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Abstract

Conventional frequentist solutions to point estimation and hypothesis testing
typically need ad hoc modifications when dealing with non-regular models,
and may prove to be misleading. The decision oriented objective Bayesian
approach to point estimation using conventional loss functions produces non-
invariant solutions, and conventional Bayes factors suffer from Jeffreys-Lindley-
Bartlett paradox. In this paper we illustrate how the use of the intrinsic dis-
crepancy combined with reference analysis produce solutions to both point
estimation and precise hypothesis testing, which are shown to overcome these
difficulties. Specifically, we illustrate the methodology with some non-regular

examples. The solutions obtained are compared with some previous results.

Keywords: Bayesian reference criterion, intrinsic divergence, intrinsic estim-

ator, logarithmic discrepancy, reference prior.
1 Introduction

Two of the most widely studied problems in statistics textbooks are point estima-
tion and precise hypothesis testing. From a frequentist standpoint, maximum like-

lihood is the most exploited technique in point estimation and a chief ingredient in

CRiSM Paper No. 05-14, www.warwick.ac.uk/go/crism



sharp hypothesis testing. Though it is assumed that asymptotic properties of max-
imum likelihood estimators (MLE) usually hold, —e.g. asymptotic normality— this
is not necessarily the case when the sampling distribution is not regular, and fre-
quently ad-hoc modifications are needed, reducing the generality of the procedure.
Moreover, a number of drawbacks have been exposed about the use of p-values in
sharp hypothesis testing (see e.g. Edwards et al., 1963; Berger and Selke, 1987; Selke
et al., 2001).

From a decision-theoretic Bayesian standpoint, any of these problems may be
posed as {M, m,l, A}, where M = {p(x| ¢),x € X, € ¥} is the sampling
model for the observable x; 7t(y) is a probability density function (pdf) describ-
ing the decision maker’s prior beliefs about the parameter ¢; A is the space of
possible actions; and ¢ (,a) is a loss function that measures the consequences of
deciding to act according to a € A, when the true value of the parameter is .
Bayes decision rule, that which minimises the posterior expected loss, is then op-
timal for the specific problem at hand. However, in some circumstances such as
scientific communication or public decision making, there is a need for a solution
that lets the data speak for itself or that introduces as little subjective information
as possible. It may also be the case that the decision maker wants to assess the im-
pact that different subjective inputs (both on the prior and the loss functions) have
on the final decision, and thus, a benchmark solution is needed. Objective Bayes
methods are aimed to provide such solutions.

From an objective Bayesian perspective, it is well known that the irrespective
use of “flat” priors may be misleading. Furthermore, Jeffreys” prior may not be
defined when the assumed model is non-regular. Likewise, though point estimat-
ors derived from “automatic” loss functions —quadratic, zero-one and linear— may
be viewed as acceptable location measures of the quantity of interest, their lack of
invariance under bijective transformations (with exception of the one-dimensional
median) may be suspicious for scientific purposes, where a specific parametrisation

is generally chosen for convenience.
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Regarding sharp hypothesis testing, the use of improper priors may lead to in-
determinate answers. The commonly used tool to overcome this problem, conven-
tional Bayes Factors (Jeffreys, 1961, §5.2), assumes that the prior has a point mass
on the null value. This setting leads to what is come to be known as the Jeffreys-
Lindley-Bartlett (JLB) paradox (Bartlett, 1957; Lindley, 1957). Although there has
been some attempts to overcome these disadvantages (Berger and Pericchi, 2001;
O’Hagan, 1995; Robert and Caron, 1996), the resulting factors do not necessarily
correspond to any prior, thus being open to criticism.

This paper illustrates how we can merge the use of the reference algorithm (Ber-
ger and Bernardo, 1992; Bernardo, 1979) to derive non-informative priors, with the
intrinsic discrepancy (Bernardo and Rueda, 2002; Bernardo and Judrez, 2003) as loss
function to obtain an objective answer for both problems. Objective in the precise
sense of only depending on the data and the sampling model. The paper is organ-
ised as follows: in Section 2 the general framework is described, in Section 3 some
non-regular models will be analysed using the proposed methodology and a few

final remarks are presented in Section 4.

