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EQUALITY OF CRITICAL POINTS FOR POLYMER DEPINNING
TRANSITIONS WITH LOOP EXPONENT ONE

KENNETH S. ALEXANDER AND NIKOS ZYGOURAS

Abstract. We consider a polymer with configuration modeled by the trajectory
of a Markov chain, interacting with a potential of form u + Vn when it visits a
particular state 0 at time n, with {Vn} representing i.i.d. quenched disorder. There
is a critical value of u above which the polymer is pinned by the potential. A
particular case not covered in a number of previous studies is that of loop exponent
one, in which the probability of an excursion of length n takes the form ϕ(n)/n for
some slowly varying ϕ; this includes simple random walk in two dimensions. We
show that in this case, at all temperatures, the critical values of u in the quenched
and annealed models are equal, in contrast to all other loop exponents, for which
these critical values are known to differ at least at low temperatures.

1. Introduction

A polymer pinning model is described by a Markov chain (Xn)n≥0 on a state space
containing a special point 0 where the polymer interacts with a potential. The space-
time trajectory of the Markov chain represents the physical configuration of the poly-
mer, with the nth monomer of the polymer chain located at (n,Xn) (or just at Xn,
for an undirected model.) When the chain visits 0 at some time n, it encounters a
potential of form u+Vn, The i.i.d. random variables (Vn)n≥1 typically model variation
in monomer species. We study the phase transition in which the polymer depins from
the potential when u goes below a critical value. We denote the distribution of the
Markov chain (started from 0) in the absence of the potential by PX and we assume
that it is recurrent. This recurrence assumption is merely a convenience and does not
change the essential mathematics; see [Al08], [GT05]. Of greatest interest is the case
when the excursion length distribution decays as a power law:

PX(E = n) = n−cϕ(n), n ≥ 1.excursion_law (1.1)

Here the loop exponent is c ≥ 1, E denotes the length of an excursion from 0 and ϕ is
a slowly varying function, that is, a function satisfying ϕ(κn)/ϕ(n)→ 1 as n tends to
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infinity, for all κ > 0. Without loss of generality we will assume that ϕ(n) converges
to 0, as n converges to infinity.

A large part of the existing rigorous literature on such models omits the case c = 1,
because it is often technically different and not covered by the methods that apply to
c > 1; see e.g. [Al08], [GT07], [To08c], [To08a]. That omission is partially remedied
in this paper, and we will see that the behavior for c = 1 can be quite different from
c > 1. The case c = 1 includes symmetric simple random walk in two dimensions, for
which ϕ(n) ∼ π/(log n)2 [JP72]. The essential feature of c = 1 is that PX(E > n) is a
slowly varying function of n, so that for example the longest of the first m excursions
typically has length greater than any power of m. This in effect enables the polymer
to (at low cost) bypass stretches of disorder in which the values Vn are insufficiently
favorable, and make returns to 0 in more-favorable stretches.

The quenched version of the pinning model is described by the Gibbs measure

dµβ,u,VN (x) =
1

ZN
eβH

u
N (x,V) dPX(x)polymer_measure (1.2)

where x = (xn)n≥0 is a path, V = (Vn)n≥0 is a realization of the disorder, and

HdefHdef (1.3) Hu
N(x,V) =

N∑
n=1

(u+ Vn)δ0(xn).

The normalization

ZN = ZN(β, u,V) = EX
[
eβH

u
N (x,V)

]
is the partition function. The disorder V is a sequence of i.i.d. random variables with
mean zero, variance one. We denote the distribution of this sequence by P V . We
assume that V1 has exponential moments of all orders and we denote by MV (β) the
moment generating function of P V .

Let

LXN = LXN(x) :=
N∑
n=1

δ0(xn)

denote the local time at 0, and define the quenched free energy

fq(β, u) :=
1

β
lim
N→∞

1

N
logZN(β, u,V).

The fact that this limit exists and does not depend on V (except on a null set) is
standard; see [Gi07]. In fact, one has by an easy subadditivity argument, that a.s.
the following equality holds

fq(β, u) :=
1

β
lim
N→∞

1

N
EV logZN(β, u,V).

