;X1, . . . , Xn)

is a martingale, with E [Mn] = 1 for all n ≥ 1.
Test understanding: The result is still true even if the random variables are neither

independent nor identically distributed. Show this is true!

Remember that the expectation is computed using θ = θ0.

The SLLN and Jensen’s inequality show that

1
n

logMn → −c as n→∞ ,
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moreover if f(θ0; ·) and f(θ1; ·) differ as densities then c > 0, and so
Mn → 0.

Jensen’s inequality for concave functions is opposite to that for convex functions: if ψ
is concave then E [ψ(X)] ≤ ψ(E [X]). Moreover if X is non-deterministic and ψ is strictly

concave then the inequality is strict.

The rate of convergence of Mn is geometric if the difference between θ0 and θ1 is iden-

tifiable.

Note that this is in keeping with hypothesis testing: as more information is gathered, so

we would expect the evidence against θ1 to accumulate, and the likelihood ratio to tend to

zero.

3.9 Harmonic functions

Martingales and bounded harmonic functions

• Consider a discrete state-space Markov chain X with transition kernel
pij . Suppose f(i) is a bounded harmonic function: a function for
which f(i) = ∑j f(j)pij . Then f(X) is a bounded martingale, hence
must converge as time increases to infinity.

The terminology supermartingale/submartingale was actually chosen to mirror the

potential-theoretic terminology superharmonic/subharmonic.

• The simplest example: consider simple random walk X absorbed at
boundaries a < b. Then f(x) = x−a

b−a is a bounded harmonic function,
and can be shown to satisfy

f(x) = P [X hits b before a|X0 = x] .

Use martingale convergence theorem and optional stopping theorem.

• Another example: given branching process Y and family size gen-
erating function G(s), suppose ζ is smallest non-negative root of
ζ = G(ζ). Set f(y) = ζy . Check this is a non-negative martingale
(and therefore harmonic).
We’d like to say, therefore f(y) = P

[
Y becomes extinct |Y0 = y

]
. Since ζ ≤ 1, it

follows f is bounded, so this follows as before.

Further significant examples come from, for example, multidimensional random walk
absorbed at boundary of a geometric region. (Relationship to “discrete Laplacian” and
hence to partial differential equation theory.)
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4 Counting and compensating

We can now make a connection between martingales and Markov chains. We start with the
Poisson process, viewed as a process used for counting incidents, and show how martingales
can be used to describe much more general counting processes.

Counting and compensating

“It is a law of nature we overlook, that intellectual versatility is the compensation for
change, danger, and trouble.” H. G. Wells, The Time Machine, 1896

4.1 Simplest example: Poisson process

Simplest example: Poisson process
Consider birth-death-immigration process from above, with birth and

death rates set to zero: λ = µ = 0. The result is a Poisson process of rate α
as described before:

This has a claim to be the simplest possible continuous-time Markov chain. Its state-

space is very reducible, so it does not supply good examples for questions of equilibrium!

Definition 15. A continuous-time Markov chain N is a Poisson process of
rate α > 0 if the only transitions are N → N + 1 of rate α.

In one approach to stochastic processes this serves as a fundamental building block for

more complicated processes.

Theorem 16. If N is Poisson process of rate α then Nt+s −Nt is independent
of past at time t and

P [Nt = k] = P [Poisson(αt) = k] = (αt)k

k!
e−αt .

Times of transitions often referred to as incidents.
Times between consecutive incidents are independent Exponential(α). Thence a whole

wealth of distributional relationships between Exponential, Poisson, and indeed Gamma,

Geometric, Hypergeometric, . . . .
A more general result is suggestive about how to generalize to Poisson point patterns:

if A ⊂ [0,∞) has length measure a then

P [k incidents in A] = P [Poisson(αa) = k] .

A significant converse: given a random point pattern such that

P [No incidents in A] = exp(−αa)

for any A of length measure a, the point pattern marks the incidents of a Poisson counting

process of rate α.
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Poisson process directions
There are ways to extend the Poisson process idea:

• view as a pattern of points:

– Slivnyak’s theorem: condition on t being a transition / incident.
Then remaining incidents form transitions of Poisson process of
same rate.

Slivnyak’s theorem generalizes directly to Poisson point patterns. The trick is,

of course, to make sense of conditioning on an event of probability 0.

– PASTA principle: if a Markov chain has “arrivals” following a Pois-
son distribution, then in statistical equilibrium Poisson Arrivals
See Time Averages.

PASTA: That is to say, at “just before” the arrival time, the probability that the

system is in state k is πk the equilibrium probability. Easy consequence of

Slivnyak’s theorem.

– How to make points “interact”?

– Generalize to Poisson patterns of geometric objects.

The following is crucial for calculations for Poisson patterns of geometric ob-

jects: the chance of seeing no object of given kind in given region is exp(−µ)
where µ is mean number of such objects.

• view as counting process and generalize:

– varying “hazard rate”;

The hazard rate here is "infinitesimal chance of seeing an incident right now

given that one hasn’t seen anything since the last incident". For Poisson pro-

cesses the times between incidents are exponentially distributed, with rate pa-

rameter α say. If the time since the last incident is u then this is f(u)/F(u)
for f(u) = α exp(−αu) and F(u) = exp(−αu). Hence the hazard rate is

α exp(−αu)/ exp(−αu) = α. This suggests generalizations if the times be-

tween incidents are no longer exponentially distributed.

– relate to martingales?

Here we follow the second direction.

4.2 Compensators

Hazard rate and compensators
Starting point: if N is Poisson process of rate α then

• (“mean”) Nt −αt determines a martingale;
Carry out these calculations!

Calculation based on E [Nt+s −Ns |Fs] = αt.
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• (“variance”) (Nt −αt)2 −αt determines a martingale;

Calculation based on Var [Nt+s −Ns |Fs] = αt. HINT: Expand (N(t+s)−α(t+s))2 =
((N(t+ s)−α(t+ s))− (N(t)−αt))2 +2((N(t+ s)−α(t+ s))− (N(t)−αt))(N(t)−
αt)+ (N(t)−αt)2.

Consider processes which “count” incidents:
Later we will also briefly consider population processes counting births +1 and deaths

−1.

Definition 17. A counting process is a continuous-time process—not nec-
essarily Markov—changing by single jumps of +1.

Try to subtract something to turn it into a martingale.

Definition 18. We say
∫ t
0 `(s)d s compensates a counting process N if

• the (possibly random) `(s) is in Fs ;
• Nt −

∫ t
0 `(s)d s determines a martingale.