2 The Reference-Intrinsic Methodology

Assume it is agreed that the probabilistic behaviour of an observable, x, is well
described by the model M = {p(x| 6,A), x € X, 0 € ©,A € A}, and that one
is interested in testing whether the (null) hypothesis Hy = {6 = 6y} is compatible
with the data. Bernardo (1999) argues that this situation may be posed as a decision
problem where the loss function is conveniently described by a proper scoring rule,
derived from the Kullback-Leibler (directed) divergence from the assumed model

to the simplified model induced by the null, My = p(x | 6p,A), i.e.

p(x|67)

1 " _dx.
p (x| 60,A0)

k(0| 6,A) = inf/p(x| 6,1) log
A()GA X

There is a large literature about the use of the Kullback-Leibler divergence in
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statistics starting with the works of Kullback (1968) and Kullback and Leibler (1951).
Robert (1996) regards it as an intrinsic loss in order to address point estimation
within a decision-theoretical framework and Gutiérrez-Pefia (1992) derives some
properties when the assumed distribution is a member of the exponential family.
Bernardo (1982, 1985); Bernardo and Bayarri (1985); Ferrandiz (1985) and Rueda
(1992) make use of it in particular hypothesis testing settings.

Noting that the quantity of interest in a decision problem is that which enters
the loss function, k = k (6 | 6, A) is then taken as the quantity of interest for which
the reference posterior, 7ty (k | x), is derived. Consequently, the posterior expected

value of the logarithmic divergence

60/ /kﬂkk|

gives a measure of the discrepancy from the true, full model to the simplified one,
given by the data.
Recently, Bernardo and Rueda (2002) propose a more general form for the loss

function, namely

Definition 1 (Intrinsic discrepancy).
Assume that M = {p(x | 0,A), x € X, 0 € O, € A} is a probability model that de-
scribes the random behaviour of the observable quantity x. The intrinsic discrepancy

(loss) of using the simplified model, with fixed 0 = 0y, instead of the full model is given by

5(6,A;60) :min{k(ﬂo | 0,A),k(6,A | 90)},
where

k(6] 6,7) —mm /fx| 0,1) fj;(x||e(:,§())) dx,
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and

f(x | 6,A0) A,

k(6,A | 6p) _mm/fx| 6o, Ao) log f(x] 6,7

AEA

The intrinsic discrepancy has a number of appealing properties: it is symmet-
ric, non-negative and vanishes only if f (x | w,y) = f (x| 6,A) a.e. Is additive
for conditional independent quantities, in the sense that if z = {x1,...,x,} are
independent given the parameters, then 6,(0;60p) = Y. ; 0x(6;6). Is invariant
under one-to-one transformations of both the data and the parameter of interest
and it is also invariant under the choice of the nuisance parameter. Moreover, if
fi(x | ¢)and fo (x | ¢) have nested supports so that f1 (x | ) > 0iff x € X1 (Y),
fa(x| ¢) > 0iff x € Xp(P) and either X1 (¥) C Xp(P) or Ar(P) C X;1(¥), the in-
trinsic divergence is still well defined and reduces to the logarithmic discrepancy,
viz. 6 (¢;¢) = k(¢ | ¢) when X1 (¥) C Xp(P) and 6 (¢p; ¢) = k(¢ | ¢) when
X (®) C X1(¥) (for a thorough discussion, see Bernardo and Rueda, 2002; Juérez,
2004).

As mentioned above, the posterior expected intrinsic discrepancy, hereafter the

intrinsic statistic,

d(6p | ) :/@/Aa(e,w;eo) 75(0,A | x) 46 dA, (1)

is a measure, in natural information units (nits; bits, if using log,), of the evidence
against using p (x | 8 = 6y, A), provided by the data x. It is a monotonic test stat-
istic for the (null) hypothesis, Hy = {6 = 6y} and thus induces the decision rule,

hereafter the Bayesian reference criterion (BRC):
Reject 6 = 6y iff d(6g | x) > d*.

In order to calibrate the threshold value, 4*, Bernardo and Rueda (2002) argue

that the intrinsic statistic can be interpreted as the expected value of the log likeli-
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hood ratio against using the simplified model, given the data. Hence, values of d*
around 2.5 would imply a ratio of ¢ ~ 12, providing mild evidence against the
null; while values around 5 (¢°> ~ 150) can be regarded as strong evidence against
Hy; values of d* > 7.5 (¢/-> =~ 1800) can be safely used to reject the null.

As a natural consequence of the decision-theoretic approach taken here, the best
approximation p (x | 6%, 1) to the full model p (x | 6,A), given the data, is given
by that 8" which makes the intrinsic discrepancy loss as small as possible. Thus, it

is natural to define (Bernardo and Juérez, 2003)

Definition 2 (Intrinsic estimator).
The intrinsic estimator, 6%, of 0 is the minimizer of the intrinsic statistic, i.e.

0" =0"(x) = gl(;leil’el)d(eo | x).