The parameter u ∈ R can be thought of as the mean value of the potential, while
the parameter β > 0 is the inverse temperature. It is known that the phase space in
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(β, u) is divided by a critical line u = uqc(β) into two regions: the localized and the
delocalized one. In the delocalized region u < uqc(β) we have fq(β, u) = 0 P V -a.s.,
while in the localized region u > uqc(β) we have fq(β, u) > 0 P V -a.s. It is proved in
[GT06] that fq(β, ·) is infinitely differentiable for all u > uc(β). An alternate, more
phenomenological, characterization of the two regions is as follows. From convexity
we have for fixed β that〈

LN
N

〉β,u,{Vi}

[0,N ]

=
1

β

∂

∂u

(
1

N
logZN(β, u,V)

)
→ ∂

∂u
fq(β, u) for all u,qcontact (1.4)

P V -a.s. This limiting value is called the contact fraction, denoted Cq(β, u), and it is
positive in the localized region and zero in the delocalized region. When the contact
fraction is positive we say the polymer is pinned.

The effect of the quenched disorder on the phase transition is quantified by com-
paring the quenched model to the corresponding annealed model, which is obtained
by averaging the Gibbs weight over the disorder to give

EV
(
eβH

u
N (x,V)

)
= eβ∆LN (x),

where ∆ = u+ β−1 logMV (β), so the corresponding annealed partition function is

Za
N = Za

N(β, u) := EX
(
eβ∆LN

)
and the Gibbs measure is

anngibbsanngibbs (1.5) dµβ,uN (x) =
1

Za
N

eβ∆LN (x) dPX(x).

The corresponding annealed free energy is denoted fa(β, u). The annealed critical
point is readily shown to be uac(β) = −β−1 logMV (β) for all β > 0 (see [AS06]), so
∆ = u − uac(β). It is a standard consequence of Jensen’s Inequality that fa(β, u) ≥
fq(β, u), so uac(β) ≤ uqc(β). The effect, or lack of effect, of the disorder on the
depinning transition may be seen in whether these two critical points actually differ,
and whether the specific heat exponent (describing the behavior of the free energy as
u decreases to the critical point) is different in the quenched case.

Though most mathematically rigorous work is relatively recent, there is an exten-
sive physics literature on polymer pinning models—see the recent book [Gi07] and
surveys [Gi08], [To08b] and the references therein. In [Al08] (see also [To08a] for a
slightly weaker statement with simpler proof) it was proved that for 1 < c < 3/2, and
for c = 3/2 with

∑∞
n=1 1/n(ϕ(n))2 <∞, for sufficiently small β, one has uqc(β) = uac(β)

and the specific heat exponents are the same. Both works considered Gaussian dis-
order, though the method in [Al08] can be extended to accommodate more general
disorder having a finite exponential moment.

By contrast, it follows straightforwardly from the sufficient condition ([To08c],
equation (3.6)) that for c > 1, if V1 is unbounded, or if V1 is bounded and its es-
sential supremum v satisfies P V (V1 = v) = 0, then for sufficiently large β one has
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uqc(β) > uac(β); the method is based on fractional moment estimates. These results
together with [Al08] suggest that for 1 < c < 3/2 there should be a transition from
weak to strong disorder, i.e. there should exist a value β0 > 0 below which the an-
nealed and quenched critical curves coincide, i.e. uqc(β) = uac(β), for β < β0, while for
β > β0, one has uac(β) < uqc(β), but this has not been proved.

For 1 < c < 3/2 and certain choices of bounded V1 (necessarily with P (V1 = v) >
0), it is known that the quenched and annealed critical points are equal for all β > 0
[DGLT08]. But in these examples Var(eβV1)/[E(eβV1)]2 stays bounded as β →∞, so
there is no true “strong disorder” regime.

For c > 3/2 it follows from [GT05] that the quenched and annealed specific heat
exponents are different, and it was proved in [DGLT07] that the critical points are
strictly different for all β > 0, that is, β0 = 0. In [AZy08] the distinctness of critical
points at high temperature was extended to include c = 3/2 with ϕ(n)→ 0 as n→∞,
and the asymptotic order of the gap uqc(β) − uac(β) was given. Recently in [GLT08]
the critical points were shown to be distinct for all β > 0 for the case of c = 3/2
and ϕ(n) asymptotically a positive constant, a case about which physicists had long
disagreed ([DHV92], [FLNO88].)

Here we show that even with true strong disorder, the critical points remain the
same in the case c = 1.

theorem Theorem 1.1. Consider the quenched model (1.2) and suppose E(etV1) < ∞ for all
t ∈ R and (1.1) holds with c = 1. For all β > 0 and all u > uac(β), the quenched free
energy fq(β, u) > 0, and thus uqc(β) = uac(β) for all β > 0.