It is possible to make a more general definition which replaces
∫ t
0 `(s)d s by a non-

decreasing process Λt , but then we have to require “Λt ∈ Ft−”, and need measure theory to

make sense of this.
It can then be shown that
• compensators always exist

• and are essentially unique.

Compensators generalize the notion of hazard rate.

4.3 Examples

Example: random sample of lifetimes
Suppose X1, . . . , Xn are independent and identically distributed non-

negative random variables (lifetimes) with common density f .
Note that h(t) = f(t)/F(t), where F(t) = 1− F(t).

• Set P [Xi > t] = 1− ∫ t0 f(s)d s = exp
(
− ∫ t0 h(s)d s

)
.

• Counting process Nt = #{i : Xi ≤ t} increases by +1 jumps in contin-
uous time.

• Observe:

– Nt −
∫ t
0 h(s)(n−Ns)d s is a martingale.

Resolves to showing the following is a martingale:

I[Xi≤t]−
∫min{t,Xi}

0
h(u)du .

Key calculation: the expectation of the above is

P
[
Xi ≤ t

]−
∫ t

0
h(u)P

[
Xi > u

]
du ,
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which vanishes if we substitute in P
[
Xi > u

] = exp
(
− ∫u0 h(s)d s

)
. This of

course is computation of an absolute probability: Test understanding: make

changes to get the relevant conditional probability calculation.

– (Nt −
∫ t
0 h(s)(n−Ns)d s)2 − ∫ t0 h(s)(n−Ns)d s is a martingale.

This follows most directly by noting independence of the I[Xi≤t]−
∫min{t,Xi}
0 h(s)d s.

However it is actually true for a more general reason . . . see later.

Example: pure birth process

Example 19 (Pure birth process). If the pure birth process N makes transi-
tions N → N + 1 at rate λN then

Nt −
∫ t

0
λNs d s is a martingale.

A direct proof can be obtained by computing the distribution of Nt given N0. Alterna-
tively here is a plausibility argument: in a small period of time [t, t+∆t) it is most likely no
transition will occur; the chance of one transition is about λNt∆t, and the chance of more is
infinitesimal. So the conditional mean increment is λNt∆t which is exactly matched by the
compensator.

The measure-theoretic approach to martingales makes sense of this plausibility argu-
ment, at the same time showing how it generalizes to its proper full scope.

Here again one can check that the expression of variance type (Nt −∫ t
0 λNs d s)2 − ∫ t0 λNs d s also determines a martingale.

Direct computations would permit a direct proof; but a similar plausibility argument
also applies. The conditional variance of the increment is about λNt∆t(1−λNt∆t) ≈ λNt∆t,
again matching the compensator.

4.4 Variance of compensated counting process

Variance of compensated counting process
The above expression of variance type holds more generally:

Theorem 20. Suppose N is a counting process compensated by
∫
`(s)d s.

Then (
Nt −

∫ t
0
`(s)d s

)2

−
∫ t

0
`(s)d s is a martingale.

Rigorous proof, or heuristic limiting argument . . . .
The key point of the rigorous proof, which we omit, is that “Λt =

∫ t
0 `(s)d s ∈ Ft−”.

But again one can argue plausibly, starting with the comment that the increment over

(t, t + ∆t) has conditional expectation
∫ t+∆t
t `(s)d s and takes values 0 or 1. Hence we can

deduce the conditional probability of a +1-jump as being
∫ t+∆t
t `(s)d s, and so argue as

above.
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4.5 Counting processes and Poisson processes

Counting processes and Poisson processes
The compensator of a counting process can be used to tell whether the

counting process is Poisson:

Theorem 21. Suppose N is a counting process which has compensator αt.
Then N is a Poisson process of rate α.

Again there is a plausibility argument: the increment over (t, t + ∆t) has conditional

probability α∆t, hence is approximately independent of past; hence Nt is approximately the

sum of many Bernoulli random variables each of the same small mean, hence is approxi-

mately approximately Poisson . . . .

Better still, counting processes with compensators approximating αt
are approximately Poisson of rate α. Here is a nice way to see this:

Theorem 22. SupposeN is a counting process with compensatorΛ = ∫ `(s)d s.
Consider the random time change τ(t) = inf{s : Λs = t}. Then the time-
changed counting process Nτ(t) is Poisson of unit rate.

Begs the question, is Nτ(t) a counting process? (Yes, but needs proof.)

There is an amazing multivariate generalization of this time-change result, related to

Cox’s proportional hazards model.

If the compensator approximates αt then it is immediate that τ(t) approximates t, and

hence good approximation results can be derived!

The above gives a good pay-off for this theory.

Compensators and likelihoods
Here is an even bigger pay-off.

Theorem 23. SupposeN is a counting process with compensatorΛ = ∫ `(s)d s.
Then its likelihood with respect to a unit-rate Poisson point process over the
time interval [0, T ] is proportional (for fixed T ) to

exp

(∫ T
0

(
log`(t)dN(t)− `(t)d t

))
,

where
∫ T
0 log`(t)dN(t) = ∑

0≤t≤T log`(t) I[∆N(t)=1] simply sums log`(t)
over the times of N-incidents.

Why is this true?
Consider the case when N is Poisson of rate α. Then the required likelihood is a ratio of

probabilities: if N(T) = n then it equals

(αT)ne−αT /n!
Tne−T /n!

= exp
(
n logα− (α− 1)T

)

which agrees with the result stated in the theorem (note: up to a constant of proportionality
namely eT ).

The case of varying intensities ` (time-varying, random) follows by an approximation
argument.

We can use this to build likelihoods for epidemics, by viewing them as streams of inci-
dents of different kinds.
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4.6 Compensation of population processes

Compensation of population processes
The notion of compensation works for much more general processes,

such as population processes:

Example 24 (Birth-death-immigration process). If the birth-death-immigration
process X makes transitions X → X + 1 at rate λX + α and X → X − 1 at
rate µX then

Xt −
∫ t

0
((λ− µ)Xs +α)d s is a martingale.

Plausibility argument much as before.

But we now need something other than the compensator to convert
(Xt −

∫ t
0((λ− µ)Xs +α)d s)2 into a martingale.

The plausibility argument fails for the variance case! However it is possible to use a
slightly different integral here. In fact

(Xt −
∫ t

0
((λ− µ)Xs +α)d s)2 −

∫ t
0
((λ+ µ)Xs +α)d s is a martingale.

This is best understood using ideas of stochastic integrals (of rather simple form), which we

will not explore here.

More generally a continuous-time Markov chain X relates to martin-
gales obtained from f(X) (for given functions f ) by compensation using
the rates of X.

