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Abstract

This paper introduces the Parallel Hierarchical Sampler (PHS), a

class of Markov chain Monte Carlo algorithms using several interact-

ing chains having the same target distribution but different mixing

properties. Unlike any single-chain MCMC algorithm, upon reaching

stationarity one of the PHS chains, which we call the “mother” chain,

attains exact Monte Carlo sampling of the target distribution of inter-

est. We empirically show that this translates in a dramatic improve-

ment in the sampler’s performance with respect to single-chain MCMC

algorithms. Convergence of the PHS joint transition kernel is proved

and its relationships with single-chain samplers, Parallel Tempering

(PT) and variable augmentation algorithms are discussed. We then

provide two illustrative examples comparing the accuracy of PHS with
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that of various Metropolis-Hastings and PT for sampling multimodal

mixtures of multivariate Gaussian densities and for ’banana-shaped’

multivariate distributions with heavy tails. Finally, PHS is applied

to approximate inferences for two Bayesian model uncertainty prob-

lems, namely selection of main effects for a linear Gaussian multiple

regression model and inference for the structure of an exponential treed

survival model.

Keywords: Bayesian model selection, classification and regression

trees, Gaussian mixtures, heavy tails, linear regression, Metropolis-

Hastings algorithm, multimodality, multiple-chains Markov chain Monte

Carlo methods, survival analysis.

Introduction

Let θ ∈ Θ be a random variable with cumulative distribution function

F (θ) and probability density or probability mass function f(θ). Also let

Kf (θi, θi+1) be a transition kernel defining the probability that a Markov

chain, having state-space Θ and with f(θ) as its target distribution, jumps

from a current state θi to a new state θi+1. Markov chain Monte Carlo

(MCMC) algorithms generate sequences of dependent draws {θi}
N
i=1 having

f(θ) as their stationary distribution (Gelfand and Smith [1990], Smith and

Roberts [1993], Neal [1993], Gilks et al. [1995b], Gamerman [1997], Robert

and Casella [1999] and Liu [2001]). A sufficient set of conditions for conver-

gence fulfilled by almost all current MCMC algorithms is that Kf (θi, θi+1)

is reversible, F -irreducible and aperiodic, implying that f(θ) is its unique

stationary and limiting distribution (Nummelin [1984], Robert and Casella

[1999]) and that the strong law of large numbers and the central limit the-
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orem hold for any function g(·) ∈ L2(F ) (Tierney [1994]).

These MCMC methods pioneered by Metropolis and Ulam [1949] and

Metropolis et al. [1953] have been progressively adopted and adapted for a

wide range of inferential problems, recently including challenging applica-

tions in phylogenetic inference (Yang and Rannala [1997], Mau et al. [1999],

Li et al. [2000], Huelsembeck et al. [2002] Huelsembeck et al. [2004], Lunter

et al. [2005]), molecular simulation (Lin et al. [2003]), DNA sequence align-

ment (Husmeier and McGuire [2003]) and discovery of gene regulatory net-

works (Li [2006]). Recent interest in MCMC methods for genetic model

selection problems has also emphasized limitations of standard algorithms

such as the Gibbs sampler and Metropolis-Hastings leading to poor mix-

ing over large model spaces (Mossel and Vigoda [2005], Mossel and Vigoda

[2006], Waagepetersen et al. [2008], Lakner et al. [2008]). Potential limita-

tions to mixing of these algorithms when their stationary distributions are

multi-modal or have fat tails are in fact well-known in the statistics litera-

ture (Cappé and Robert [2000], Celeux et al. [2000]), echoing long-standing

research on their convergence properties (Rosenthal [1995], Robert [1995],

Roberts and Tweedie [1996b], Athreya et al. [1996], Mengersen and Tweedie

[1996], Cowles and Carlin [1996], Brooks [1998], Brooks and Roberts [1998],

Roberts and Rosenthal [1998b], Jarner and Roberts [2002], Flegal et al.

[2008]). These limitations have in part motivated the development of alter-

native MCMC sampling strategies using tempered distributions (Geyer and

Thompson [1995], Neal [1996], Liang and Wong [2001], Roberts and Stramer

[2002], Gill and Casella [2004]), hamiltonian Monte Carlo (Duane et al.

[1987]), modified Metropolis-Hastings acceptance probabilities (Liu et al.

[2000], Mira [2001], Green and Mira [2001]), Langevin-driven Metropolis-

Hastings (Roberts and Tweedie [1996a]), the interaction of multiple chains
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(Hukushima and Nemoto [1996], Hansmann [1997], Rosenthal [2000], Iba

[2001], Myers and Laskey [2001], Zheng [2001], Corander et al. [2006], Jasra

et al. [2007]), trans-dimensional algorithms (Green [1995], Liu and Sabatti

[1998], Stephens [2000], Green and Mira [2001], Brooks et al. [2003], Cappé

et al. [2003], Petris and Tardella [2003], Sission [2005]) and Monte Carlo

variance reduction methods (McKeague and Wefelmeyer [2000], Mira and

Sargent [2003]). More general approaches to improving mixing of tradi-

tional MCMC algorithms have focussed on the optimal scaling of proposal

distributions (Roberts et al. [1997], Roberts and Rosenthal [1998a], Roberts

and Rosenthal [2001], Neal and Roberts [2006], Neal et al. [2007], Bédard

and Rosenthal [2008]) and on the construction of adaptive proposal distri-

butions (Tierney and Mira [1991], Gilks and Wild [1992], Gelfand and Sahu

[1994], Gilks et al. [1994], Gilks et al. [1995a], Gilks et al. [1998], Liu et al.

[1997], Haario et al. [1999], Liu et al. [2001], Haario et al. [2001], Chauveau

and Vandekerkhove [2002], Gasemyr [2003], Haario et al. [2005], Atchadé

and Rosenthal [2005], Brockwell and Kadane [2005], Haario et al. [2006],

Roberts and Rosenthal [2007], Roberts and Rosenthal [2008], Bai [2009],

Bai et al. [2009]). These recent developments have greatly improved the

empirical performance of MCMC algorithms, allowing for a substantial ex-

pansion of the domain of application of Bayesian methods, mainly by trading

the simplicity of samplers for a reduction in Monte Carlo error. Partially

as a result of this trend, the popularity of MCMC software such as Win-

Bugs (Lunn et al. [2000]) or MrBayes (Huelsenbeck and Ronquist [2005])

has steadily increased.

In this paper we pursue an alternative strategy, by proposing a novel

class of multi-chain samplers using standard MCMC algorithms as building

blocks. These samplers do not employ temperatures as in Parallel Tempering

4

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



(PT) and they fully exploit cross-chain swap transitions to maximise mixing

of one chain, which we call the “mother” chain. The drawbacks of tempered

distributions are overcome by using different proposal distributions for each

auxilliary chain rather than different marginal target densities. This strat-

egy has two main advanteges. First, it allows mixing simulateneously over

many proposal settings, which is an important advantage when analytical

results on optimal proposal scaling or proposal adaptation are not easy to

derive. A unique optimal proposal scaling might not in fact even exist as

different proposal scalings might be optimal within different subsets of the

domain unless regularity conditions on the target distribution are met. For

instance, a single proposal kernel may not be optimal to explore both very

narrow and wide peaks. Second, our multi-chain strategy can incorporate

any combination of single-chain MCMC samplers. This is of great practical

relevance allowing for fast implementation of our methods using existing

computer code, especially in a research environment where distributed com-

puting is becoming mainstream (Ren and Orkoulas [2007], Hu and Tsui

[2008]).

In Section 1 we set out to motivate our approach by describing the frame-

work of the cross-chains swap transitions common to PT, replica Monte-

Carlo and Metropolis-coupled MCMC and we introduce the PHS algorithm.

We show that mixing of the PHS mother chain is maximised at every itera-

tion whereas its auxilliary chains are allowed to differ both in their proposal

distributions and in their rates of mutual interaction. Convergence of the

PHS transition kernel is proved. Waste-recycle and symmetrised versions of

the PHS algorithm (sPHS) are illustrated. Section 2 compares the accuracy

of single-chain Metropolis, PHS and of sPHS algorithm for sampling from

Gaussian mixtures and for highly correlated ’banana-shaped’ multivariate
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densities (Haario et al. [1999], Haario et al. [2001]). These examples evaluate

the relative accuracy of PHS respectively in case of multimodality and heavy

tails. Sections 3 and 4 illustrate two applications of PHS for Bayesian model

selection. First, we consider the standard problem of selecting significant

main effects for the Gaussian linear regression model. Second, we use PHS

to approximate marginal posterior inferences for the high level interactions

defining the structure of a treed survival model. Section 5 concludes the

paper discussing open problems and research opportunities in the field of

multiple chains MCMC samplers.

1 Tempered and untempered multi-chains MCMC

algorithms

In parallel to the development of novel single-chain samplers, the last twenty

years have also witnessed the birth of multi-chain MCMC algorithms. The

latter have been pioneered in conjunction with the use of tempered distribu-

tions by Swedensen and Wang [1987] and Hukushima and Nemoto [1996] in

statistical mechanics and by Geyer [1991] in statistics. For each value of a

chain index m ∈ [1,M ] with M < ∞ fixed, a tempered version of the target

posterior distribution is defined by “powering up” its density

fm(θ | X) =
f(θ | X)

1
Tm

Cm(X)
, (1)

where 1 = T1 ≤ T2 ≤ ... ≤ TM < ∞ is a vector of temperature levels and

Cm(X) =
∫

Θ fm(θ | X)dθ is a positive and finite normalising constant de-

pending on the temperature parameter Tm and on the data X. Here Tm

acts as a smoother of the target distribution, so that the heated densities

(1) have fatter tails and less pronounced modes than the target distribution
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of interest f1(θ | X). The key advantage of these algorithms is that detailed

balance (DB) is preserved with respect to the marginal target distribution

of each chain although different chains interact along the sampling process.