2. Notation and Idea of the Proof.

Denote the local time at zero over a time interval I by

LXI =
∑
n∈I

δ0(xn),local_time (2.1)

so LXN = LX[0,N ]. The overlap between two paths X,X ′ in an interval I is defined as

BX,X′

I =
∑
n∈I

δ0(xn)δ0(x′n).overlap (2.2)

We denote by PX,X′ the measure corresponding to two independent copies X,X ′ of
the Markov chain. The “energy gained over an interval I” is

Hu
I (x, V ) =

∑
n∈I

(u+ Vn)δ0(xn).energy (2.3)

The annealed correlation length is defined to be M = M(β, u) := 1/
(
βfa(β, u)

)
.

From (1.5), both βfa(β, u) and M are functions of only the product β∆. Moreover,
the annealed contact fraction can be defined analogously to (1.4), for the annealed
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system. Using Laplace aymptotics and the large deviations for the local time LN , one
can deduce the asymptotics of M and Ca(β, u), for β∆ ∼ 0. Specifically, letting

Ψ(t) =

∫ ∞
t

ϕ(es) ds,

we obtain

β∆ ∼ Ψ(logM) and Ca(β, u) ∼ 1

Mϕ(M)
as β∆→ 0.

For example, if ϕ(n) ∼ K(log n)−α for some α > 1 then

logM = log
1

βfa(β, u)
∼
(
α− 1

K
β∆

)−1/(α−1)

as β∆→ 0,

so fa(β, ·) is C∞ even at u = uac(β). The details are similar to the case c > 1 carried
out in [Al08], but we do not include them here as they are not required for our
analysis.

We use length scales K1(β,M), K2(β,M) related as follows, for β,M > 0. Let
ΛV (β) := logMV (2β) − 2 logMV (β). By our convention, see below (1.1), we have
that ϕ(x)→ 0 as x→∞. For a slowly varying function ϕ(x)→ 0, we have

log x

log 1
ϕ(x)

→∞ as x→∞.

Therefore we can choose K1, K2 satisfying

K_2K_2 (2.4) 32K2 < eΛV (β)K2

and

4(M ∨ 1) log
1

ϕ(K1)
< K2 <

1

2ΛV (β)
log

K1

2
.K_1 (2.5)

For fixed β, as ∆ → 0 (i.e. M → ∞) we then have M � K2 � K1. We assume
henceforth that K1, K2 are even integers.

Define intervals

Ii = [iK1, (i+ 1)K1] ∩ Z, Iγi = [iK1, (i+ γ)K1] ∩ Z,
for 0 < γ < 1. For an interval I, let τI = inf{n ∈ I : xn = 0} and σI = sup{n ∈
I : xn = 0}. We set τI = σI =∞ if the path does not visit the interval I. We denote
by ΞNK1 the set of all paths of length NK1 which have the following property : if

τIi <∞ for some i ≤ N , then τIi ∈ I
1/2
i and σIi − τIi < K2.

Idea of the proof. We will look at a scale NK1 and restrict the partition function
ZNK1(u, β,V) to paths that belong to the set ΞNK1 . Further we will restrict attention
to paths within ΞNK1 which bypass bad blocks of length K1. Roughly speaking a bad
block is defined to be a block for which the quenched partition function of a path
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starting at a random , uniformly distributed, point in the block, and not spending
more than K2 units of time in this block, is less than half the corresponding annealed
partition function. In Lemma 3.2 we control the probability of having a bad block.
What is left is to make an energy-entropy balancing of the paths that belong into
ΞNK1 and bypass bad blocks, and show that for β > 0 and ∆ = u+β−1 logMV (β) > 0
this balance is uniformly (in N) bounded away from zero. For this we will use the fact
that in a good block the free energy gained is of the order K2/M (this is essentially
Lemma 3.1), and the fact that because PX(E > k) is a slowly varying function of k
the cost of bypassing bad blocks is small.

3. Proof of the Theorem

free_correlation Lemma 3.1. Let β > 0, u ∈ R,∆ = u+ β−1 logMV (β) and M = M(β, u). Then for
all N > 2β∆M ,

logEX
[
eβ∆LN

]
≥ 1

2

N

M
.correlations (3.1)

Proof. It is observed in [Al08] that aN := β∆ + logEX
[
eβ∆LN

]
is subadditive in N .

Since aN/N → βfa(β, u), it follows that

β∆ + logEX
[
eβ∆LN

]
≥ Nβfa(β,∆) =

N

M
,

and the result is immediate. �

The block Ii is called good if it satisfies∑
b∈I1/2

i

EX
[
e
βHu

[b,b+K2]
(x,V)∣∣xb = 0

]
>

1

2

∑
b∈I1/2

i

EVEX
[
e
βHu

[b,b+K2]
(x,V)∣∣xb = 0

]

=
|I1/2
i |
2

EX
[
eβ∆LK2

]
,

and bad otherwise. Let pVgood := P V (Ii is good) and pVbad := P V (Ii is bad).

good Proposition 3.2. For K1, K2 satisfying (2.4), (2.5) we have pVgood > 1/2.