This is the heart of the famous “Stroock-Varadhan martingale formulation”, which al-

lows one to use martingales to study and to define very general Markov chains.

A multivariate version of the likelihood result above now allows us to convert specifica-

tion of rates into a likelihood.

34



5 Central Limit Theorem

The Central Limit Theorem is one of the jewels of classical probability theory, with a huge
literature developing such questions as, how may the assumptions be relaxed? and at what
speed does the convergence actually occur? Before discussing this, review notions of
almost sure convergence, convergence in probability, convergence in distribution, and weak
convergence.

Central Limit Theorem

“Everybody believes in the exponential law of errors: the experimenters, because they
think it can be proved by mathematics; and the mathematicians, because they believe
it has been established by observation” Lippmann, quoted in E. T. Whittaker and G.
Robinson, Normal Frequency Distribution. Ch. 8 in The Calculus of Observations: A
Treatise on Numerical Mathematics, 1967.

5.1 Classical Central Limit Theorem

The classical Central Limit Theorem

Definition 25. Random variables Yn are said to converge in distribution to
a random variable Z (or its distribution) if

P
[
Yn ≤ y

] → P
[
Z ≤ y] whenever P

[
Z ≤ y] is continuous at y .

Theorem 26. Suppose X1, . . . , Xn are independent and identically distributed,
with finite mean µ and finite variance σ 2. Then

Yn = (X1 + . . .+Xn)−nµ√
nσ

D→ N(0,1) ,

where convergence is in distribution.

N(0,1) denotes a random variable with standard normal distribution.

Common notations: Yn
d→ Z or Yn

D→ Z or Yn ⇒ Z .

Cleanest proof involves characteristic functions E [exp(iuYn)], E [exp(iuZ)] = e−
1
2u

2

and hence complex numbers. A Taylor series expansion shows E [exp(iuXn)] ≈ exp(iuµ)(1−
u2

2 σ
2); hence E [exp(iuYn)] ≈

(
1− u2

2n

)n
→ e−u2/2. Result follows from theory of charac-

teristic function transform.

Example
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Empirical CDF of 500 draws from mean of 10 independent Student t on 5
df, with limiting normal CDF graphed in red.

It is appropriate to use the CDF (cumulative distribution function) here, because that is
the approximation which the CLT describes.

Note there is good agreement!

Questions arising
In this section we address the following questions:

1. Do we really need “identically distributed”?
No we don’t need exactly “identically distributed”, and we can produce a useful gen-
eralization.

2. How fast does the convergence happen?
Something really rather definite can be said about rate of convergence.

3. Do we really need “independent”?
No we do not need exactly “independent”, and we can produce a useful generalization.

In particular we can produce a satisfying answer to items 1 and 3 in terms
of martingales.

(Our answers to items 1 and 3 are satisfying though not as good as possible!)

5.2 Lindeberg’s Central Limit Theorem

Lindeberg’s Central Limit Theorem
Strongest result about non-identically distributed case:

Theorem 27. Suppose X1, . . . , Xn are independent and not identically dis-
tributed, with Xi having finite mean µi and finite variance σ 2

i . Setmn = µ1+
. . .+µn and s2

n = σ 2
1+. . .+σ 2

n. Suppose further that 1
s2
n

∑n
i=1 E

[
(Xi − µi)2 ; (Xi − µi)2 > ε2s2

n
]→

0 for every ε > 0. Then

Yn = X1 + . . .+Xn −mn

sn
D→ N(0,1) .
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The beauty of the Lindeberg condition is that it simply requires that relatively large

components do not contribute too much to the total variance relative to the intended limit.

Put this way, it is rather easy to remember the final result!

However the Lindeberg condition can be tricky to check. The Lyapunov condition is

easier, and implies the Lindeberg condition: a useful special case of this condition is that the

sum of the third central moments r3
n =

∑n
i=1 E

[
|Xi − µi|3

]
is finite and satisfies rn/sn → 0.

Proof is by a more careful development of the characteristic function
proof of the classical Central Limit Theorem.

Very recently it has been noticed that there is a remarkable generalization to the vector-
valued case. If X1, X2, . . . are independent zero-mean vector-valued random variables, and

1
s2n

n∑

i=1

E
[
‖Xi‖2 ; ‖Xi‖2 > ε2s2

n

]
→ 0

where s2
n is the trace of the variance-covariance matrix of X1+. . .+Xn, then 1

sn (X1+. . .+Xn)
need not converge, but will get closer and closer to the corresponding sequence of matching
multivariate normal distributions (Kendall and Le 2011).

Example, distributions not identical (I)

Empirical CDF of 500 draws from mean of 10 independent Student t on 5
df together with 100 draws from mean of 10 independent Student t on 3
df, with limiting normal CDF graphed in red.

Here the distributions are not all the same.
There is still reasonably good agreement!

Example, distributions not identical (II)
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Empirical CDF of 500 draws from mean of 10 independent Student t on 5
df together with 100 draws from mean of 10 independent Student t on 3 df
scaled by a factor of 3, with limiting normal CDF graphed in red.

Now agreement is rather poorer.

5.3 Rates of convergence

Rates of convergence
Remarkably, we can capture how fast convergence occurs if we are given

some extra information about the Xi. Reverting to the classical conditions
(identically distributed, finite mean and variance), using above notation,
suppose ρ(3) = E [|Xi − µ|3

]
<∞. Let Fn(x) be the distribution function of

(X1+...+Xn)−nµ√
nσ , and let Φ(x) be the standard normal distribution function.

Then there is a universal constant C > 0 such that

|Fn(x)− Φ(x)| ≤ Cρ(3)

σ 3
√
n
.

Note the re-appearance of the third moment condition.
There are many variants and many improvements on this result, whose proof requires

much detailed mathematical analysis. For example, what is C? (Latest: we can take C =
0.7655.) And what can we say about the tails of the distribution?

And so forth . . . , leading back to the material discussed in the Statistical Asymptotics
module.

Example
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Plot of difference between limiting normal CDF of empirical CDF of 500
draws from mean of 10 independent Student t on 5 df, together with upper
and lower bounds.

It is apparent that the bound on CLT discrepancy is not too bad . . . at least according to
this particular measure of discrepancy.

However statisticians are likely to be more interested in relative error out in the tails . . . .

5.4 Martingale case

Martingale case
There are central limit theorems for martingales, typically close in spirit to the Lindeberg

theorem. Namely: the total variance needs to be nearly constant, and there must be no

relatively large contributions to the variance.