Both the expected intrinsic discrepancy and the intrinsic estimator share a num-
ber of attractive properties (Bernardo and Rueda, 2002; Bernardo and Judrez, 2003):
they are invariant under monotonic transformations of 8 and x, and to choice of the
nuisance parameter, are consistent with sufficient statistics, avoid the marginalisa-
tion paradoxes (Dawid et al., 1973) and the expected intrinsic discrepancy avoids
the JLB paradox. Moreover, in contrast with the vast majority of the methods pro-
posed to deal with these problems, its application does not depend on the asymp-

totic behaviour of the model.

3 Examples

In this next section, we will restraint our attention to some simple non-regular mod-
els, applying the methodology described above and then comparing the results
with some of the most common answers in the literature. In order to clarify the
concepts introduced above, we will analyse in first place a one parameter, non-

regular model.
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3.1 Laplace Model

The Double-Exponential (Laplace) distribution, De (x | 1,6), with pdf
1
plx]0)=7 exp[—|x—9|], x€R,0€ER,

does not belong to the exponential family and, thus, does not admit sufficient stat-
istics of fixed dimension. In addition, the MLE is not necessarily unique. In fact, for
m=1,2,...
5_ )02 n=2m

anypoint - {X(n/z),X(n/2+1)} n:2m—i—1
On the other hand, the Kullback-Leibler divergence for one observation from

this model,

exp[—|x — 64]]
exp[—|x — 6]

= |61 — 62| + exp| |61 — 6] — 1,

dx

k(62 | 61) = /exp[—|x—91|} log

turns out to be symmetric, from which
5(0;60) = |0 — 6| +e 190l — 1

The intrinsic discrepancy is a piecewise one-to-one function of the parameter
(Figure 1), permitting the use the reference prior when 0 is the parameter of interest
to calculate the intrinsic statistic. It is worth noticing that this model does not meet
the regularity conditions needed to calculate Fisher matrix (see e.g. Schervish, 1995,
p. 111), and thus Jeffreys prior is not defined for it.

By standard properties of reference priors it is easy to prove that 77(0) o 1, and

therefore

(0 | x) < exp [—i|xi—9|] :
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4 -2 0 2 4

Figure 1. The intrinsic discrepancy (left) and its contour plots for the Laplace model.

Given that the intrinsic discrepancy is a convex function of 6y, the intrinsic es-

timator,

6% = arg min/é((); o) 7t(6 | x) do,
0eR

is unique (DeGroot and Rao, 1963), and can be readily calculated by numerical
methods. This is illustrated in Figure 2 (a). In this case, x = {2.62, —0.08,1.56, —3.14},
is a simulated sample and the non-uniqueness of the MLE is apparent from the
shape of the likelihood function; however, 8* = 0.374.

The intrinsic statistic can be calculated by numerical methods and the approx-
imation d(f | x) ~ 6(6;60y) + 1/2, with 8 any consistent estimator of 6 (Judrez,
2004), works well even for moderated sample sizes, as illustrated in Figure 2 (b).

As stated in the Introduction, from the subjective point of view the Bayes rule
is optimal for the problem at hand. Nonetheless, as the objective solution does not
envisage any specific use, it may be sensible to evaluate the performance of the
intrinsic solutions under repeated, homogenous sampling. To this end we simu-
lated ten thousand data sets for each sample size, with § = 0. Then the p-value
of the BRC was estimated as the relative number of times that Hy = {0 = 0} was
rejected, using the threshold value 4* = 2.5. Regarding the intrinsic estimator, we
calculated the relative number of times that it was closer to the true value of the
parameter than the MLE, H—with the convention that when 7 is even, the MLE is the

mid point of {X(,,2), X(4/241) }; also, the sample mean value and standard deviation

8
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(a) Likelihood and intrinsic statistic (b) Intrisic statistic and the proposed
for simulated sample of size n = 4. approximation.

Figure 2. Laplace Model. Depicted in the left pane is the (scaled) likelihood and the
intrinsic statistic for the simulated sample of size n = 4, also the intrinsic estimator is
pointed out. The right pane depicts the intrinsic statistic (solid) and the proposed ap-
proximation (dashed) calculated for simulated samples of different sizes and 6 = 0. The
consistent estimator used for the approximation is f = %.

were calculated. The results are summarised in Table 1.

Table 1. Estimated p-values for the BRC in the Laplace model, using the threshold value
d* = 2.5, calculated from 10,000 simulated repetitions for each sample size with 6 = 0.
Also, the relative number of times (%) that 8* was closer than 8 to the true value of the
parameter, and the mean and (std. dev.) of both estimators for each sample size.