Proof. By Chebyshev’s inequality,

pVbad ≤ 4
VarV

(∑
b∈I1/2

i
EX

[
e
βHu

[b,b+K2]
(x,V)∣∣xb = 0

])
(∑

b∈I1/2
i
EVEX

[
e
βHu

[b,b+K2]
(x,V)∣∣xb = 0

])2

< 4

∑
b,b′∈I1/2

i
1|b−b′|≤K2E

VEX,X′
[
e
βHu

[b,b+K2]
(x,V)+βHu

[b′,b′+K2]
(x′,V)∣∣xb = x′b′ = 0

]
∑

b,b′∈I1/2
i
EV,V ′EX,X′

[
e
βHu

[b,b+K2]
(x,V)(X)+βHu

[b′,b′+K2]
(x′,V′)∣∣xb = x′b′ = 0

] .
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Here we used the fact that whenever the two independent paths x,x′ visit zero at
points b, b′ such that |b−b′| > K2, then the energiesHu

[b,b+K2](x,V) andHu
[b′,b′+K2](x

′,V)
are independent.

An easy calculation shows that the above is equal to

4

∑
b,b′∈I1/2

i
1|b−b′|≤K2E

X,X′
[
e
β∆(LX

[b,b+K2]
+LX′

[b′,b′+K2]
)
e

ΛV (β)BX,X′
[b,b+K2]∩[b′,b′+K2]

∣∣xb = x′b′ = 0

]
∑

b,b′∈I1/2
i
EX,X′

[
e
β∆(LX

[b,b+K2]
+LX′

[b′,b′+K2]
)∣∣xb = x′b′ = 0

]

≤ 4

∑
b,b′∈I1/2

i
1|b−b′|≤K2 e

ΛV (β)K2 EX,X′
[
e
β∆(LX

[b,b+K2]
+LX′

[b′,b′+K2]
)∣∣xb = x′b′ = 0

]
∑

b,b′∈I1/2
i
EX,X′

[
e
β∆(LX

[b,b+K2]
+LX′

[b′,b′+K2]
)∣∣xb = x′b′ = 0

]
=

4

|I1/2
i |2

∑
b,b′∈I1/2

i

1|b−b′|≤K2 e
ΛV (β)K2

<
32K2

K1

eΛV (β)K2

<
1

K1

e2ΛV (β)K2

<
1

2
,

for K1, K2 satsifying (2.4), (2.5). In the third line we have used the fact that the
expectations in the second line do not depend on b and b′. �

We now return to the proof of Theorem 1.1. Let

JN := {i ≤ N : Ii is good} ∪ {0} = {i1 < · · · < i|JN |}.

By convention we let I|JN |+1 := {N}. Under P V , the sequence (ij − ij−1)j≥2 is an
i.i.d. sequence of geometric random variables with parameter pVgood.

We denote by ΞJN
NK1

= ΞJN
NK1

(V) the set of paths that belong to ΞNK1 and make no
returns to 0 in bad blocks after the first block. In the following computation aj and
bj are the starting and ending points, respectively, of the excursion from Iij to Iij+1

.
For notational convenience we denote by pn = PX(E = n), as this is introduced in
(1.1). By convention we set b0 := 0 and b|JN | := N . Also, ZNK1

(
ΞJN
NK1

)
denotes the
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partition function restricted on the set of paths ΞJN
NK1

. We then have

ZNK1

(
ΞJN
NK1

)
=
∑
a1≤K2

∑
b1∈I1/2

i2

∑
a2−b1≤K2

· · ·
∑

b|JN |−1∈I
1/2
i|JN |

∑
a|JN |−b|JN |−1≤K2

|JN |∏
j=1

EX
[
e
βHu

[bj−1,aj ]
(x,V)

δ0(xaj
)
∣∣xbj−1

= 0
]
pbj−aj

≥
∑
a1≤K2

∑
b1∈I1/2

i2

∑
a2−b1≤K2

· · ·
∑

b|JN |−1∈I
1/2
i|JN |

∑
a|JN |−b|JN |−1≤K2

|JN |∏
j=1

EX
[
e
βHu

[bj−1,aj ]
(x,V)

; σ[bj−1,bj−1+K2] = aj
∣∣xbj−1

= 0
]
pbj−aj

.