Theorem 28. Suppose X0 = 0, X1, . . . is a martingale for which E
[
X2
n
]

is
finite for each n. Set s2

n = E
[
X2
n
]

and suppose s2
n → ∞. The following two

conditions taken together imply that Xn/sn converges to a standard normal
distribution:

1

s2
n

n−1∑

m=0

E
[
|Xm+1 −Xm|2|Fm

]
→ 1 ,

1

s2
n

n−1∑

m=0

E
[
|Xm+1 −Xm|2; |Xm+1 −Xm|2 ≥ ε2s2

n

]
→ 0 for each ε > 0 .

In fact s2
n →∞ is forced by the second (Lindeberg-type) condition.

Even more is true! the linear interpolation of the Xn, suitably rescaled, then converges

to a Brownian motion.
There are many references, and many variations and generalizations. See for example

Brown (1971). (Practical remarks about contrast between theory and practice . . . .)

Convergence to Brownian motion
Plot of X1/

√
n, . . . , Xn/

√
n for n = 10, 100 ,1000, 10000.
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Central-limit scaled (simple symmetric) random walk converges to Brown-
ian motion B, characterized by independent increments, E [Bt+s − Bs] = 0
(so martingale) and Var [Bt+s − Bs] = t, continuous paths.

If paths weren’t continuous, then the compensated Poisson process would produce an-
other example of a process with independent increments and these mean and variance prop-
erties!

In fact any random walk with jumps of zero mean and finite variance also converges to
Brownian motion under central-limit scaling.

There are also similar theorems for martingales . . . . Classical probability deals well
with central limit theorems and discrete-time martingales. If we want to deal well with
continuous-time processes such as Brownian motion then stochastic calculus becomes very
useful. From what we have said here, it should be plain that such continuous-time processes
can be viewed as particular limits of discrete-time processes.
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6 Recurrence

We have a theory of recurrence for discrete state space Markov chains (does
∑
n p

(n)
ii di-

verge?). But what if the state space is not discrete? and how can we describe speed of
convergence?

Recurrence

“A bad penny always turns up” Old English proverb.

Motivation from MCMC

Given a probability density p(x)of interest, for example a Bayesian
posterior, we could address the question of drawing from p(x) by
using for example Gaussian random-walk Metropolis-Hastings.

Thus proposals are normal, mean the current location x, fixed variance-
covariance matrix.

Using the Hastings ratio to accept/reject proposals, we end up with a
Markov chain X which has transition mechanism which mixes a den-
sity with staying at the start-point.

Evidently the chain almost surely never visits specified points other
than its starting point. Thus it can never be irreducible in the classical
sense, and the discrete-chain theory cannot apply . . . .

Clearly the discrete-chain theory needs major rehabilitation if it is to be helpful in the
continuous state space case!

Recurrence
We already know, if X is a Markov chain on a discrete state-space then

its transition probabilities converge to a unique limiting equilibrium distri-
bution if:

1. X is irreducible;

the state space of X cannot be divided into substantial regions some of which are

inaccessible from others;

2. X is aperiodic;

the state space of X cannot be broken into periodic cycles;

3. X is positive-recurrent.

the mean time for X to return to its starting point is finite.

How in general can one be quantitative about the speed at which conver-
gence to equilibrium can occur? and what if the state-space is not dis-
crete?
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6.1 Speed of convergence

Measuring speed of convergence to equilibrium (I) Total variation dis-
tance

• Speed of convergence of a Markov chain X to equilibrium can be mea-
sured as discrepancy between two probability measures: L (Xt|X0 = x)
(distribution of Xt) and π (equilibrium measure).

L (Xt|X0 = x) (A) is probability that Xt belongs to A.

• Simple possibility: total variation distance. Let X be state-space, for
A ⊆ X maximize discrepancy between L (Xt|X0 = x) (A) = P [Xt ∈ A|X0 = x]
and π(A):

distTV(L (Xt|X0 = x) ,π) = sup
A⊆X
{P [Xt ∈ A|X0 = x]−π(A)} .

Test understanding: why is it not necessary to consider |P [Xt ∈ A|X0 = x]−π(A)|?
(Hint: consider P [Xt ∈ Ac|X0 = x]−π(Ac).)

• Alternative expression in case of discrete state-space:

distTV(L (Xt|X0 = x) ,π) = 1
2

∑

y∈X

|P [Xt = y|X0 = x
]−πy | .

Test understanding: prove this by considering A = {y : P
[
Xt = y|X0 = x

]
> πy}.

(Many other possible measures of distance . . . .)

It is not even clear that total variation is best notion: in the case of MCMC one might
consider a spectral approach (which we will pick up again when we come to consider cutoff):

sup
f :
∫ |f(x)|2π(dx)<∞

(
E [f (Xt)|X0 = x]−

∫
f(x)π(dx)

)2
.

Nevertheless the concept of total variation isolates a desirable kind of rapid conver-
gence.

Measuring speed of convergence to equilibrium (II) Uniform ergodicity

Definition 29. The Markov chain X is uniformly ergodic if its distribution
converges to equilibrium in total variation uniformly in the starting point
X0 = x: for some fixed C > 0 and for fixed γ ∈ (0,1),

sup
x∈X

distTV(L (Xn|X0 = x) ,π) ≤ Cγn .

Any finite ergodic Markov chain is automatically uniformly ergodic.
In fact this is a consequence of the apparently weaker assertion, as n→∞ so

sup
x∈X

distTV(L (Xt|X0 = x) ,π) → 0 .
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In theoretical terms, for example when carrying out MCMC, this is a very
satisfactory property. No account need be taken of the starting point, and
accuracy improves in proportion to the length of the simulation.

Much depends on size of C and on how small is γ.

Typically theoretical estimates of C and γ are very conservative.

Uniform ergodicity is tantamount to “boundedness” for one’s Markov chain.

Other things being equal(!), given a choice, consider choosing a uniformly ergodic Markov

chain for your MCMC algorithm.

Measuring speed of convergence to equilibrium (III) Geometric ergodic-
ity

Definition 30. The Markov chain X is geometrically ergodic if its distribu-
tion converges to equilibrium in total variation for some C(x) > 0 depend-
ing on the starting point x and for fixed γ ∈ (0,1),

distTV(L (Xt|X0 = x) ,π) ≤ C(x)γn .

Here account does need to be taken of the starting point, but still accu-
racy improves in proportion to the length of the simulation.

A significant question is, how might one get a sense of whether a specified chain is in-
deed geometrically ergodic (because at least that indicates the rate at which the distribution
of Xt gets closer to equilibrium) and how one might obtain upper bounds on γ.

We shall see later on that even given good information about γ and C , and even if
total variation is of primary interest, geometric ergodicity still leaves important phenomona
untouched!