Within-chain DB is achieved by coupling an update step with a swap step us-

ing the standard Metropolis rule. Metropolis-coupled MCMC (Geyer [1991],

Hukushima and Nemoto [1996]), Parallel Tempering (Geyer and Thomp-

son [1995]) and replica Monte Carlo (Swedensen and Wang [1987]) have

been found to yield empirically reliable estimates especially when analogies

to physical temperatures can be exploited to tune the sampler. In sta-

tistical mechanics, temperatures are chosen with reference to the physical

properties of the systems being modeled, such as the energy barriers be-

tween electron excitation states implied by successive temperature levels.

The equilibrium distributions sampled for applications in statistics seldom

possess analogous interpretations, making temperature tuning a laborious

process (Geyer and Thompson [1995], Neal [1996]). A second limitation to

using auxilliary tempered distributions for Bayesian computations is that in

general it is difficult to check whether a tempered posterior density is still

proper. For instance, a sufficient condition ensuring Cm(X) < ∞ is that the

Kullback-Leibler divergence KL(f1, fm) =
∫

Θ f1(θ | X) log f1(θ|X)
fm(θ|X)dθ of the

untempered proper posterior density f1(θ | X) from its tempered version

fm(θ | X) is finite. When this is not the case, the Metropolis rule cannot be

applied meaningfully neither for within-chain updates nor for cross-chains

swaps. Even when tempered distributions are proper, recent developments

show that when their modes tend to be very narrow, no matter how high a

temperature is used mixing is always torpid (Woodard et al. [2009]). A third

limitation of these multiple-chains algorithms is that posterior estimates can

be calculated using all the M chains only if the samples arising from the
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tempered chains are appropriately reweighted.

In what follows we let the indicator si = 0 if each of the M chains is

updated independently at iteration i of the sampler and si = 1 if swap is

chosen instead. The proposal probability q
′

s(si | si−1) describes how the

two steps are combined along the sampling. For instance, Geyer [1991]

adopts the deterministic proposal q
′

s(si | si−1) = 1{si−1=0}, whereas Liu

[2001] defines an independent PT sampler using q
′

s(si | si−1) = s where

s ∈ (0, 1) is a fixed swap proposal rate. Let the indexes j and k range

over the set of chains (1, ...,M) and let θi,j indicate the state of chain j at

iteration i. We denote with q
′′

s (θi,j, θi,k) the probability that, at iteration i,

a swap is proposed between the current values of the chains with indexes

(j, k). In Geyer [1991], Hukushima and Nemoto [1996] and Liu [2001] this

proposal is taken to be uniform over all values of the ordered couple (j, k)

with k 6= j and. A swap is accepted with Metropolis probability

αs([θi,j , θi,k], [θi,k, θi,j]) = 1 ∧
fj(θi,k|X)fk(θi,j |X)
fj(θi,j |X)fk(θi,k |X) , (2)

ensuring the reversibility of the sampler with respect to its joint target

density µ(θM | X,T1, ..., TM ) =
∏M

m=1 fm(θ | X), where θM is the M -fold

product of the random variable θ. When the independent updates of chain m

are carried out using a single Metropolis-Hastings (MH) step with common

proposal q(·), the joint transition kernel of the PT sampler is

KPT (θM,i, θM,i+1) = (1 − q
′

s(si | si−1))

M
∏

m=1

q(θi+1,m | θi,m)αMH(θi,m, θi+1,m) +

+q
′

s(si | si−1)
M
∑

ji=1

M
∑

ki=1

ki 6=ji

q
′′

s (θji
, θki

)αs([θi,j, θi,k], [θi,k, θi,j]), (3)

where θM,i = [θi1, ..., θiM ] represents the joint state of all M chains at iter-

ation i and we assume without loss of generality that
∫

Θ αMH(θi,j , θ)q(θ |
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θi,j)dθ = 1. From (3) it can be seen that, with respect to the standard MH

algorithm, PT can increase mixing for all chains through their successful

swaps. Analogously to the MH algorithm, the irreducibility and aperiodic-

ity of (3) critically depend on the proposal distributions for within-chains

updates q(·) and on that of the cross-chains swaps q
′′

s (·). A proof of conver-

gence of the PT algorithm is sketched in Hukushima and Nemoto [1996].

1.1 Parallel Hierarchical Sampling

In this paper we consider an alternative class of multiple-chains MCMC

samplers which proceed by carrying out both the following two steps at

each iteration:

i) draw the index mi ∈ [2, ...,M ] from a discrete proposal distribution

q
′′

s (mi | mi−1) and swap the current value of chain mi with that of the

mother chain;

ii) update independently the remaining M − 2 chains each having the

same marginal target distribution f(θ | X).

At point i) above, we let q
′′

s (·) be the swap proposal to emphasize the analogy

with the PT algorithm. We label this class of algorithms parallel hierarchical

samplers (PHS) because the mother chain is given a prominent role and

the update of all chains is carried out in parallel analogously to PT. In

particular the swap step in PHS always involves the mother chain, which

represents the upper level in a hierarchy which lower level is composed of

an array of auxilliary chains. To provide a simple proof of the reversibility

of the PHS joint kernel, we assume that chains (2, ...,M) are updated using

a single MH step and that the transition kernels for these updates satisfy
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the conditions illustrated in Tierney [1994] so that they are irreducible and

aperiodic with respect to their common marginal target distribution f(θ |

X). In addition, we assume that the symmetric proposal distribution q
′′

s (·)

allows for swaps between the mother chain and any of the other chains.

Under these conditions the marginal transition kernel for the mother chain

of the PHS algorithm is irreducible and aperiodic with respect to its target

distribution. If the joint PHS transition kernel is also reversible with respect

to the product density µ(θM | X) having all marginals equal to f(θ | X),

then µ(θM | X) is its unique joint stationary distribution. The reversibility

of the PHS is proved in the following theorem.

Theorem 1 The PHS transition kernel satisfies detailed balance with re-

spect to the joint distribution having product density or probability mass

function µ(θM | X).

Proof The DB condition for the PHS algorithm is

µ(θM,i)

µ(θM,i+1)
=

KPHS(θM,i+1, θM,i)

KPHS(θM,i, θM,i+1)
, (4)

where KPHS(θM,i+1, θM,i) is the PHS joint transition kernel. When the

independent updates of the auxilliary chains are carried out via a MH step,

the PHS joint transition kernel is

KPHS(θM,i, θM,i+1) =
M
∑

mi+1=2

q
′′

s (mi+1 | mi) ×

∏M
j=2

j 6=mi+1

qj(θi+1,j | θi,j)αMH(θi,j, θi+1,j), (5)

where the within-chain proposal probabilities qj(·) and, as a consequence,

the MH acceptance probabilities αMH(θi,j , θi+1,j) are now dependent on the

chain index j. For each chain here we assume without loss of generality
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that
∫

θ
αMH(θi,j , θ)qj(θ | θi,j)dθ = 1. Each summand in (5) is the product

of the marginal transition kernel for the swap transition and those of the

(M − 2) independent MH updates for the remaining chains. The former

coincides with the proposal q
′′

s (mi | mi−1) because the PHS swap acceptance

ratio is equal to one. This is a straightforward simplification of (2) when

all temperatures are equal to 1. Under (5) the DB condition (4) can be

rewritten as

M
∑

mi=2

q
′′

s (mi | mi−1)

M
∏

j=2

j 6=mi

f(θi,j | X)qj(θi+1,j | θi,j)αMH(θi,j, θi+1,j) =

=

M
∑

mi=2

q
′′

s (mi−1 | mi)

M
∏

j=2

j 6=mi−1

f(θi+1,j | X)qj(θi,j | θi+1,j)αMH(θi+1,j, θi,j). (6)

For any given value of mi, by the reversibility of the MH transition kernels

with respect to the marginal density f(θ | X), the M − 2 transition prob-

abilities on the left-hand side of (6) are equal to their corresponding terms

on the right-hand side. By taking q
′′

s (·) symmetric with respect to mi and

mi−1, for all values of mi each summand on the left-hand side of (6) equals

its corresponding term on the right-hand side, so that the equality (6) holds.

As can be seen from equation (5), the acceptance probability of the mother

chain is one since this chain is implementing an independence MH algorithm

using, as proposals, the MCMC samples accepted by a randomly chosen aux-

illiary chain. When the auxiliary chains are in stationarity, these proposals

are indeed samples from the target and thus their acceptance probability is

one. In other words, the mother chain is implementing exact Monte Carlo

sampling of its marginal target distribution. From a different perspective,

by picking its values from the current states of the auxilliary chains, the PHS
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mother chain destroys the autocorrelation structure which is typically im-

plied by Metropolis-Hastings type of algorithms. We emphasize this point in

the next section by comparing the empirical autocorrelation functions (ACF)

and the integrated auto-correlation time (IAT) of the chains generated by

the PHS and the MH.

Equation (5) also shows that, as for the MH and PT algorithms, PHS

does not require knowledge of the finite normalising constant of its marginal

target distributions C(X) =
∫

Θ f(θ | X) and this makes it a suitable sam-

pler for Bayesian applications. Furthermore, in light of the specific form

of the joint PHS target density µ(θM | X) the proposal distribution for

within-chains updates in (5) can be generalised to qj(θi+1,j | θi,−j), where

θi,−j = (θi,1, ..., θi,j−1, θi,j+1, ..., θi,M ). This allows introducing mutual repul-

sion among the values proposed for the update of different chains along the

lines of Green and Han [1991]. For example, when the set of conditional

within-chain proposals qj(·) are Gaussian, they can be constructed so that

the joint proposal for the update for chains (2, ...,M) is multivariate Normal

with negative correlations.