A

n p-value % 0~ 0

4 0064 504 -2.78x107* (0.633) -1.05x1073 (0.638)
15  0.059 529 3.29x1073 (0.299) 2.72x1073 (0.314)
50 0.057 525 8.39x107% (0.155) 1.24x1073 (0.159)
100 0.054 521 -1.34x107% (0.106) -8.37x10~* (0.108)

The second column exemplifies how the intrinsic statistic is an absolute meas-
ure of the weight of the evidence, brought by the data, against using the simplified
model obtained when letting & = 0. This is in contrast with conventional p-values
that must be calibrated according to sample size and the dimension of the para-
meter. Summary statistics for both point estimators seem rather similar, suggesting
that sampling properties of the intrinsic estimator are quite in line with those of
the (conventional) MLE; 8* appears to be consistently closer to the true value of the

parameter, though.
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3.2 Pareto and related models

One of the most appealing characteristics of the reference-intrinsic methodology is
that both the intrinsic statistic and the intrinsic estimator are invariant under in-
vertible transformations, they are also invariant under one-to-one transformations
of the data and under the choice of the nuisance parameter. Here we will illustrate
this point.

There is a vast literature concerning Pareto-like distributions, commencing with
the work of Pareto (1897). It has been used to model a number quantities, including
income, wealth, business size, city size, insurance excess loss, ozone levels in upper
atmosphere (see e.g. Arnold, 1983; Arnold and Press, 1983, 1989). In addition to its

many fields of application, a relevant feature of the classical Pareto pdf,
Pa(x|ap)=apx ), x>B, ap>0,

is its relationship with other widely used models. For instance, let x ~ Pa (x | «, 8),

then

1- Ify = x % theny ~ Ip(y | &, Bip), an inverted Pareto distribution; where

Bip = p~!and
Ip(y|ap)=ap ™', y<B ap>0.

In particular, Ip (x | 1, B) is a uniform distribution Un (x | 0, B).

2- If y = —logx, theny ~ Le(y| «,pBj), a location-Exponential distribution;

where ), = — logp and

Le(y|a,ﬁ):aexp[—a(y—ﬁ)], y>p, a>0BeR.

The latter is also a Weibull distribution, Wei (y | 1,«, B;.), with

Wei (y | v, ,B) — ’)/IX,Y(]/ _ 5)7_1 exp [—[X'Y(y _ ﬁ)7] ,

10
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which also has a large history of different applications, particularly in reliabil-

ity analysis (see e.g. Nelson, 1982).

In the above distributions, the shape parameter « remains the same, while the
location parameter B;, i = ip,le, is just a one-to-one transformation of the original
location parameter . Thus, from an objective viewpoint, it seems sensible that
inferences about the parameters conducted with any of the transformed models
should yield the same decisions as those drawn for the original one. This char-

acteristic is apparent for the reference-intrinsic methodology, since for the Pareto

model
log£+ % _ 1 —|—uc010g£ B> Po
g oW Bo
5pa (“r ﬁ/ X, ,BO) - 0 a ,BO
02 Po <
loga—i—“o 1+0610gﬁ p < Bo
On the other hand, for the inverted Pareto model
/
log£+@ —1+(xolog‘6—? B < By
/ / &xo x ﬁ
Sip(a, B’ a0, By) = /
log@-i—i —1—|—¢x10g’8— B > By
X B =0

Evidently, if we let B/ = 1/8, both loss functions are identical. For the Weibull

model,
log ~ +°2 —1+a0(p" — BY) 6" > B
(Swe(“/ ,BH; ‘XO/ //) = zo z /
log >+ — —1+a(py —p") p" <P
4 o
and one can check that when B = log 8’ = —logf, the three functions are the
same.

Recall that in this setting, the intrinsic discrepancy is the quantity of interest, and
each of the above loss functions is a one-to-one transformation of any other. Given
that the reference posterior is invariant under these transformations, it follows that
the intrinsic statistic and thereof the intrinsic estimator are also invariant. We can

then choose a model to work with and then apply the appropriate transformation

11
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to the final result. Let us choose the inverted Pareto model.
Suppose we have iid observations, z = {x1,...,x,} fromanIp (x; | «, B) distri-

bution, the likelihood function is
L(a,B) = a" g7 47477, B = ta,

where {f;,tp} = {H x}/ ”,x(n)} are jointly sufficient statistics for « and B. The

MLE s

. £\ 1
B =ty &= (log —2) ,
5]

are (conditionally) independent, given the true parameter values (Malik, 1970) and

Blap~Tp(B|nap)

and

a|a~Ig(d| nna),
whereIg (x | a,b) stands for an inverted Gamma distribution with parameters {a, b}.