6.2 Irreducibility for general chains

φ-irreducibility (I)
We make two observations about Markov chain irreducibility:
We are skating over the issue of periodicity, which is largely technical.

1. The discrete theory fails to apply directly even to well-behaved chains
on non-discrete state-space.

Consider the Gaussian random walk X (jumps have standard normal distribution): if

X0 = 0 then we can assert that with probability one X never returns to its starting

point.

2. Suppose φ is a measure on the state-space: then we could ask for the
chain to be irreducible on sets of positive φ measure.

“measure”: like a probability measure, but not necessarily of finite total mass. Think

of length, area, or volume as examples. Also, counting measure.

Definition 31. The Markov chain X is φ-irreducible if for any state x
and for any subset B of state-space of positive φ-measure φ(B) > 0
we find that X has positive chance of reaching B if begun at x.

The Gaussian random walk is Lebesgue-measure-irreducible! (Here Lebesgue measure

is just length measure.)
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φ-irreducibility (II)

1. We call φ an irreducibility measure. It is possible to modify φ to
construct a maximal irreducibility measure ψ; one such that any set
B of positive measure under some irreducibility measure for X is of
positive measure for ψ.

Lebesgue measure is a maximal irreducibility measure for the Gaussian random walk.

2. Irreducible chains on countable state-space are c-irreducible where c
is counting measure (c(A) = |A|).
So φ-irreducibility simply generalizes the original notion of irreducibility.

3. If a chain has unique equilibrium measure π then π will serve as a
maximal irreducibility measure.
Note that φ can be replaced by any other measure which is “measure-equivalent” (has
the same null-sets). So while π will serve as a maximal irreducibility measure, we can
use any alternative measure which has the same sets of measure zero.

6.3 Regeneration and small sets

Regeneration and small sets (I)
The discrete-state-space theory works because (a) the Markov chain re-

generates each time it visits individual states, and (b) it has a positive
chance of visiting specified individual states.

In effect this reduces the theory of convergence to equilibrium to a chapter in the theory

of renewal processes, with renewals occurring each time the chain visits a specified state.

So it is natural to consider regeneration when visiting sets.

Definition 32. A set E of φ-positive measure is a small set of lag k for X if
there is α ∈ (0,1) and a probability measure ν such that for all x ∈ E the
following minorization condition is satisfied

P [Xk ∈ A|X0 = x] ≥ αν(A) for all A .

In effect, if we sub-sample X every k time-steps then, every time it visits E, there is
a chance α that X forgets its entire past and starts again, using probability measure ν .
Consider the Gaussian random walk described above. Any bounded set is small of lag 1.
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In general α can be very small—reducing practical impact, but still helping theoretically.
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Regeneration and small sets (II)
Let X be a RW with transition density p(x,dy) = 1

2 I[|x−y|<1].
Consider the set [0,1]: this is small of lag 1, with α = 1/2 and ν the

uniform distribution on [0,1]:
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This can be seen by looking at the common overlap of the transition densities from all

points x ∈ [0,1]. This overlap is shaded here in green.

The set [0,2] is not small of lag 1, but is small of lag 2.
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However, the common overlap of all one-step transition kernels from x ∈ [0,2] is the

empty set, and so [0,2] is not a small set of lag 1. If we look at the two-step transition

kernels however (the triangular kernels on the right), then there is a common overlap: now

α = 1/4 (the area of the green triangle) and ν is the triangular density supported on [0,2].

Regeneration and small sets (III)
Small sets would not be very interesting except that:

1. all φ-irreducible Markov chains X possess small sets;

This is a very old result: see Nummelin (1984) for a recent treatment.

2. consider chains X with continuous transition density kernels. They
possess many small sets of lag 1;

Exercise: try seeing why this is obviously true!

3. consider chains X with measurable transition density kernels. They
need possess no small sets of lag 1, but will possess many sets of lag
2;

Kendall and Montana (2002): so measurable transition density kernels lead to chains

which possess latent discretizations.

4. given just one small set, X can be represented using a chain which
has a single recurrent atom.

“Split-chain construction” (Athreya and Ney 1978; Nummelin 1978).

In a word, small sets discretize Markov chains.
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ANIMATION

6.4 Harris-recurrence

Harris-recurrence
Now it is evident what we should mean by recurrence for non-discrete

state spaces. Suppose X is φ-irreducible and φ is a maximal irreducibility
measure.

Definition 33. X is (φ-)recurrent if, for φ-almost all starting points x and
any subset B with φ(B) > 0, when started at x the chain X is almost sure
eventually to hit B.

So the irreducibility measure is used to focus attention on sets rather than points.

Definition 34. X is Harris-recurrent if we can drop “φ-almost” in the above.

And in fact we don’t even then need φ to be maximal.

6.5 Examples

Examples of φ-irreducibility

• Random walks with continuous jump densities. And in fact measur-
able jump densities suffice.

Convolutions of measurable densities are continuous!

• Chains with continuous or even measurable transition densities with
exception that chain may stay put.

Many examples of Metropolis-Hastings samplers.

• Vervaat perpetuities:

Xn+1 = Uαn+1(Xn + 1)

where U1, U2, . . . are independent Uniform(0,1).
Test understanding: find a small set for the Vervaat perpetuity example (a simulation
of which is graphed below)!

20 40 60 80 100

1

2

3
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• Volatility models:

Xn+1 = Xn + σnZn+1

σn+1 = f(σn, Un+1)

for suitable f , and independent Gaussian Zn+1, Un+1.
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7 Foster-Lyapunov criteria

Geometric and uniform ergodicity make sense for general Markov chains: how to find out
whether they hold? and how to find out whether equilibrium distributions exist? We want
simple criteria, and we can capture these using the language of martingales. Lyapunov, an
account from Wikipedia:

His student and collaborator, Vladimir Steklov, recalled his first lecture in the
following way: “A handsome young man, almost of the age of the other stu-
dents, came before the audience, where there was also the old Dean, Professor
Levakovsky, who was respected by all students. After the Dean had left, the
young man with a trembled voice started to lecture a course on the dynamics
of material points, instead of a course on dynamical systems. This subject
was already known to the students from the lectures of professor Delarue. But
what Lyapunov taught us was new to me and I had never seen this material
in any textbook. All antipathy to the course was immediately blown to dust.
From that day students would show Lyapunov a special respect.”

Foster-Lyapunov criteria

“Even for the physicist the description in plain language will be the criterion of the
degree of understanding that has been reached.” Werner Heisenberg, Physics and philos-
ophy: The revolution in modern science, 1958

7.1 Renewal and regeneration

Renewal and regeneration
Suppose C is a small set for φ-recurrent X, with lag 1:
If lag is k > 1 then sub-sample every k steps!