Equations (3) and (5) show that the PHS swap proposal has a simpler

form than that of PT. This is because at each iteration the PHS transition

kernel mixes both update and swap steps whereas in PT they are alternated

according to the proposal probability q
′

s(si | si−1). Thus, unlike PT, the

PHS algorithm does not create unnecessary competition between local and

global mixing when the update steps generate local transitions and the swaps

produce larger jumps.

Whilst Theorem 1 proves reversibility of the joint PHS kernel, station-

arity of each auxilliary chain with respect to their marginal target can be

proved directly using each factor of the innermost product in (5). This is
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shown in the Corollary below.

Corollary 1 Each of the auxilliary chains of the PHS algorithm having

transition kernel (5) is stationary with respect to the distribution f(θ | X).

Proof For any value θ∗ ∈ Θ, the stationarity condition for the auxilliary

chain j = 2, ...,M + 1 is

∫

Θ
f(θ | X)KPHS,j(θ, θ∗)dθ = f(θ∗ | X), (7)

where the transition kernel of the j-th chain is

KPHS,j(θ, θ∗) = q
′′

s (j | m)f(θ∗ | X) +

(1 − q
′′

s (j | m))qj(θ
∗ | θ)αMH(θ, θ∗). (8)

Substituting (8) in (7) and using

∫

Θ
f(θ | X)qj(θ

∗ | θ)αMH(θ, θ∗)dθ = f(θ∗ | X),

the identity of the left and right terms of equation (7) is verified.

In conjunction with the assumed aperiodicity condition and with the re-

versibility of the PHS kernel, this Corollary implies that the distribution

of interest, f(θ | X), is the unique stationary distribution of any of the

auxilliary PHS chains. Since the mother chain performs exact Monte Carlo

sampling drawing from the auxilliary chains, (7) implies that the same target

is the unique stationary distribution of the mother chain.

The PHS algorithm illustrated at points i) and ii) in this section and hav-

ing transition kernel (5) represents one particular algorithm within a large

class of parallel samplers which may differ for their within-chain updating

rules and for their swapping rules. In what follows, we focus on comparing
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the performance of this PHS algorithm with that of its symmetrised version

(sPHS). The latter differs from the above definition of PHS in that at each

iteration two chains are chosen uniformly at random and their current states

are swapped, whereas all other chains are updated independently. With this

symmetrised sampler, the mother chain loses its prominent role as the clear-

ing house for swaps between any other pair of chains. Proof of convergence

of the sPHS transition kernel can be derived along the lines of Theorem 1

above and it is not reported here.

2 Illustrative examples: multimodality and heavy

tails

In this section we compare the empirical accuracy of single-chain MH ver-

sus PHS algorithms for generating samples from multimodal mixtures of

Gaussian densities and from the heavy-tailed multivariate distributions of

Haario et al. [1999] and Haario et al. [2001]. These two examples have been

carefully constructed so as to compare the empirical accuracy of single-chain

and multi-chain samplers having fixed their common computational cost.

2.1 MCMC samples from multimodal Gaussian mixtures

Due to their exponential tail behaviour, Gaussian mixtures provide a well-

suited scenario for evaluating a sampler’s ability to explore multimodal land-

scapes when the troughs between different modes are deep and far apart.

In this example we consider bivariate Gaussian mixtures so as to be able to

represent graphically their 2-dimensional probability contours. The number

of components of the target mixture used in this section was set to 10, their
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bivariate means µk for k = 1, ..., 10 were generated uniformly at random

over the square (−10, 10)2 and their variances were all set to 1. The co-

variance between the first and second dimension of each mixture component

is Σk(1, 2) = Σk(2, 1) = k
M+1sign(u ≤ 0.5) where u ∼ Uniform(0, 1) and

k = 1, ..., 10, so that the two dimensions of the successive mixture com-

ponents are progressively more correlated, either positively or negatively.

The 10 mixture weights wk were generated uniformly at random and then

normalised so as to sum to 1. Figure 1 shows the probability contour of

this Gaussian mixture density. As expected, different bivariate modes are

separated by throughs where the density is numerically zero.
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Figure 1: probability contour of the 10-components bivariate Gaussian mixture

target density. Sampling from this distribution by single chain random walk algo-

rithms is made difficult by the deep throughs between different modes where the

target density is almost zero.
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To generate samples from this Gaussian mixture via MCMC, we first use a

standard random walk MH algorithm whith proposal distribution q(θi | δ)

taken to be Normal with mean equal to the current state θi and variance δ.

Here we let δ = 3, ensuring an average acceptance rate close to the optimal

0.234 (Roberts and Rosenthal [2001]).

As a first alternative to this vanilla algorithm we consider an other

Metropolis-Hastings sampler using a version of the above proposal enriched

by a Langenvin term (Roberts and Tweedie [1996a]). At each iteration i this

random walk proposal is Normal with mean θi+∇ log f(θi | w1:10, µ1:10,Σ1:10)

and variance δ, where log f(θi | w1:10, µ1:10,Σ1:10) is the logarithm of the

probability density for the Gaussian mixture and ∇ stands for the matrix

of its partial derivatives with respect to θ. Using the same random walk

proposal distribution with δ = 3 we attain an acceptance rate comparable

to that of the plain MH sampler.

We compare the accuracy of these two single-chain samplers with that of

PHS as described in the previous section and with a symmetrised version of

PHS (sPHS). The latter differs from the above definition of PHS in that at

each iteration two chains are chosen uniformly at random and their current

states are swapped, whereas all other chains are updated independently.

With this symmetrised sampler, the mother chain loses its prominent role

as the clearing house for swaps between any other pair of chains. For the

within-chain updates of both parallel algorithms we use the same type of

random walk proposal qm(θi,j | δj) as for the MH algorithm but we let the

variance δj be chain-specific. In what follows we let δj = j
4 for j = 2, ...,M

and M = 20, so as to cover from relatively small to large proposal variances,

including that of the vanilla random walk MH sampler. This range of values

for the spread of the within-chain proposal distributions leads to acceptance
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rates within the range (0.15, 0.76).

We calculate Monte Carlo estimates of the two-dimensional Gaussian

mixture mean using respectively the samples generated by the MH algo-

rithm, the mother chain of the PHS algorithm and the samples generated

by all chains of the sPHS algorithm. In a waste-recycle perspective, pooling

of the sPHS samples is implemented using two different weighting schemes.

In the first scheme we calculate the näıve average of the Monte Carlo esti-

mate of each chain

θ̂N =

∑M
j=1 θ̂j

M
, (9)

where θ̂j is the empirical two-dimensional mean vector calculated from chain

j of the sPHS sampler. In the second scheme, we calculate the weighted

Monte carlo estimate

θ̂S,i =
M
∑

j=1

wi,j θ̂i,j, (10)

where θ̂i,j is the average of chain j for the mean component i = 1, 2 and the

weight associated to this component of the mean estimate of chain j is

wi,j =

1
IAT (i,j)

∑M
j=1

1
IAT (i,j)

, (11)

and IAT (i, j) is the integrated auto-correlation time of component i of chain

j (Sokal [1996]). The latter is estimated using the Gamma method of Wolff

[2004]. The pooled estimator θ̂S relatively downweights estimates of the

mean vector associated to the poorly mixing chains. This weighting scheme

is useful to reduce the Monte Carlo error of the pooled mean estimator when

the proposals chosen for the within-chains updates produce substantially

different mixing behaviours.
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We compare the empirical accuracy of the three algorithms by repeating

these sampling processes for 100 independent runs. In order to make the

computational cost for all samplers comparable, each repetition the PHS and

sPHS algorithms was run 5000 iterations whereas those of the MH algorithm

(random walk and Langevin) were run for 5000×M iterations using M = 20

auxilliary chains. As a measure of accuracy of a sampler we use its empirical

mean square error (MSE) about the mean

MSE =

∑100
j=1(θT − Êj(θ))(θT − Êj(θ))′

100
, (12)

where θT is the true value of the 2-dimensional Gaussian mixture mean and

Êj(θ) is the estimate of θ derived from the jth repetition of the sampling

process obtained from the jth repetition of the sampling process using either

of the random walk MH algorithm (rwMH), the random walk Langevin

MH algorithm (rwLMH), the PHS mother chain (PHSm), the pooled PHS

estimators using the the näıve (PHSN) and Sokal (PHSS) weights and the

pooled sPHS estimators (sPHSN, sPHSS).

Table 1 reports the MSE estimates arising from this simulation experi-

ment. Having fixed a common computational cost, the accuracy of the mean

estimates of either of the multiple-chains samplers is found to be superior

at least by one order of magnitude with respect to that of the estimates

obtained by the MH algorithms. Table 1 also shows that the symmetrised

parallel sampler sPHS (last two rows) is in this case slightly less accurate

than its asymmetric version PHS (third to fifth rows). Finally, the empir-

ical accuracy of the weighted estimators PHSN and PHSS is found to be

comparable to those of the PHS mother chain. This is a somewhat sur-

prising result, since the weighted estimates are derived using 20 times as

many MCMC samples. The equivalence of the empirical MSEs of the three
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estimators uggests that the PHS mother chain by construction efficiently in-

corporates all the information included in all samples of its auxilliary chains.