3.2.1 The shape parameter

In order to apply the definitions in Section 2, we first assume that the shape para-

meter « is the parameter of interest. The intrinsic discrepancy is

—logf+0—-1 0<1
O(a;mp) =n

log9—|—9’1—1 0>1

where 6 = a/wg. As §(0) does not depend on the nuisance parameter, B, and is
a piecewise one-to-one function of a, we can derive the reference posterior for the

ordered parametrization {«, 8}. This is found to be 7r(a, B)  (a )1, and yields a

12
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(marginal) Gamma reference posterior, Ga (« | n — 1,n& 1), with pdf
Ga(a] n—1,ma") oca'2exp [ a].
a(oc|n ni >0<0c exp |~ &
The intrinsic statistic, for n > 2,
d(ag | &) :/ O(a; 0) Ga (oc ] n—l,n&_1> da,
0

can be easily handled by numerical methods. Its typical behaviour, along with the

intrinsic discrepancy, is depicted in Figure 3.

5(“;“0) d(lXo ’ 5‘)

-~

q
-
—

I

ANy €8]

~

o 3 3 N - 0
4

(a) Intrinsic discrepancy. (b) Intrinsic statistic.

Figure 3. The intrinsic discrepancy —on the left— and the intrinsic statistic calculated for
different sample sizes and & = 5, in the Inverted Pareto model.

An analytic approximation to the intrinsic statistic (due to the asymptotic nor-

mality of the reference posterior), that works well even for moderated sample sizes

is given by Juarez (2004) as

1
dao | &) ~ S(i500) + 5

while for the intrinsic estimator we can use

13
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3.2.2 The location parameter

Consider now the location parameter B. The intrinsic discrepancy is

log(1—6) 6<0
5(13’06;130)2 ’
6 6>0

where 0 = alog(B/Bo). Recalling the invariance under the choice of the nuisance
parameter, we may use the reference prior for the ordered parametrization {6,a},

1

7(6,a) o a1, or in terms of the original parametrization, 71(B,&) « B~!; yielding

the joint reference posterior, for n > 2,

n+1

aT'[n]

(B, | b, ty) = W' ) ey 50,8 > by

The intrinsic statistic,
| rBo B
d(Bo | z) :/ / log (1—(xlog%> n(B,a| z)dB +
0 |/t

/: (108 5;) (g 12 dﬁ] da,

as well as the intrinsic estimator, can be computed numerically. Nevertheless, we
might obtain an analytical approximation by replacing « in the former equation by

its MLE, & and carrying out the one dimensional integration, obtaining
1
d(Bo | z) ~ t[l +ne " (Ei(n) — Ei(n — log t))} +n log(1+ - logt),

where Ei(x) = — [ u~le™" du, and t = (B / ,BO)M is the usual test statistic arising
from the generalised likelihood ratio. Both the proposed approximation and the ex-
act value of the intrinsic statistic, calculated for some simulated data, are depicted
in Figure 4.

A simple way to obtain an analytic approximation to the intrinsic estimator,

14
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d(ﬁo | z) d(.BO | Z)

7.5 / n=30 7.5 30 w1

"=/
/ / n=15 ==

/ / T // B
2.5 | 2.5/}~
n =
e

1020 30 40 50P0 35 ) 4.5 Po

al
(O]

Figure 4. The intrinsic statistic and the proposed approximation (dashed). In the left
pane the behaviour for x < 1 and in the right pane for « > 1; both are calculated from
simulated data of different sizes with p = 3.

is plugging & into the conditional reference posterior 77(B | «,z) = Pa(B | na,ty),
and into the intrinsic divergence and then carry out the one-dimensional integration-
optimisation , resulting in

* 15
;Bapr = 2md :B
3.2.3 Comparisons

Due to the asymmetry generated by the shape parameter, it seems reasonable that,
for the same sample size, we should have less precise estimates of f when a < 1
than when a > 1. Table 2 presents the results obtained from simulated data for a
small sample size and two values for the shape parameter. The behaviour of the in-
trinsic estimator seems to capture the increased variability brought by the different
values of shape parameter better than the MLE. Also, the estimated

p-value for the BRC using the threshold value d* = 2.5 is presented.