P [X1 ∈ A|X0 = x ∈ C] ≥ αν(A) .

Identify regeneration events:
This is a coupling construction, linked to the split-chain construation (Athreya and Ney

1978; Nummelin 1978) and the Murdoch and Green (1998) approach to CFTP.

X regenerates at x ∈ C with probability α and then makes transi-
tion with distribution ν ; otherwise it makes transition with distribution
p(x,·)−αν(·)

1−α .
This is just the appropriate compensating distribution

p(x, ·)−αν(·)
p(x,X)−αν(X) = p(x, ·)−αν(·)

1−α .

Test understanding: check that this really is a probability distribution!

The regeneration events occur as a renewal sequence. Set

pk = P
[
next regeneration at time k | regeneration at time 0

]
.

If the renewal sequence is non-defective (if
∑
k pk = 1)

Non-defective: So there will always be a next regeneration.

and positive-recurrent (if
∑
k kpk <∞)

48



Positive-recurrent: So mean time to next regeneration is finite.

then there exists a stationary version. This is the key to equilibrium
theory whether for discrete or continuous state-space.

Richard Tweedie at WRASS 1998: “continuous is no harder than discrete!”

7.2 Positive recurrence

Positive recurrence
The Foster-Lyapunov criterion for positive recurrence of a φ-irreducible

Markov chain X on a state-space X:
There is a delicate balance between all these conditions on Λ and C . Each one is abso-

lutely essential!
In words, we can find a non-negative Λ(X) such that Λ(Xn) + an determines a super-

martingale until Λ(X) becomes small enough for X to belong to a small set!

Theorem 35 (Foster-Lyapunov criterion for positive recurrence). Given Λ :
X → [0,∞), positive constants a, b, c, and a small set C = {x : Λ(x) ≤ c} ⊆
X with

E [Λ(Xn+1)|Fn] ≤ Λ(Xn)− a+ b I[Xn∈C] ;

then E [TA|X0 = x] < ∞ for any A with φ(A) > 0, where TA = inf{n ≥ 0 :
Xn ∈ A} is the time when X first hits A, and moreover X has an equilibrium
distribution.

We can re-scale Λ so that a = 1.
In fact if the criterion holds then it can be shown, any sub-level set of Λ is small.
It is evident from the verbal description that reflected simple asymmetric random walk

(negatively biased) is an example for which the criterion applies.

Sketch of proof
Supplementary:

1. Yn = Λ(Xn) + an is non-negative supermartingale up to time T =
inf{m ≥ 0 : Xm ∈ C} > n:

E
[
Ymin{n+1,T}|Fn, T > n

] ≤ (Λ(Xn)− a)+ a(n+ 1) = Yn .

Hence Ymin{n,T} converges.

2. So P [T <∞] = 1 (otherwise Λ(X) > c, c + an < Yn so Yn → ∞).
Moreover E [YT |X0] ≤ Λ(X0) (Fatou argument) so aE [T] ≤ Λ(X0).

3. Now use finiteness of b to show E [T∗|X0] <∞, where T∗ first regen-
eration in C .

4. φ-irreducibility: positive chance of hitting A before first regeneration
in C . Hence E [TA|X0] <∞.

There is a stationary version of the renewal process of successive regenerations on C .

One can construct a “bridge” of X conditioned to regenerate on C at time 0, and then to

regenerate again on C at time n.

Hence one can sew these together to form a stationary version of X, which therefore has

the property that Xt has the equilibrium distribution for all time t.
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A converse . . .
Suppose on the other hand that E [T |X0] < ∞ for all starting points X0,

where C is some small set and T is the first time for X to return to C .
φ-irreducibility then follows automatically.

The Foster-Lyapunov criterion for positive recurrence follows forΛ(x) =
E [T |X0 = x] if E [T |X0] is bounded on C .

Indeed, (supposing lag 1 for simplicity)

E [Λ(Xn+1)|Fn] ≤ Λ(Xn)− 1+ b I[Xn∈C] ,
where b is the mean value of E [YT |x] if x is chosen using the regeneration probability

measure for C .

Moreover if the renewal process of successive regenerations on C is aperiodic then a

coupling argument shows general X will converge to equilibrium.

If the renewal process of successive regenerations on C is not aperiodic then one can

sub-sample . . . .

Showing that X has an equilibrium is then a matter of probabilistic constructions using

the renewal process of successive regenerations on C .

7.3 Geometric ergodicity

Geometric ergodicity
The Foster-Lyapunov criterion for geometric ergodicity of aφ-irreducible

Markov chain X on a state-space X:
In words, we can find a Λ(X) ≥ 1 such that Λ(Xn)/γn determines a supermartingale

until Λ(X) becomes small enough for X to belong to a small set!

Theorem 36 (Foster-Lyapunov criterion for geometric ergodicity). Given
Λ : X → [1,∞), positive constants γ ∈ (0,1), b, c ≥ 1, and a small set
C = {x : Λ(x) ≤ c} ⊆ X with

E [Λ(Xn+1)|Fn] ≤ γΛ(Xn)+ b I[Xn∈C] ;

then E
[
γ−TA|X0 = x

]
< ∞ for any A with φ(A) > 0, where TA = inf{n ≥

0 : Xn ∈ A} is the time when X first hits A, and moreover (under suitable
periodicity conditions) X is geometrically ergodic.

We can rescale Λ so that b = 1.

The criterion for positive-recurrence is implied by this criterion.

We can enlarge C and alter b so that the criterion holds simultaneously for all E [Λ(Xn+m)|Fn].

Sketch of proof

1. Yn = Λ(Xn)/γn defines non-negative supermartingale up to time T
when X first hits C :

E
[
Ymin{n+1,T}|Fn, T > n

] ≤ γ ×Λ(Xn)/γn+1 = Yn .

Hence Ymin{n,T} converges.
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2. P [T <∞] = 1, for otherwise Λ(X) > c and so Yn > c/γn does not
converge. Moreover E

[
γ−T

] ≤ Λ(X0).

3. Finiteness of b shows E
[
γ−T∗|X0

]
< ∞, where T∗ is time of regener-

ation in C .

4. From φ-irreducibility there is positive chance of hitting A before re-
generation in C . Hence E

[
γ−TA|X0

]
<∞.

Geometric ergodicity follows by a coupling argument which I do not specify here.

The constant γ here provides an upper bound on the constant γ used in the definition

of geometric ergodicity. However it is not necessarily a very good bound!