The MSE discrepancies shown in Table 1 are essentially due to the fact that

Sampler MSE

rwMH 9.54

rwLMH 12.61

PHSm 0.75

PHSN 0.77

PHSS 0.78

sPHSN 0.94

sPHSS 0.91

Table 1: empirical mean squared errors of the MCMC estimator for the two-

dimensional Gaussian mixture mean. The accuracy of the multiple-chains samplers

is found to be superior to that of the estimates obtained by the MH algorithms

having fixed a common computational cost.

the draws included in the PHS mother chain are far less correlated than

those of the single chain algorithms. This point is illustrated in Figure 2,

which shows the empirical autocorrelation functions (ACF) of one of the

generated MH chains, of one PHS mother chain and of the auxilliary chain

having the same proposal spread as that of the MH algorithm. Finally, Ta-

ble 1 shows that the symmetrised parallel sampler sPHS (last two rows) is

in this case slightly less accurate than its asymmetric version PHS (third to

fifth rows).
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Figure 2: empirical ACF for chains sampling the posterior distribution of each

component of the bivariate Gaussian mixture mean. The serial dependence gener-

ated by the random walk MH algorithm (first row) and to a lesser extent by the

PHS auxilliary chain (second row) is contrasted with the lack of correlation of the

PHS mother chain (last row). ation of the PHS mother chain (last row). These

differences are mirrored by the corresponding IAT, which are (177.97, 143.05) for

MH, (17.10, 13.14) for the auxilliary PHS chain and (0.48, 0.47) for the PHS mother

chain. 20
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Figure 3 illustrates the empirical relationship between the accuracy of the

PHS mother chain estimates and the number of auxilliary chains for this

Gaussian mixture example. The MSE of the mean estimator decreases until

the number of auxilliary chains reaches the number of Gaussian components

in the target density, whereas for M > 10 the sampler achieves almost no

further gains in accuracy. These results suggest that, when a target prob-

ability density is multimodal, multiple-chain samplers where the number of

auxilliary chains roughly matches the number of modes of their target can

yield much more accurate Monte Carlo estimates with respect to single-chain

samplers having the same computational cost.

2.2 MCMC samples from heavy-tailed Gaussian mixtures

In this section we compare the empirical MSEs (12) for the MH, PHS and

sPHS algorithms when their multidimensional target distribution is the non-

linear transformation of a Gaussian distribution of Haario et al. [1999]. As

opposed to the previous example, here we focus on evaluating the samplers’

accuracy when their target density is heavy-tailed. Let X be a d-dimensional

Gaussian random variable with diagonal covariance matrix C having all non-

zero entries equal to one but for its upper left entry, which is set to 100.

The probability density of its non-linear transformation

Y = [X1,X2 + b(X2
1 − 100),X3, ...,Xd],

is such that the contours of its first two dimensions are twisted and elongated

in a shape resembling that of a symmetric banana. Its non-linearity increase

with the value of the hyper-parameter b. In this section we use d = 8 and
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Figure 3: empirical relationship between accuracy of the PHS mother chain esti-

mates (MSE) and number of auxilliary chains for this Gaussian mixture example.

The decrease in the MSE of the mean estimator suggests that multiple-chain sam-

plers where the number of auxilliary chains roughly matches the number of modes

of their target can yield much more accurate Monte Carlo estimates with respect

to single-chain samplers having the same computational cost.
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b = 0.03 so that our numerical results can be compared directly with Haario

et al. [1999] and Haario et al. [2001].

A comparative evaluation of the empirical precision for MH, PHS and

sPHS was carried out by estimating the MSEs of their respective estimators

for the 8-dimensional mean, as in section 2.1. Each sampler was run 100

independent times using the same Gaussian proposal distributions and the

same number of iterations as in the previous example. The spread of the uni-

form random walk proposal distribution for all samplers was set at 1, yielding

a MH acceptance ratio of approximately 0.4. The starting point for all sam-

plers was set at the origin of the target support R8. The left panel in Figure

4 shows the 5000 samples of the PHS mother chain for the first and sec-

ond dimensions of the banana-shaped target distribution, closely matching

the theoretical contours represented in Haario et al. [1999]. Table 2 reports

the empirical MSEs for the mean estimators of the random walk MH algo-

rithm (rwMH), the adaptive random walk MH algorithm (arwMH of Haario

et al. [1999]), of the PHS mother chain (PHSm), the PHS näıve weighted

mean estimator (PHSN), PHS Sokal weighted estimator (PHSS), the sPHS

näıve weighted estimator (sPHSN) and the sPHS Sokal weighted estimator

(sPHSS). As in the previous example, having controlled for computational

cost, the two versions of the parallel sampler using 20 auxilliary chains yield

mean estimators of comparably better precision with respect to those of the

random-walk MH algorithm. The last two rows show that, unlike for the

multi-modal Gaussian mixture example the symmetrised sampler sPHS is

found to be slightly more accurate than PHS (third to fifth rows). Table

2 also shows that the accuracy of the single-chain adaptive MH sampler is

much better than for the random-walk MH, its empirical MSE being of the

same order of magnitude than that of the multiple-chains samplers. Finally,
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as in Table 1, the MSEs of the weighted estimators PHSN and PHSS are

comparable to those derived from the PHs mother chain. The right panel in

Sampler MSE

rwMH 23.82

rwaMH 5.22

PHSm 4.89

PHSN 4.77

PHSS 4.92

sPHSN 3.15

sPHSS 3.15

Table 2: empirical mean squared errors of the MCMC estimator for the eight-

dimensional banana-shaped distribution. The two versions of the parallel sampler

using 20 auxilliary chains yield mean estimators of comparably better precision with

respect to those of the random-walk MH algorithm. The precision of the multiple

chains samplers is found to be comparable to that of the single-chain adaptive MH

sampler.

Figure 4 illustrates the empirical relationship between the number of aux-

illiary chains and MSE of the mean PHSm estimator. As for the case of

multimodality, when the target density is heavy-tailed parallelisation yields

more accurate MCMC estimators of the mean although the successive gains

in precision decrease as the number of chains grows.
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Figure 4: on the left, 5000 samples of the PHS mother chain for the first and second

dimensions of the symmetric banana-shaped target distribution, closely matching

the theoretical contours represented in Haario et al. [1999]. On the right, empirical

relationship between the number of auxilliary chains and MSE of the mean PHSm

estimator. for this heavy-tailed target density parallelisation yields more accurate

MCMC estimators of the mean although the successive gains in precision decrease

as the number of chains grows.
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3 Application to the selection of covariates for the

Bayesian linear regression model

The selection of main effects for the Bayesian Gaussian linear regression has

been addressed using MCMC methods by Mitchell and Beauchamp [1988],

Smith and Kohn [1996], George and McCulloch [1993], Carlin and Chib

[1995], George and McCulloch [1997], Raftery et al. [1997], Kuo and Mallick

[1998], Dellaportas et al. [2002] and Clyde and George [2004] among many

others.

Using the same notation as in George and McCulloch [1997], we let the

distribution of the n-dimensional random vector Y be multivariate Gaus-

sian with mean Xγβγ and covariance matrix σ2In, being (σ, β, γ) a priori

unknown. The p-dimensional model index γ has elements γj taking value

one if the jth covariate is used for the computation of the mean of Y and

zero otherwise. The binary vector γ can thus take 2p distinct values. Here

βγ and Xγ include respectively the elements of the p-dimensional column

vector β associated to the statistically significant components of γ and the

corresponding columns of X. The latter is a n × p matrix representing p

potential predictors for the mean of Y . Within this framework, the vari-

able selection problem is adressed in the current Bayesian literature using

the marginal model inclusion probabilities P (γj | Y,X) where j = 1, ..., p.

These measure the marginal fitness of each covariate to explain the outcome

data Y using the assumed linear model structure. When the number of

potential predictors is large, model inclusion probabilities can be used to

select a smaller number of covariates to focus the modeling effort. As such,

these probabilities can be seen as useful descriptors of the marginal linear

relationships between each covariate and the outcome variable.
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When the model space is too large for implementing exhaustive search

algorithms, model inclusion probabilities can be approximated via MCMC

by sampling from the model space. In this section we evaluate the reliability

of the MH sampler versus the PHS for generating draws from the marginal

posterior probability of the model index,

P (γ | Y,X) ∝ P (γ)P (Y | γ,X).

Here we adopt the same form of the marginal posterior probability of γ as

in Nott and Green [2004], that is

P (γ | Y,X) ∝ (1 + n)−
S(γ)

2

(

Y
′
Y −

n

n + 1
Y

′
Xγ(X

′

γXγ)−1X
′

γY

)−n
2

, (13)

where S(γ) =
∑p

j=1 γj As noted by George and McCulloch [1997], Denison

et al. [1998] and Nott and Green [2004], efficient MCMC simulation from

the above marginal probability mass function is hampered by the sheer di-

mension of the model space and by the presence of collinearity among the p

model dimensions (Smith and Kohn [1996]). In particular, when collinear-

ity is sufficiently strong or when the sample size is less than the number of

covariates p, the target distribution (13) can be highly multimodal. In this

situation the example in section 2 suggests that single-chains samplers can

yield unreliable results.

Here we compare the consistency of the MH and PHS samplers using a

set of physiological measurements taken at sea level in preparation to a care-

fully designed research expedition to mount Everest (Grocott et al. [2008]).