Table 2. Mean value and standard deviation of the intrinsic estimator, the proposed ap-
proximation and the maximum likelihood estimator of the location parameter of the Inver-
ted Pareto model, calculated from 5000 simulated samples holding p = 3 and n = 4.

a«a=1/5 x=2>5

B~ Bapr P B Bapr P

Mean 270 284 134|294 293 286

Std.dev. 23 25 089014 0.14 0.13
p-value 0.09 0.09

15
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For the sake of comparison, assume now that the shape parameter is known
and, without loss of generality, « = 1. It is readily seen that then x ~ Un (x | 0, §)

and, therefore, —logx = y ~ Le(y | 1,B'). Each of the correspondent intrinsic

discrepancies,
6x(B; o) = logﬁﬁ‘
and
5y(B';Bo) = |B" = Bol,

is a piecewise one-to-one function of the implied parameter. Thus, we can use
7(B) « B~!land 7t(B') « 1, to derive the appropriate reference posteriors, which
are Pa (B | n,t) and Le (B’ | n,t'), respectively, where t = max{xy,...,x,} and

t' = —logt=min{yy,...,yn}

The calculation of the intrinsic statistics is straightforward,

d(ﬁO!f)Z/too

=27 —logT —1

log%‘ Pa(B | n,t) dB

and
d(Bo | ) /|/3 By Le (B'| m,t') dp’

=27 —logt -1,

where T = T(Bo,t) = (t/Bo)" and " = T(Bo, t) = exp[n(By —t')] are the test stat-
istics derived from the generalised likelihood ratio. The invariance of the intrinsic
statistic is apparent, it is straightforward to verify thatd(g(, | t') = d(—log Bo, —logt).
Consequently, the intrinsic estimator is also invariant, thus we have g*(t) = 21/t
and /" (') = —log B* = t' — log 2!/

Interestingly, under homogeneous repeated sampling, both 7 and 7’ follow a
Un (y | 0,1) distribution under the null Hy = {8 = 6y (8’ = () }. Similarly, from
the Bayesian viewpoint, 73 = (¢/60)" and 13 = exp[n(p’ —t')] follow the same Uni-

form distribution, yielding the correspondence between the frequentist p-values

16
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and the Bayesian Reference Criterion, exhibited in Table 3.

Table 3. Some p-values, P[d > d* | Hy), associated to the corresponding threshold
values, d*, from the BRC for the Uniform model.

d* | P[d > d* | Ho] | d* | P[d > d* | Ho]
1 0.203 5|  0.00278
2 0.054 6|  0.00097
2.5 0.031 7| 0.00038
3 0.019 8|  0.00018
4 0.007 9|  0.00008

The risk function Rg(c) in the Uniform model, for estimators of the form 0=ct,

with ¢ > 1, under the intrinsic discrepancy loss function is

Ry(c) = /0(9”

=2c "+ nlogc—1.

nO " dt

0
log pr

Straightforward calculations show that Ry(c) attains a global minimum at ¢ = 21/%,
i.e. the intrinsic estimator is the only admissible estimator under the intrinsic dis-
crepancy loss. This same holds for g’ in the location-Exponential model for estim-
ators within the classC = {f : B=t+c,c <0}.

The Location-Exponential model is used by Berger and Pericchi (2001) to illus-
trate the use of the intrinsic Bayes factors (IBF) for non-regular cases. There, the
authors compute the arithmetic and the median intrinsic Bayes factors (AIBF and

MIBF, respectively) as

" 1

1 _
AIBF = B — } | [exp(yi — Bp) — 1]
i=1
and

MIBF = B [exp(Med[y]| — B;) — 1] -

where B = n~Hexp[n(t' — B})] — 1}. They also argue that the fractional Bayes

17
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factor (O’Hagan, 1997),

FBF = Bbn {exp [bn (' —By)] =1} ',

is clearly unreasonable, given that FBF > 1 forany 0 < b < 1.

Even though both IBF’s are defined in this case, their behaviour under homo-
geneous repeated sampling is awkward. To illustrate this we simulated 100,000
sets of different sizes from Le (x | 1, —0.1) and then computed the relative number
of times that the (null) hypothesis Hy = {B = —0.1} was rejected. As we can see
from Table 4, p-values arising from alternative IBF s vary widely with sample size,

while those computed from the BRC and the frequentist test behave as expected.