Two converses
This was used in Kendall 2004 to provide perfect simulation in principle. The Markov

inequality can be used to convert the condition on Λ(X) into the existence of a Markov

chain on [0,∞) whose exponential dominates Λ(X). The chain in question turns out to be

a kind of queue (in fact, D/M/1). For γ ≥ e−1 the queue will not be recurrent; however one

can sub-sample X to convert the situation into one in which the dominating queue will be

positive-recurrent. In particular, geometric ergodicity forces a useful partial ordering on

the state-space.

1. Suppose on the other hand that E
[
γ−T |X0

]
<∞ for all starting points

X0 (and fixed γ ∈ (0,1)), where C is some small set and T is the first
time for X to return to C . The Foster-Lyapunov criterion for geometric
ergodicity then follows for Λ(x) = E

[
γ−T |X0 = x

]
if E

[
γ−T |X0

]
is

bounded on C .

Uniform ergodicity follows if the Λ function is bounded above.

But more is true. Strikingly,

2. For Harris-recurrent Markov chains the existence of a geometric Foster-
Lyapunov condition is equivalent to the property of geometric ergod-
icity.

7.4 Examples

Examples
It is instructive to notice that the criteria continue to apply to a considerable variety of

appropriately modified Markov chains.

1. General reflected random walk: Xn+1 = max{Xn + Zn+1,0} with inde-
pendent Zn+1 of continuous density f(z), E [Zn+1] < 0, P [Zn+1 > 0] >
0. Then

(a) X is Lebesgue-irreducible on [0,∞);
(b) Foster-Lyapunov criterion for positive recurrence applies.

51



Similar considerations often apply to Metropolis-Hastings Markov chains
based on random walks.

(a) E [Zn+1] < 0 so by SLLN 1
n (Z1+ . . .+Xn)→ −∞, so X hits 0 for any X0. P [Zn+1 > 0] > 0

so f(z) > 0 for a < z < a(1 + 1
m ), some a, m > 0. So if X0 = 0 then density of

Xn is positive on (na,na + n
ma). If A ⊂ (ma,∞) is of positive measure then one of

A∩(na,na+ n
ma) (n ≥m) is of positive measure so P [X hits A|X0 = 0] > 0. E [Zn+1] <

0 so f(z) > 0 for −b − 1
k < z < −b, some b, k > 0. Start X at some x in (nb − 1

k , nb)
(positive chance of hitting this interval if nb − 1

k > ma). Then Xn has positive density

over (max{0, x−nb}, x−nb+ n
m ) which includes (0, n−1

k ). By choosing n large enough,
we now see we can get anywhere.

(b) Test understanding: Check Foster-Lyapunov criterion for positive recurrence for Λ(x) =
x.

2. Reflected Simple Asymmetric Random Walk: Xn+1 =max{Xn+Zn+1,0}
with independent Zn+1 such that P [Zn+1 = −1] = q = 1 − p = 1 −
P [Zn+1 = +1] > 1

2 .

(a) X is counting-measure-irreducible on non-negative integers;

(b) Foster-Lyapunov criterion for geometric ergodicity applies.

Aim for E
[
eaZn+1

]
< 1 for some positive a.

(a) Test understanding: this is the same as ordinary irreducibility for discrete-state-space
Markov chains!

(b) Test understanding: Check Foster-Lyapunov criterion for geometric ergodicity for Λ(x) =
eax for small positive a.

Reflected Simple asymmetric random walk (II)

• Positive recurrence criterion: check for Λ(x) = x, C = {0}:

E [Λ(X1)|X0 = x0] =
{
Λ(x0)− (q − p) if x0 6∈ C ,
0+ p if x0 ∈ C .

• Geometric ergodicity criterion: check forΛ = eax , C = {0} = Λ−1({1}):

E [Λ(X1)|X0 = x0] =
{
Λ(x0)×

(
pea + qe−a) if x0 6∈ C ,

1× (p + qe−a) if x0 ∈ C .

This works when pea+qe−a < 1; equivalently when 0 < a < log(q/p)
(solve the quadratic in ea!).
One may ask, does this kind of argument show that all positive-recurrent random
walks can be shown to be geometrically ergodic simply by moving from Λ(x) = x to
Λ(x) = eax? The answer is no, essentially because there exist random walks whose
jump distributions have negative mean but fail to have exponential moments . . . .
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8 Cutoff

In what way does a Markov chain converge to equilibrium? Is it a gentle exponential pro-
cess? Or might most of the convergence happen relatively quickly? Once again we focus on
reversible Markov chains, as these make computations simpler.

Cutoff

“I have this theory of convergence, that good things always happen with bad things.”
Cameron Crowe, Say Anything film, 1989

8.1 The cutoff phenomenon

Convergence: cutoff or geometric decay?
What we have so far said about convergence to equilibrium will have left

the misleading impression that the distance from equilibrium for a Markov
chain is characterized by a gentle and rather geometric decay. It is true
that this is typically the case after an extremely long time, and it can be
the case over all time. However it is entirely possible for “most” of the
convergence to happen quite suddenly at a specific threshold.

Random walk wrapped around a circle exhibits a gentle and rather geometric decay.
Famously (Bayer and Diaconis 1992) the riffle shuffle does not! (For a pack of 52 cards, 7
shuffles suffice for essentially all practical purposes. Compare this to the commonly-used
overhand shuffle, which takes > 1000 shuffles to randomize a deck of 52 cards! (Pemantle
1989).)

The theory for this is developing fast, but many questions remain
open. In this section we describe a specific easy example.

8.2 Cutoff and eigenvalues

Cutoff (I): Markov chains and matrices
We need to understand something about eigenvalues for Markov chains.
Finite-state-space reversible Markov chains and (weighted) euclidean spaces.

Fix attention on a finite state space X, with reversible aperiodic Markov
chain of transition kernel px,y and equilibrium distribution π .

The vector space of functions on X can be given a weighted Euclidean
norm:

‖f‖2
π =

∑

x∈X
|f(x)|2π(x)

and hence an inner product 〈f , g〉π .

〈f , g〉π =
∑
y
f(y)g(y)π(y) .

View transition kernel as linear operator Pf(x) = ∑y px,yf(y): by re-
versibility this is 〈·, ·〉π symmetric.
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Test understanding: use detailed balance to show

〈f , Pg〉π =
∑
x
f(x)

∑
y
px,yg(y)π(x) = 〈Pf ,g〉π

Adam Willis (MMORSE student at Warwick, 2004-2008) recently wrote an excellent Inte-
grated Masters project on this subject.

The vector space of functions on a finite state space is finite-dimensional!