We focus on selecting significant predictors of the blood concentration of

lactic acid at the anaerobic respiration threshold (LAT), which is related to

endurance performance (Yoshida et al. [1987]). This study is motivated by

the fact that, although the biological mechanisms leading to the production
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of lactic acid in tissues are well characterised, the correlations between LAT

and other metabolites in blood are less understood. The data reports the

blood LAT along with the concentrations of 50 relevant metabolites for 171

subjects. The outcome variable LAT and its covariates were log-transformed

prior to analysing the data using model (13). As shown in Figure 5, the com-

plexity of this data does not arise from a very large number of covariates as

in West [2003] but in the collinearity among the predictors, which exhibit

correlations ranging from −0.98 up to 0.99.
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Figure 5: empirical correlations among the 50 LAT predictors. The intrinsic bio-

logical relationships among many of the metabolites result in a strong collinearity

of their measured blood concentrations, ranging from −0.98 up to 0.99.

Consistency of the MCMC estimates for the marginal model inclusion prob-

abilities can be assessed using their Monte Carlo standard errors (MCSEs).
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As illustrated by Geweke [1992], Nott and Green [2004] and by George and

McCulloch [1997], the MCSE for the inclusion probability of the jth predic-

tor is

MCSE(γ̄j) =

√

√

√

√

1

N

∑

|h|<N

(

1 −
|h|

N

)

Aj(h),

where γ̄j =
∑N

i=1 γi
j/N , γi

j is the ith MCMC draw for the jth covariate and

Aj(h) is the lag h autocovariance of the chain of realisations for {γj}
N
j=1. For

ergodic Markov chains, as N → ∞ the MCSE converges, up to an additive

constant independent of its transition kernel, to the MCMC standard error

σg,K (Mira and Geyer [1999]) where g(γj) = E(γj | Y,X) for this example.

Empirical MCSEs are calculated in this section using the empirical auto-

covariances of the chains representing inclusion or exclusion of each LAT

covariate.

Independent batches of PHS and MH chains were run to estimate each

covariate’s model inclusion frequencies and their empirical MCSE. The for-

mer multi-chain sampler was run for twenty thousand iterations using fifty

auxilliary chains and the length of the MH algorithm chains was set at one

million iterations to match computational costs. Sampling was repeated

twice so as to visually compare the consistency of the estimated model in-

clusion frequencies for each sampler. The prior inclusion probabilities were

set at P (γj = 1) = 0.5 for j = 1, ..., 50 for both algorithms. The MH

algorithm was implemented using an independent sampler proposal with in-

clusion probability 0.5 for each covariate. The same proposal was used for

all within-chain updates of the PHS algorithm, whereas swaps between the

current states of all chains were proposed uniformly at random. The top

panels in Figure 6 compare the estimated model inclusion frequencies for

the 50 LAT covariates respectively arising from the two independent runs of
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the MH algorithm and of the PHS mother chain. The estimates of perfectly

consistent samplers would be aligned exaclty on the 45 degrees dotted line in

each plot. The correlation between the estimated inclusion frequencies ob-

tained by the two runs of the samplers are respectively 0.27 for MH and 0.93

for the PHS mother chain, suggesting that PHS produces far more reliable

inferences for the model inclusion probabilities with respect to MH in pres-

ence of strong collinearity. This conclusion is supported by the bottom-left

panel in Figure 6, which shows that the ratio of the estimated MCSEs for

the PHS and MH algorithms is consistently less than one. The bottom-right

panel in Figure 6 represents the PHS estimated model inclusion frequencies

for the 50 LAT covariates. Using the predictively optimal threshold of 0.5

inclusion probability (Barbieri and Berger [2004]) only two of the 50 covari-

ates, that are the work rate and the respiratory exchange ratio, are found

significant.

4 Application to the estimation of the structure

of a survival CART model

In regression and classification trees (CART) a sample is clustered in dis-

joint sets called leaves. These are the final nodes of a single-rooted binary

partition of the covariates space which is referred to as the tree structure.

Within each leaf, the response variable is modeled consistently with the re-

gression, or classification or with the survival analysis frameworks (Breiman

et al. [1984]). As opposed to standard parametric regression methods, such

as those entertained in section 4, CART trees are tailored to inferring in-
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Figure 6: on top, estimated model inclusion frequencies for the 50 LAT covariates

arising from two independent runs respectively of the MH algorithm and of the

PHS mother chain. The correlation between the estimated inclusion frequencies

obtained by the two runs of the samplers are respectively 0.27 for MH and 0.93 for

the PHS mother chain, suggesting that the latter sampler produces far more reliable

inferences for the model inclusion probabilities with respect to singel chain MH.

This conclusion is supported by the bottom-left panel, which shows that the ratio

of the Monte Carlo standard errors for the PHS and MH algorithms is consistently

less than one. Bottom right: PHS estimated model inclusion frequencies for the 50

LAT covariates. Using the predictively optimal threshold of 0.5 only the work rate

and the respiratory exchange ratio, are found as significant LAT predictors.
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teractions among different covariates to fit the statistics of the response

variable within different leaves. Tree models also form the basis of several

non-parametric classification and regression methods, among which random

forests (Ho [1998], Breiman [2001]), bagging (Breiman [1996]) and boost-

ing (Breiman [2004]). Bayesian CART models appeared in the literature

in Chipman et al. [1998] and Denison et al. [1998]. The MCMC model

search algorithms developed in these two papers regard the tree struc-

ture as an unknown parameter and explore its marginal posterior distri-

bution using the MH algorithm. Here we focus on tree models for randomly

right-censored survival data (Gordon and Olshen [1995], Davis and Ander-

son [1989], M.Leblanch and J.Crowley [1992a], M.Leblanch and J.Crowley

[1992b]). The first Bayesian survival tree model has been proposed by

Pittman et al. [2004], who adopted a Weibull leaf sampling density and

a step-wise greedy model search algorithm based on the evaluation of all the

possible splits within each node. The main strength of this model search

algorithm is that it quickly locates the most prominent posterior modes

within large tree spaces. Its main weakness is that, when a large num-

ber of low posterior probability models yield predictions departing from

those of the modal trees, predictive intervals based on maximum a posteri-

ori (MAP) trees underestimate the uncertainty associated to future suvival

events. The key difficulty encountered by single chain random walk MCMC

tree search methods is in fact their limited ability to effectively explore such

highly multimodal model spaces. From this perspective, a key advantage

of multi-chain MCMC algorithms for tree model search is that they allow a

variety of cross-chains transitions swapping features of the current state of

different chains, such as tree branches or the covariate thresholds defining

different data clusters. Therefore, thanks to their cross-chains transitions,
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multi-chain samplers can only improve mixing in tree space with respect to

their single-chain analogues. Here we implement a fully Bayesian analysis

of the marginal tree posterior distribution using the PHS algorithm under

an exponential leaf likelihood. The latter allows a closed-form evaluation of

the tree marginal likelihood, which is a key requirement for implementing

computationally efficient MCMC model search algorithms.

4.1 Tree structure marginal posterior distribution

Let the survival times {tj}
n
j=1 be independent random variables condition-

ally on the tree structure and on the exponential leaf parameters. In what

follows a tree structure will be represented by the couple (ℓ, ζ) where ℓ is the

number of tree leaves and ζ = [ζ1, ..., ζℓ] is a collection of disjoint subsets

of the covariate space X corresponding to each of the leaves. Under the

exponential likelihood, the joint sampling density of the survival times is

f(t | X, δ, ℓ, ζ, λζ ) =
ℓ

∏

k=1

n
∏

j=1

(

λ
δj

k e−λktj
)1{Xj∈ζk}

, (14)

where λζ = [λ1, ..., λℓ] is the ℓ-dimensional vector of exponential parameters

for each of the tree leaves and δj takes value 1 for exact observations and 0

for right censored observations. The indicator 1{Xj∈ζk} is 1 if the covariate

profile of the jth subject is included in ζk ⊆ X and 0 otherwise. Under a dis-

crete uniform prior for the tree structure, the marginal posterior probability

P (ℓ, ζ | t,X, δ) can be obtained, up to a multiplicative constant, by inte-

grating (14) with respect to the conditional prior distribution for the array

of leaf parameters λζ . To derive a closed-form expression of the marginal

tree likelihood we adopt an independent conjugate Gamma prior for each
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leaf with probability density

P (λζ | ℓ) =

ℓ
∏

k=1

bak

k

Γ(ak)
λak−1

k e−λkbk .

For this specification of the prior structure, the joint posterior of the tree

structure is

P (ℓ, ζ | t,X, δ) ∝
ℓ

∏

k=1

bak

k

Γ(ak)

Γ(a +
∑n

j=1 δj1{Xj∈ζk})

(b +
∑n

j=1 tj1{Xj∈ζk})
a+

Pn
j=1 δj1{Xj∈ζk}

. (15)

A natural extension of model (15) yielding a closed-form likelihood function

is to assume Weibull-distributed survival times as in Pittman et al. [2004]

but in this case the marginal tree likelihood cannot be derived in closed form

as no conjugate prior is available for the Weibull shape parameter. Approx-

imate marginal tree likelihoods can be derived in this case using the Laplace

or the Schwartz approximations. Here it can be noted that the penalty

term of both these approximations increase with the number of tree leaves

ℓ but for any fixed number of leaves the Schwartz approximation favours

trees allocating the data more unevenly across leaves whereas the Laplace

approximation does not favour unbalanced trees. In light of this difference,

when the cluster sizes defined by the number of observations within each tree

leaf are of interest, under a Weibull leaf likelihood we find recommendable

adopting the Laplace approximation to the marginal posterior in conjunc-

tion with a suitable prior on the volume of the tree structure parameters

(ζ1, ..., ζℓ).