Table 4. Estimated p-values corresponding to comparable test sizes for the BRC (d* = 3),
the frequentist test (x = 0.05) and the 1BF’s (B > 20) calculated from simulated values
(100,000 replications) from the Location-Exponential model for several sample sizes and
p=-01

n AIBF MIBF BRC FREQ

3 0998 0.889 0.018 0.049

10 0.997 0.675 0.018 0.050
25 0938 0.448 0.019 0.049
100 0.525 0.165 0.018 0.050
1000 0.097 0.019 0.019 0.049

Another anomaly is that it is possible to reach conflicting decisions from altern-
ative IBF for small samples. For instance, consider the simulated data set from a
Un(x; | 0,1), x = {0.01,0.05,0.50,0.99}, and the transformed data when making
y = —logx. Table 5 shows the alternative Bayes factors and the intrinsic statistic
calculated for testing the (null) hypothesis Hy = { =1 (8’ = 0)}. Given the in-
variance properties of the intrinsic statistic, clearly d(1 | t) = d(0 | t') and thus
decisions derived from both data sets are the same, for they convey exactly the
same amount of information about the parameter. In contrast, different decisions

can be reached for alternative IBF s.
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Table 5. Alternative intrinsic Bayes factors and the intrinsic statistic to test the hypo-
thesis B = 1 (B’ = 0), calculated for the simulated data, from a Un (x | 0,B), x =
{0.01,0.05,0.5,0.99} and for the transformed data y = — log x, where B’ = —logp.

AIBFy; MIBFy; d
B 505 1397 0.98
B 3.89 519.21 0.98

3.2.4 USA metropolitan areas

As mentioned at the beginning of the section, Pareto distributions are often used to
model city population sizes. Zipf (1949) formally established that, within a given
country, the size of the k largest cities is inversely proportional to its rank; this
regularity implies that the distribution of the population size of these cities, s, is
Pa(s | o, B), with shape parameter equal to one. To verify Zipf’s law, we ana-
lyse the 276 USA metropolitan areas (MA) population, based on the 2000 census
(www.census.gov/main/www/cen2000.html). Three nested data sets were con-
sidered: data set D; contains the 50 largest MA’s; data set D, contains the 135
largest MA’s; and data set D3 is the whole sample. The intrinsic estimators for each
case are a7 = 1.2, a5 = 0.914 and a5 = 0.562; intrinsic statistics for each data set
are depicted in Figure 5. From these we can state that Zipf’s law holds for the first
two data sets, since d(1 | D7) = 0.88 and d(1 | D;) =1.26; whiled(1 | D3) = 39.15,
providing overwhelming evidence against « = 1, for the whole of USA MA's (for a

thorough discussion on this phenomenon see Eeckhout, 2004).
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Figure 5. The intrinsic statistic for the three USA metropolitan areas data sets analysed.
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3.3 The change-point problem

The change-point problem has an log history, dating back to Page (1955, 1957), and
has been addressed in different ways by Carlin et al. (1992); Hinkley (1970); Smith
(1975), i.a. In general, the problem is to be able to discriminate in a sequence of
independent observations, x = {x1, ..., x,}, if all members are drawn from a com-
mon distribution, p(x), or if there exists a point, r, for which the first r observations
come from p;(x) and the rest from p,(x).

This problem may be addressed in two alternative ways:

Retrospective Consider the sequence of observations, x = {x3,...,x,}, as a real-
isation of a concrete process. Determine if there exists a change point, 1 < r <

n (see, e.g. Chernoff and Zacks, 1964; Beibel, 1996 and references therein). Or

Sequential Consider the sequence x = {x1,X2,...,X, Xy41,... ;. Determine, as
soon as possible, if a change has occurred at point r (see, e.g. Shiryayev, 1963;

Lorden, 1971 and references therein).

3.3.1 Page’s artificial data

Here we focus on the retrospective approach and analyse the artificial data of Page
(1957). Thus, we will assume that p1(x) =N (x | 5,1) and pa(x) =N (x | 6,1),s0

the likelihood function is

r n

[IN(x|51) J] N(x|61) 1<r<n
i=1 j=r+1

n

[IN(x]51) r=n

i=1

L(6,,0,) =

For this simple setting, the intrinsic discrepancy is the linear loss function,
1
o(r;rg) = 5 lr — o]

Hence, the intrinsic estimator is just the posterior median. As §(r;rg) is a piecewise

one-to-one function of r, we may use the reference prior 77(r) = (n — 1) ! to derive
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the appropriate posterior, which is proportional to the likelihood.
If both means are unknown, i.e. p1(x) = N(x | p#,1) and p2(x) = N(x | #,1),
we get
r
- r<rp
(p=m)?lr—rol § )

N~

5(r,u,m;r0) =

r

r> 1o

n—ry
from where it is possible to derive the appropriate reference posterior and then cal-
culate the intrinsic statistic and estimator. Figure 6 depicts the intrinsic statistic for
both scenarios. We can see that r* = 17, irrespective of the known means assump-
tion, coinciding with Page’s analysis. If the means are known, we could say that the
change took place within the 13th and the 21st observations, and we could be quite
sure that no change took place outside the 7th and 27th observations. On the other
hand, if the means are unknown, we could say that a change occurred between
the 15th and 21st observations and were almost sure that no change took place be-

fore the second one. In any case, the true change point, at the 21st observation, is

effectively detected.
. d(ro | x) . d(ro | x)
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[ ] [ ]
[ ] [ ]
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(a) Known means. (b) Unknown means.