Cutoff (II): eigenvalues and eigenfunctions
So P can be viewed as a symmetric matrix and thus has a full set of

eigenvalues−1 ≤ λk ≤ . . . ≤ λ1 ≤ 1 (ifX has k elements) and corresponding
normalized eigenfunctions V1, . . . , Vk.

Normalized: ‖Vi‖2
π = 1; eigen property: PVi = λiVi.

Because of symmetry of P we may take the Vi to be an orthonormal
basis, so

∑
|f(y)|2π(y) =

k∑

i=1

〈f ,Vi〉2π .

The law of total probability implies λ1 = 1 and V1 ≡ 1, and irreducibility
implies λ2 < λ1.

In fact all eigenvalues cannot exceed 1 in absolute value, by an inequality argument. Two

eigenvalues equal to 1 would allow us to split state space into 2 components which violates

irreducibility.

Aperiodicity implies −1 < λk.
In passing, there is a useful analysis of rate of convergence of expectations of functions

of Markov chains based on this spectral analysis. Good when you know a priori what you

want to estimate . . . .

8.3 Two metrics

Cutoff (III): metrics
We need to relate total variation distance to the weighted Euclidean dis-

tance. Recall

distTV(P (n)x , π) = 1
2

∑
y
|P (n)x (y)−π(y)| = 1

2

∑
y
|P

(n)
x (y)
π(y) − 1|π(y) .

But this relates to weighted Euclidean distance by using the Cauchy-
Schwartz inequality and

∑
y π(y) = 1:

2 distTV(P (n)x , π) ≤
√
‖P (n)x (·)
π(·) − 1‖2

π

√∑
y
π(y) =

√
‖P (n)x (·)
π(·) − 1‖2

π .

Now expand using orthonormal eigenfunctions and V1 ≡ 1:

‖P (n)x (·)
π(·) − 1‖2

π =
k∑

i=2

〈P (n)x (·)
π(·) , Vi〉2π =

k∑

i=2

(Pnx Vi)2 =
k∑

i=2

λ2n
i Vi(x)

2 .
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The key here is the Cauchy-Schwartz inequality:

(E [XY])2 ≤ E
[
X2
]
E
[
Y 2
]
.

Applied probabilists and statisticians may be more comfortable with this if they recognize
that it is proved in the same way as the statement that correlations are always bounded
between ±1.

Miss i = 1 since V1 ≡ 1, so

〈P
(n)
x (·)
π(·) − 1, V1〉π =

∑
y
P (n)x (y)− 〈V1, V1〉π = 1− 1 = 0 .

Miss −1 in other terms by orthogonality, since for i > 1

〈−1, Vi〉π = −〈V1, Vi〉π = 0 .

Bear in mind that in this finite-state-space context eigenfunctions are the same as eigen-
vectors!

8.4 A special case

Cutoff (IV): upper bound in special case Gibbs’ sampler for zero-interaction
Ising model

Model for Gibb’s sampler. Consider N × N array of ±1. At each step
choose entry at random, flip sign.

As above, identify
(
N2

r

)
eigenfunctions of eigenvalue 1− 2r

N2 , for 0 ≤ r ≤
N2. Set n = N2

4 (log(N2)+ θ).

‖P (n)x (·)
π(·) − 1‖2

π =
N2∑

r=1

(
N2

r

)(
1− 2r

N2

)2n

≤
N2∑

r=1

(
N2

r

)
exp

(
− 2r
N2 (N

2

2 (log(N2)+ θ))
)

=
N2∑

r=1

(
N2

r

)
(N2)−re−rθ ≤

N2∑

r=1

1
r !e
−rθ ≤ exp(e−θ)− 1 .

Eigenfunctions are just products Xi1 . . . Xik of spin variables Xr = ±1. Test under-

standing: check this! In particular, note PX1 = 1
N2 (−X1)+ (1− 1

N2 )X1 = (1− 2
N2 )X1, . . . .

Note, 1− x ≤ e−x always.

Cutoff (V): lower bound in special case
The upper bound suggests a cutoff:

distTV(P (n)x , π) ≤ 1
2

√
exp(e−θ)− 1

Since n = N2

4 (log(N2)+θ), the cutoff occurs at around N2

4 log(N2) and lasts

of order N
2

4 .
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However to make sure this works, we also need a lower bound on distTV(P
(n)
x , π)).

Achieve this by comparing means and variances of Z = ∑N2

i=1Xi, where Xi
is spin at site i. Simple estimates confirm that there is still substantial total

variation distance at N
2

4 log(N2), so this is a real cutoff.
At any fixed time Z has a (scaled and shifted) Binomial distribution, and π is also of this

form. We can then use Markov’s inequality to convert mean and variance comparisons into
inequalities.

Scaling the x-axis by the cutoff time, we see that the total variation
distance drops more and more rapidly towards zero as N becomes larger:
the curves in the graph below tend to a step function as N →∞.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Moral: effective convergence can be much faster than one realizes, and
occur over a fairly well defined period of time.

The graph shows distTV(P
(cn)
x , π) for c ∈ (0,3), for four increasing values of N , for the

(closely related) simple random walk on ZN2 .

Calculations for other cases can be much harder, but cutoffs are known to occur for a
large number of random walks on groups. These include a number of card-shuffles, such
as the riffle shuffle, random transpositions and top-in-at-random shuffle. There are very
interesting links here to group representation theory . . . .

In general, expect cutoff when there are large numbers of “second” eigenvalues. Should
one expect cutoff for the case of an Ising model with weak interaction? Probably . . . .

The famous Peres conjecture says cutoff is to be expected for a chain with transitive
symmetry if (1 − λ2)τ → ∞, where λ2 is the second largest eigenvalue (so 1 − λ2 is the
“spectral gap”), and τ is the (deterministic) time at which the total variation distance to
equilibrium becomes smaller than 1

2 . However there is a counterexample to Peres’ conjec-
ture as expressed above, (P. Diaconis, personal communication). So the conjecture needs to
be refined!
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• Impact site of fragment G of Comet Shoemaker-Levy 9 on Jupiter en.wikipedia.org/
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• The cardplayers en.wikipedia.org/wiki/Image:Paul_C\%C3\%A9zanne\%2C_Les_
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• Chinese abacus en.wikipedia.org/wiki/Image:Boulier1.JPG

• Error function en.wikipedia.org/wiki/Image:Error_Function.svg

• Boomerang en.wikipedia.org/wiki/Image:Boomerang.jpg

• Alexander Lyapunov en.wikipedia.org/wiki/Image:Alexander_Ljapunow_jung.
jpg

• Riffle shuffle (photo by Johnny Blood) en.wikipedia.org/wiki/Image:Riffle_shuffle.
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