4.2 Marginal posterior inference for the tree structure

The main challenge for constructing efficient within-chain proposal distri-

butions for CART models is the lack of a natural distance metric between
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different trees. This general issue has been noted, for instance, by Brooks

et al. [2003] in the context of the reversible jump MCMC algorithm (Green

[1995]). The within-chain proposal distribution used here generalizes the

approaches of Denison et al. [1998] and Chipman et al. [1998] by devising

two additional within-chain transitions. For the within-chain updates we

propose a transition within the tree space using the following five moves:

1) Insert: sample a leaf at random and insert a new split by randomly

selecting a new splitting rule.

2) Delete: sample at random a leaf pair with common parent and at most

one child split and delete it.

3) Change: resample at random one splitting rule.

4) Permute: sample a random number of splits and permute at random

their splitting rules.

5) Graft: sample at random one of the tree branches and graft it to one

of the leaves of a different branch.

Chipman et al. [1998] noted that their MCMC algorithm can effectively

resample the splitting rules of nodes close to the tree leaves but the rules

defining splits close to the tree root are seldom replaced. In our specification

of the within-chain transitions, move 4) aims at improving sampling of the

splitting rules at all levels of the tree structure. Furthermore, the fifth move

type allows the sampler to jump to a tree structure distinct from the current

one without changing any of its splitting rules but only their combinations.

To take full advantage of our multiple-chains algorithm, we also devised

two types of cross-chains transitions. The first is the cross-chains version of
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the transitions of types 1), 3) and 5), swapping the elements of the tree struc-

ture required to perform corresponding pairs of transitions across chains.

The second class of cross-chains transitions includes a whole tree swap be-

tween chains.

At iteration i, the PHS algorithm for this example proceeds as follows:

i) choose at random one of the auxilliary chains mi ∈ [2,M ] and propose

at random one of the two cross-chains moves, accepting the swap with

probability 1.

ii) update each of the remaining M−2 chains independently using the five

types of within-chain transitions and the stndard Metropoilis-Hastings

acceptance probability.

4.3 Analysis of a set of cancer survival times

Colorectal adenocarcinoma ranks second as a cause of death due to cancer in

the western world and liver metastasis is the main cause of death in patients

with colorectal cancer (Pasetto et al. [2003]). In this section we analyse a

set of 622 exact and right-censored survival times of patients with liver

metastases from a colorectal primary tumor. The data were collected along

with their clinical profiles by the International Association Against Cancer

(http://www.uicc.org). Table 1 reports a description of the nine available

clinical covariates. This survival data has been analyzed among others by

Hermanek and Gall [1990] using non-parametric methods, by Antoniadis

et al. [1999] using their wavelet-based method for estimating the survival

density and the instantaneous hazard function and by Kottas [2006], who

employed a Dirichlet process mixture of Weibull distributions to derive a

Bayesian non-parametric estimate of the survival density and of the hazard
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function. Haupt and Mansmann [1995] employed this dataset to illustrate

the non-parametric tree fitting techniques for survival data implemented in

the S-plus function survcart. This Section shows that the estimates of (b, ζ)

obtained using the PHS algorithm and the approximate marginal posterior

(15) discriminate statistically different survival groups based on differences

among their covariate profiles. According to the latest EUROCARE de-

Symbol Description Range

DLM Diameter largest LM (1, 20)mm

AGE Age (18, 88)years

TD Diagnosis of LM synchrone/metachron with CPT

SEX Gender M = 55.8%, F = 44.2%

LI Lobar involvement unilobar/bilobar

NLM Number of LM (1, 20)

LRD Locoregional disease yes/no

TNM Metastatic stage local/regional/distant

LOC Location PT colon/rectum

Table 3: description of the covariates for the liver dataset. The data include several

types of clinical covariates, such as continuous (DLM), discrete (AGE, NLM) and

categorical (all others). This analysis aims at discriminating statistically different

survival groups based on differences among their covariate profiles.

scriptive study, colorectal cancer survival rates at five years from surgery are

consistently close to 50% for all the monitored European countries (Berrino

et al. [2009], Sant et al. [2009]). We incorporate this information in the anal-

ysis of the present data by setting the Gamma prior hyper-parameters of the

exponential survival rates within the tree leaves to ak = 9 and bk = 0.1 for
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k = 1, ..., ℓ. Using this informative prior, under the exponential likelihood

we obtain a prior predictive median survival time of roughly 60 months,

reflecting the descriptive statistic reported by the EUROCARE study.

A PHS using nine auxilliary chains was run for two hundred thousand it-

erations, the starting tree for each chain being the root model. The proposal

distribution for the cross-chain swaps was uniform over the chain indexes

(2, ..., 10) and also uniform over the two implemented swap moves. On the

top row, Figure 7 shows the unnormalised log posterior tree probability for

the models visited by the mother chain, plotted respectively versus the it-

eration index and versus their number of leaves. Posterior sampling moved

quickly towards areas of high marginal posterior probability models, which

cluster the data over a range of 4 to 6 groups. The bottom plot in Figure 8

shows the estimated marginal inclusion probabilities for the nine covariates.

The number of liver metastases, lobar involvement and a synchronous de-

tection of the liver metastases along with the primary tumor appear to have

prominent prognostic significance with respect to the remaining covariates,

suggesting that the main determinant of survival for this sample are the

extent of disease at the time of surgery and the accuracy of the diagnosis.

The estimated MAP tree clusters the 622 subjects into ℓ̂MAP = 4 groups,

respectively defined by the subsets

ζ̂1 = {NLM > 1}

ζ̂2 = {NLM ≤ 1,DLM > 7}

ζ̂3 = {NLM ≤ 1,DLM ≤ 7, TD = 0}

ζ̂4 = {NLM ≤ 1,DLM ≤ 7, TD = 1}
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Figure 7: unnormalised log posterior tree probability for the models visited by

the PHS mother chain plotted versus the sampler iteration index (top left) and

the number of tree leaves (top right). PHS sampling using 9 auxilliary chains

moves quickly towards areas of high marginal posterior probability models, which

cluster the data over a range of 4 to 6 groups. Bottom plot: estimated marginal

inclusion probabilities for the nine covariates. The number of liver metastases,

lobar involvement and a synchronous detection of the liver metastases along with

the primary tumor appear to have prominent prognostic significance with respect

to the remaining covariates, suggesting that the main determinant of survival for

this sample are the extent of disease at the time of surgery and the accuracy of the

diagnosis.

39

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



Figure 9 shows that the estimated MAP tree separates the short-term sur-

vivors in leaf 1, who are characterised by a larger number of liver metastases

of large size, from the long-term survivors in leaf 4, who present a few local

metastases of small size without further symptoms. Leaves 2 and 3 repre-

sent intermediate survival scenarios characterised by either one metastasis

of large diameter or by a late diagnosis of an originally limited metastatic

process.
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Figure 8: conditional Kaplan-Meier survival curves of the 622 colorectal cancer

patients using the estimated MAP tree. The short-term survivors in leaf 1, who are

characterised by a larger number of liver metastases of large size, are separated from

the long-term survivors in leaf 4, who present a few local metastases of small size

without further symptoms. Leaves 2 and 3 represent intermediate survival scenarios

characterised by either one metastasis of large diameter or by a late diagnosis of an

originally limited metastatic process.
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5 Discussion

As noted by Geyer [1991], the attractive feature of multiple-chains MCMC

samplers is that their target distribution factors into the product of the

marginal distributions for each chain despite the fact that these chains are

made dependent by the swap transitions. Under the standard conditions

outlined in Section 2 we prove in Theorem 1 that samples generated by the

PHS algorithm converge weakly to such product distribution. Furthermore,

every time an auxilliary chain swaps with the mother chain its perfomance

is improved in the sense of Peskun [1973]. This is reflected in the lower

empirical autocorrelation of the auxilliary chain and lower integrated auto-

correlation times reported in Figure 2.

In Section 2 we also noted that the joint transition kernels of PT, PHS

and sPHS are mixtures where (M − 1) out of the M parallel chains are

auxilliary to the update of the first chain. The complexity of these tran-

sition kernels, has so far hindered a direct analytical comparison of their

convergence properties. Establishing orderings between the two kernels us-

ing the criteria illustrated in Peskun [1973], Meyn and Tweedie [1994] and

Mira [2001] is thus object of ongoing research. Also, in light of the empirical

measures of accuracy reported in Table 2 an other very promising topic in

this area is the formulation of adaptive multiple-chains sampling strategies

(Craiu and Meng [2005], Craiu et al. [2009]).

In the reminder of this section we briefly discuss the main analogies and

differences between PHS and its most closely related algorithms in the cur-

rent literature. In section 2 we noted that by construction PHS produces

a mother chain which always moves but which exhibits low serial depen-

dence. This property marks the most evident difference between the sample
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paths of the first chain of PHS, those of the MH algorithm and those of

the cold chain in PT. With respect to the latter, PHS focuses on using si-

multaneously many different proposal distributions as opposed to adopting

tempered target distributions. This is a key feature for the applicability of

parallel samplers for Bayesian inference as one does not need worring about

which temperature values correspond to proper tempered target posterior

distributions.

The PHS algorithm is also strictly related to at least two other categories

of MCMC samplers: those using latent variables and multiple-try propos-

als. Parameter augmentation was introduced in the context of single-chain

MCMC samplers by Tanner and Wong [1987] and later by Neal [2000] to

improve mixing of a chain by expanding its state-space using additional

dimensions. Conditionally on these auxilliary variables the posterior distri-

bution of the parameters of interest can typically be sampled exactly via

a Gibbs step. The PHS algorithm can be seen as a variable augmentation

scheme where the auxilliary coefficients are M − 1 replicates of the param-

eter of interest itself. The main analogy between the algorithm of Liu et al.