Moreover, on the set {σ[bj−1,bj−1+K2] = aj} we have thatHu
[bj−1,aj ](x,V) = Hu

[bj−1,bj−1+K2](x,V),

and therefore for some C the above is bounded below by∑
a1≤K2

∑
b1∈I1/2

i2

∑
a2−b1≤K2

· · ·
∑

b|JN |−1∈I
1/2
|JN |

∑
a|JN |−b|JN |−1≤K2

|JN |∏
j=1

EX
[
e
βHu

[bj−1,bj−1+K2]
(x,V)

; σ[bj−1,bj−1+K2] = aj
∣∣xbj−1

= 0
]

min
a∈I3/4

ij
, b∈I1/2

ij+1

pb−a

= EX
[
e
βHu

[b0,b0+K2]
(x,V)

]
min

a1∈I3/4
i1

, b1∈I1/2
i2

pbj−aj

·
|JN |∏
j=2

∑
bj−1∈I

1/2
ij

EX
[
e
βHu

[bj−1,bj−1+K2]
(x,V) |xbj−1

= 0
]

min
a∈I3/4

ij
, b∈I1/2

ij+1

pb−a

≥ EX
[
e
βHu

[b0,b0+K2]
(x,V)

](
min

a∈I3/4
i1

, b∈I1/2
i2

pb−a

) |JN |∏
j=2

|I1/2
ij
|

2
EX

[
eβ∆LK2

]
min

a∈I3/4
ij

, b∈I1/2
ij+1

pb−a

≥ EX
[
e
βHu

[b0,b0+K2]
(x,V)

]
C
ϕ
(
(i2 − i1 + 1)K1

)
(i2 − i1 + 1)K1

·
|JN |∏
j=2

(
C
ϕ
(
(ij+1 − ij + 1)K1

)
(ij+1 − ij + 1)K1

|I1/2
ij
|

2
EX

[
eβ∆LK2

])

=
1

K1

EX
[
e
βHu

[b0,b0+K2]
(x,V)

]|JN |∏
j=1

C
ϕ
(
(ij+1 − ij + 1)K1

)
4(ij+1 − ij + 1)

 (EX
[
eβ∆LK2

] )|JN |−1
.



CRiSM Paper No. 09-22, www.warwick.ac.uk/go/crism

LOOP EXPONENT ONE 9

In the second inequality we used the fact that the interval Iij is good, while the last
equality makes essential use of c = 1 in the cancellation of factors K1. We then have
that

1

NK1

logZNK1 ≥
1

NK1

logZNK1

(
ΞJN
NK1

)
≥ 1

NK1

log

(
1

K1

EX
[
e
βHu

[b0,b0+K2]
(x,V)

])
+
|JN | − 1

NK1

logEX
[
eβ∆LK2

]
+

1

NK1

|JN |∑
j=1

log
Cϕ
(
(ij+1 − ij + 1)K1

)
4(ij+1 − ij + 1)

Letting N →∞ we get that the left hand side converges to the quenched free energy
fq(β, u), while the right hand side converges to

1

K1

pVgood logEX
[
eβ∆LK2

]
+

1

K1

pVgoodE
V log

Cϕ
(
i2K1

)
i2

,

where C is a constant different from what appears above. Recall that i2 − 1 is a
geometric random variable under P V with parameter pVgood. For K sufficiently large
we have

Cϕ := inf

{
xϕ(kx)

ϕ(k)
: x ≥ 1, k ≥ K

}
> 0,

and we may assume K1 ≥ K. We then have

fq(β, u) ≥ 1

K1

pVgood

(
logEX

[
eβ∆LK2

]
+ EV log

CCϕϕ
(
K1

)
i22

)
=

1

K1

pVgood

(
logEX

[
eβ∆LK2

]
+ log

(
CCϕϕ

(
K1

))
− 2EV [log i2]

)
≥ 1

K1

pVgood

(
logEX

[
eβ∆LK2

]
+ log

(
CCϕϕ

(
K1

))
− 2 log

(
1

pVgood
+ 1

))

and by Lemma 3.1 and Proposition 3.2 this is bounded below by

1

2K1

(
K2

2M
+ log

(
CCϕϕ(K1)

)
− 2 log 3

)
.scale2.1 (3.2)

Then using (2.4), (2.5) we get that provided M is sufficiently large, i.e. ∆ is small,

fq(β, u) >
1

2K1

(
K2

4M
+ log

CCϕ
9

)
> 0.

�
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