Figure 6. The intrinsic statistic for the change-point problem, calculated for Page’s data.

3.3.2 River Nile data

Consider the measurements of the annual volume of discharge from the Nile River
to Aswan from 1871-1970, first analysed by Cobb (1978) and further examined from

a nonparametric perspective by Carlstein (1988) and Diimbgen (1991). Assuming
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that p1(x) = N (x | p,A) and that po(x) = N(x | 5, A), with a common unknown

precision, A, the intrinsic discrepancy and a corresponding reference prior are

log[HM@z] r < o

n rro

5(1’,6;7’0):E . [1+(n—r)(r—r0) 92} .
& n(n—rp) =0

and

_ 1,2
n(r,0) o« A1 (1 + —r(znz ) 92> ,

respectively, where § = A/2(u — 1) is the standardised distance between the two
means.

In this case, r* =1898, which coincides with the three analyses mentioned above.
In addition, the intrinsic change-point regions corresponding to the proposed thre-
shold values are Ry5 = {1897,1899}, Rs = {1895,1900} and Rys5 = {1894,1903}.
If we carry the analysis one step further, and perform inference on the difference of
means, A = p — 17, conditional on r = 1898, the intrinsic estimator of the change in
the mean (which is also the MLE, see Judrez, 2004) is A* = 247.78 and the corres-
ponding non-rejection regions are Rp5 = {189.69,305.87}, Rs = {159.65,335.91}
and Ry5 = {136.50,359.05}. These results are summarised in Figure 7.

d(ro | x) d(Ao | x)

q [l
o
°
°
>
N
(€]

1 . 1
*r T AO
1889 1892 1895 1898 1901 1904 1907 0 100 200 A*300 400 500
(a) Change-point. (b) Difference in means.

Figure 7. River Nile data. In the left pane, the intrinsic statistic for the change-point.
The right pane depicts the intrinsic statistic for the difference in means, conditional on
r=r*=1898.

We have already mentioned that FBF does not perform well in non-regular prob-
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lems. The IBF requires a training sample to convert the initial improper prior into
a proper one. However, no minimal training sample exists for the (retrospective)
change-point problem, thus an ad-hoc modification is in needed (Moreno et al.,
2003). In contrast, the reference-intrinsic methodology needs no modification and

renders sensible results.

4 Conclusions

The reference-intrinsic methodology provides objective Bayesian decision rules for
the precise hypothesis testing and point estimation problems, objective in the pre-
cise sense of depending on the data and the sampling model alone. In addition to
this, the point stressed in this paper is that the presented method needs no modi-
fication, regardless the regularity conditions of the sampling model and the dimen-
sion of the parameter.

When testing sharp hypotheses, the use of conventional Bayes factors relies on a
particular prior with a point mass on the null, leading to the so called JLB paradox.
Alternative Bayes factors are still open to criticism. We have seen how fractional
Bayes factors fail when dealing with non-regular models and it can be shown that
other problems arise in the presence of nuisance parameters. As for intrinsic Bayes
factors, it may be the case (as the AIBF in the exponential location model) that the
resulting factor comes from no prior, thus being not really Bayesian; or that one of
the Bayes Factors (the MIBF in that same example) be biased in favor of one of the
hypothesis. Moreover, it may also happen (like the AIBF) that the resulting Bayes
Factor depends on the whole sample, even when sufficient statistics are available,
thus violating the sufficiency principle. We have also seen that the intrinsic statistic
is typically a one-to-one function of the test statistic derived from the generalised
likelihood ratio, providing a link between the frequentist test and the BRC; indeed,
when this is the case, the BRC may be seen as a way to calibrate the p-values.

One of the most compelling features of the intrinsic estimator, shared by the

MLE, is its invariance under monotonic transformations even when the dimension
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of the parametric space is greater than one, a characteristic not shared by the most
frequently used objective Bayesian point estimators. Additionally, as illustrated
in the examples, it is a consistent estimator of the parameter and, hence, agrees
asymptotically with the MLE-when this exists—, accounting for the increase in un-
certainty when nuisance parameters are present in the sampling model, while typ-

ically exhibiting compelling properties under repeated, homogeneous sampling.

O
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