[2000] and PHS is that many candidates are available at each iteration to

update one chain of interest. In Liu et al. [2000], only one of such updates

is retained and the Metropolis ratio is modified accordingly. In PHS the

proposal mechanism generating all potential updates is not constrained to

be the same for all chains and all values not used for swapping with the

mother chain are used for updating the other M − 1 parallel chains.
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O. Cappé, G.O. Roberts, and T. Ryden. Reversible jump, birth-and-death and

more general continuous time Markov chain Monte Carlo samplers. Journal of

the Royal Statistical Society B, 65:679–700, 2003.

B.P. Carlin and S. Chib. Bayesian model choice via Markov chain Monte Carlo

methods. Journal of the Royal Statistical Society B, 57, 1995.

G. Celeux, M. Hurn, and C.P. Robert. Computational and inferential difficulties

with mixture posterior distributions. Journal of the American Statistical Asso-

ciation, 95:957–970, 2000.

D. Chauveau and P. Vandekerkhove. Improving convergence of the Hastings-

Metropolis algorithm with a learning proposal. Scandinavian Journal of Statis-

tics, 29:13–29, 2002.

Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. Bayesian CART

model search. Journal of the American Statistical Society, 93:935–947, 1998.

M. Clyde and E.I. George. Model Uncertainty. Statistical Science, 19:81–94, 2004.

J. Corander, M. Gyllenberg, and T. Koski. Bayesian model learning based on a

parallel MCMC strategy. Statistics and Computing, 16:355–362, 2006.

44

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



M.K. Cowles and B.P. Carlin. Markov chain Monte Carlo algorithms convergence

diagnostics: a comparative reiview. Journal of the American Statistical Associ-

ation, 91:883–904, 1996.

R.V. Craiu and X.L. Meng. Multi-process parallel antithetic coupling for forward

and backward Markov chain Monte Carlo. The Annals of Statistics, 33:661–697,

2005.

R.V. Craiu, J.S. Rosenthal, and C. Yang. Learn from thy neighbor: Parallel-chain

adaptive MCMC. Journal of the American Statistical Association, To Appear,

2009.

R.B. Davis and J.R. Anderson. Exponential survival trees. Statistics in Medicine,

8, 1989.

P. Dellaportas, J.J. Forster, and I. Ntzoufras. On Bayesian model and variable

selection using MCMC. Statistics and Computing, 12:27–36, 2002.

D.G.T. Denison, B.K. Mallick, and A.F.M. Smith. A Bayesian CART algorithm.

Biometrika, 85, 1998.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.

Physics Letters B, 195:216–222, 1987.

J.M Flegal, M. Haran, and J.L. Jones. Markov chain Monte Carlo: can we trust

the third significant figure? Statistical Science, 23:250–260, 2008.

D. Gamerman. Markov chain Monte Carlo: Stochastic Simulation for Bayesian

Inference. Chapman and Hall, 1997.

J. Gasemyr. On an adaptive version of the Metropolis-Hastings algorithm with

independent proposal distribution. Scandinavian Journal of Statistics, 30:159–

173, 2003.

A.E. Gelfand and S.K. Sahu. On Markov chain Monte Carlo acceleration. Journal

of Computational and Graphical Statistics, 3:261–276, 1994.

45

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



A.E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Society, 85:398–409, 1990.

E.I. George and R.E. McCulloch. Approaches for Bayesian variable selection. Sta-

tistica Sinica, 7:339–373, 1997.

E.I. George and R.E. McCulloch. Variable selection via Gibbs sampling. Journal

of the American Statistical Association, 88:882–889, 1993.

J. Geweke. Evaluating the accuracy of sampling-based approaches to the calculation

of posterior moments. In: Bayesian Statistics 4, J.M. Bernardo, J.O. Berger,

A.P. Dawid and A.F.M. Smith editors; Oxford Press, pages 169–194, 1992.

C. J. Geyer and E.A. Thompson. Annealing Markov Chain Monte Carlo with ap-

plications to ancestral inference. Journal of the American Statistical Association,

90:909–920, 1995.

C.J. Geyer. Markov chain Monte Carlo maximum likelihood. Computing Science

and Statistics: Proceedings on the 23rd Symposium on the Interface, New York,

1991.

W.R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Journal

of the Royal Statistical Society C, 41:337–348, 1992.

W.R. Gilks, G.O. Roberts, and E.I. George. Adaptive direction sampling. The

Statistician, 43:179–189, 1994.

W.R. Gilks, N.G. Best, and K.K.C. Tan. Adaptive rejection Metropolis sampling

within Gibbs sampling. Applied Statistics, 44:455–472, 1995a.

W.R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov chain Monte Carlo in

practice. Chapman and Hall, 1995b.

W.R. Gilks, N.G. Best, and K.K.C. Tan. Adaptive Markov chain Monte Carlo

through regeneration. Journal of the American Statistical Association, 93:1045–

1054, 1998.

46

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



J. Gill and G. Casella. Dynamic tempered transitions for exploring multimodal

posterior distributions. Political Analysis, 12:425–443, 2004.

L. Gordon and R.A. Olshen. Tree-structured survival analysis. Cancer Treatment

Reports, 69, 1995.

P.H. Green. Reversible Jump Markov chain Monte Carlo computation and Bayesian

model determination. Biometrika, 82:711–732, 1995.

P.J. Green and X.L Han. Metropolis methods, Gaussian proposals and antithetic

variables. Lecture notes in Statistics, 74:142–164, 1991.

P.J. Green and A. Mira. Delayed rejection in reversible jump Metropolis Hastings.

Biometrika, 88:1035–1053, 2001.

M.P.W. Grocott, D.S. Martin, D.Z.H Levett, H. Montgomery, and M.G. Mythen.

Caudwell Xtreme Everest. Anaesthesia and Analegesia, 6:81–84, 2008.

H. Haario, E. Saksman, and J. Tamminen. Adaptive proposal distribution for

random walk metropolis algorithm, 1999.

H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm.

Bernoulli, 7:223–242, 2001.

H. Haario, E. Saksman, and J. Tamminen. Component-wise adaptatation for high-

dimensional MCMC. Computational Statistics, 20:265–273, 2005.

H. Haario, M Laine, A. Mira, and E. Saksman. DRAM: efficient adaptive MCMC.

Statistics and Computing, 16:339–354, 2006.

U.H.E. Hansmann. Parallel tempering algorithm for conformational studies of bi-

ological molecules. Chem. Phys. Lett., 281:140–152, 1997.

G. Haupt and U. Mansmann. Survival trees in Splus. Advances in Statistical

Software 5, pages 615–622, 1995.

47

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



P. Hermanek and F.P. Gall. Uicc Studie zur Klassifikation von Lebermetastasen.

Chirurgie der Lebermetastasen und primaren malignen Tumoren, 1990.

T.K. Ho. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20:832 – 844, 1998.

B. Hu and K-W. Tsui. Distributed evolutionary Monte Carlo for Bayesian comput-

ing. Computational Statistics and Data Analysis, doi:10.1016/j.csda.2008.10.025,

2008.

J.P. Huelsembeck, B. Larget, R.E. Miller, and F. Ronquist. Potential applications

and pitfalls of Bayesian inference of phylogeny. Syst. Biol., 51:673–688, 2002.

J.P. Huelsembeck, B. Larget, and M.E. Alfaro. Bayesian phylogenetic model se-

lection using reversible jump Markov chain Monte Carlo. Mol. Biol. Evol., 21:

1123–1133, 2004.

J.P. Huelsenbeck and F. Ronquist. Bayesian analysis of molecular evolution using

MrBayes. Statistical methods in molecular evolution, 2:183–226, 2005.

K. Hukushima and K. Nemoto. Exchange Monte Carlo method and application to

Spin Glass simulations. Journal of the Physical Society of Japan, 65:1604–1620,

1996.

D. Husmeier and G. McGuire. Detecting recombination in 4-taxa DNA sequence

alignments with Bayesian hidden Markov models and Markov chain Monte Carlo.

Mol. Biol. Evol., 20:315–337, 2003.

Y. Iba. Extended ensemble Monte Carlo. International Journal of Modern Physics,

12:623–656, 2001.

S.F. Jarner and G.O. Roberts. Polynomial convergence rates of Markov chains.

The Annals of Applied Probability, 12:224–247, 2002.

A. Jasra, D.A. Stephens, and C.C. Holmes. Population-based reversible jump

Markov chain Monte Carlo. Biometrika, 94:787–807, 2007.

48

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



A. Kottas. Nonparametric Bayesian survival analysis using mixtures of Weibull

distributions. Journal of Statistical Planning and Inference, 136:578–596, 2006.

L. Kuo and B. Mallick. Variable selection for regression models. Sankhya B, 60:

65–81, 1998.

C. Lakner, P. Van der Mark, J.P. Huelsenbeck, B. Larget, and F. Ronquist. Ef-

ficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics.

Syst. Biol., 57:86–103, 2008.

M. Li. Bayesian discovery of regulatory motifs using reversible jump Markov chain

Monte Carlo. PhD thesis, University of Washington, 2006.

S. Li, D.K. Pearl, and H. Doss. Phylogenetic tree construction using Markov chain

Monte Carlo. Journal of the American Statistical Association, 95:493–508, 2000.

F. Liang and W.H. Wong. Real-parameter evolutionary Monte Carlo with applica-

tions to Bayesian mixture models. Journal of the American Statistical Associa-

tion, 96:653–666, 2001.

C.Y. Lin, C.H. Hu, and U.H.E. Hansmann. Parallel tempering simulations of HP-

36. Proteins: Structure, Functions and Genetics, 53:436–445, 2003.

J.S. Liu. Monte Carlo Strategies in Scientific computing. Springer, 2001.

J.S. Liu and C. Sabatti. Simulated sintering: Markov chain Monte Carlo with

spaces of varying dimensions. Bayesian Statistics, 6:389–403, 1998.

J.S. Liu, F. Liang, and W.H. Wong. Dynamic weighting in Monte Carlo and opti-

mization. Journal of the American Statistical Association, 94:14220–14224, 1997.

J.S. Liu, F. Liang, and W.H. Wong. The multiple-try method and local optimization

in Metropolis sampling. Journal of the American Statistical Association, 95:121–

134, 2000.

49

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



J.S. Liu, F. Liang, and W.H. Wong. A theory for dynamic weighting in Monte

Carlo computation. Proceedings of the National Academy of Sciences, 96:561–

573, 2001.

D.J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS - A Bayesian

modelling framework: Concepts, structure, and extensibility. Statistics and Com-

puting, 10:325–337, 2000.

G. Lunter, I. Miklos, A. Drummond, J.L. Jensen, and J. Hein. Bayesian coesti-

mation of phylogeny and sequence alignment. BMC Bioinformatics, 6:83–93,

2005.

B. Mau, M.A. Newton, and B. Larget. Bayesian phylogenetic inference via Markov

chain Monte Carlo methods. Biometrics, 55:1–12, 1999.

I.W. McKeague and W. Wefelmeyer. Markov chain Monte Carlo and Rao-

Blackwellization. Journal of Statistical Planning and Inference, 85:171–182, 2000.

K.L. Mengersen and R.L. Tweedie. Rates of convergence of the Hastings and

Metropolis algorithms. The Annals of Statistics, 24:101–121, 1996.

N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American

Statistical Association, 44:335–341, 1949.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller. Equations

of state calculations by fast computing machines. J. Chem. Phys., 21:1087–2092,

1953.

S. Meyn and R.L. Tweedie. State-dependent criteria for convergence of Markov

chains. The Annals of Applied Probability, 4:149–168, 1994.

A. Mira. Ordering and improving the performance of Monte Carlo Markov chains.

Statistical Science, 16:340–350, 2001.

A. Mira and C. Geyer. Ordering Monte Carlo Markov chains. Technical Report

632, School of Statistics, University of Minnesota, 1999.

50

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



A. Mira and D.J. Sargent. A new strategy for speeding Markov chain Monte Carlo

algorithms. Statistical Methods and Applications, 12:49–60, 2003.

T.J. Mitchell and J.J. Beauchamp. Bayesian variable selection in linear regression.

Journal of the American Statistical Association, 83:1023–1032, 1988.

M.Leblanch and J.Crowley. Relative risk trees for censored survival data. Biomet-

rics, 48, 1992a.

M.Leblanch and J.Crowley. Survival trees by goodness of split. Journal of the

American Statistical Association, 88, 1992b.

E. Mossel and E. Vigoda. Phylogenetic MCMC algorithms are misleading on mix-

tures of trees. Sience, 309:2207–2209, 2005.

E. Mossel and E. Vigoda. Limitations of Markov chain Monte Carlo algorithms for

inference of phylogeny. The Annals of Applied Probability, 16:2215–2234, 2006.

J.W. Myers and K.B. Laskey. Population Markov chain Monte Carlo. Machine

Learning, 50:175–196, 2001.

P. Neal and G.O. Roberts. Optimal scaling for partially updating MCMC algo-

rithms. The Annals of Applied Probability, 16:475–515, 2006.

P. Neal, G.O. Roberts, and J. Yuen. Optimal scaling of of random walk Metropolis

algorithms with discontinous target densities. University of Manchester Technical

Report, 1, 2007.

R. Neal. Slice sampling. Technical report No. 2005 - Dept. of Statistics, University

of Toronto, 2000.

R.M. Neal. Sampling from multimodal distributions using tempered transitions.

Statistics and Computing, 6:353–366, 1996.

R.M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Tech-

nical report, Department of Computer Science, University of Toronto, 1993.

51

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



D.J. Nott and P.J. Green. Bayesian veriable selection and the Swendsen-Wang

algorithm. Journal of Computational and Graphical Statistics, 13:141–157, 2004.

E. Nummelin. General Irreducible Markov Chains on Non-Negative Operators.

Cambridge University Press, 1984.

L.M. Pasetto, E. Rossi, and S. Monfardini. Liver metastases of colorectal cancer:

medical treatment. Anticancer, 23:4245–56, 2003.

P.H. Peskun. Optimum Monte Carlo sampling using Markov chain. Biometrika,

60:607–612, 1973.

G. Petris and L. Tardella. A geometric approach to transdimensional Markov chain

Monte Carlo. The Canadian Journal of Statistics, 31:469–482, 2003.

J. Pittman, E. Huang, H. Dressman, C.F. Horng, S.H. Cheng, M.H. Tsou, C.M.

Chen, A. Bild, E.S. Iversen, A.T. Huang, J.R. Nevins, and M. West. Integrated

modeling of clinical and gene expression information for personalized prediction

of disease outcomes. Proceedings of the National Academy of Sciences, 101:8431–

8436, 2004.

A. E. Raftery, D. Madigan, and J. A. Hoeting. Bayesian model averaging for linear

regression models. Journal of the American Statistical Association, 92:179–191,

1997.

R. Ren and G. Orkoulas. Parallel Markov chain Monte Carlo simulations. Journal

of Chemical Physics, doi:10.1063/1.2743003, 2007.

C.P. Robert. Convergence control methods for Markov chain Monte Carlo algo-

rithms. Statistical Science, 10:231–253, 1995.

C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 1999.

G.O. Roberts and J.S. Rosenthal. Optimal scaling for various Metropolis Hastings

algorithms. Statistical Science, 16:351–367, 2001.

52

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



G.O. Roberts and J.S. Rosenthal. Coupling and ergodicity of adaptive MCMC.

Journal of Applied Probability, 44:458–475, 2007.

G.O. Roberts and J.S. Rosenthal. Examples of adaptive MCMC. University of

Toronto Preprint, 2008.

G.O. Roberts and J.S. Rosenthal. Optimal scaling of discrete approximations

to Langevin diffusions. Journal of the Royal Statistical Society B, 60:255–268,

1998a.

G.O. Roberts and J.S. Rosenthal. Markov chain Monte Carlo: some practical

implementations of theoretical results. The Canadian Journal of Statistics, 26:

5–20, 1998b.

G.O. Roberts and O. Stramer. Tempered Langevin diffusions and algorithms. Uni-

versity of Iowa, Department of Statistics and Actuarial Sciences Technical Re-

port, 314, 2002.

G.O. Roberts and R.L. Tweedie. Exponential convergence of Langevin distributions

and their discrete approximations. Bernoulli, 2:341–363, 1996a.

G.O. Roberts and R.L. Tweedie. Geometric convergence and central limit theorems

for multidimensional Hastings and Metropolis algorithms. Biometrika, 83:95–110,

1996b.

G.O. Roberts, A. Gelman, and W.R. Gilks. Weak convergence and optimal scaling

of random walk Metropolis algorithms. The Annals of Applied Probability, 7:

110–120, 1997.

J.S. Rosenthal. Parallel computing and Monte Carlo algorithms. Far East Journal

of Theoretical Statistics, 4:207–236, 2000.

J.S. Rosenthal. Convergence rates for Markov chains. SIAM review, 37:387–405,

1995.

53

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



M. Sant, C. Allemani, M. Santaquilani, A. Knijn, F. Marchesi, and Capocaccia R.

EUROCARE-4. Survival of cancer patients diagnosed in 1995-1999. Results and

commentary. European Journal of Cancer, 45:931–991, 2009.

S.A. Sission. Transdimensional Markov chains. Journal of the American Statistical

Association, 100:1077–1089, 2005.

A. F.M. Smith and G.O. Roberts. Bayesian computations via the Gibbs sampler

and related Markov chain Monte Carlo methods. Journal of the Royal Statistical

Society B, 55:3–23, 1993.

M. Smith and R. Kohn. Nonparametric regression using Bayesian variable selection.

Journal of Econometrics, 75:317–343, 1996.

A.D. Sokal. Monte Carlo methods in Statistical Mechanics: Foundations and new

algorithms. Lecture Notes at the Cargese summer school on ”Functional Integra-

tion: basis and applications”, 1996.

M. Stephens. Bayesian analysis of mixture models with an unknown number of

components - an alternative to reversible jump methods. Annals of Statistics,

28:40–74, 2000.

R.H. Swedensen and J.S. Wang. Nonuniversal critical dynamics in Monte Carlo

simulations. Physical Review Letters, 58:86–88, 1987.

M.A. Tanner and W.H. Wong. The calculation of posterior distributions via data

augmentation. Journal of the American Statistical Association, 82:528–541, 1987.

L. Tierney. Markov chains for exploring posterior distributions. The Annals of

Statistics, 22:1701–1728, 1994.

L. Tierney and A. Mira. Some adaptive Monte Carlo methods for Bayesian infer-

ence. Statistics in Medicine, 18:2507 – 2515, 1991.

54

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism



R. Waagepetersen, N. Ibanez-Escriche, and D. Sorensen. A comparison of strategies

for Markov chain Monte Carlo in quantitative genetics. Genet. Set. Evol., 40:

161–176, 2008.

M. West. Bayesian factor regression models in the ”large p, small n” paradigm.

Bayesian Statistics 3, 2003.

U. Wolff. Monte Carlo errors with less errors. Computer Physics Communications,

156:143–153, 2004.

D.B. Woodard, S.C. Schmidler, and Huber M.L. Conditions for rapid mixing of

parallel and simulated tempering on multimodal distributions. Annals of Applied

Probability, 19:617–640, 2009.

Z. Yang and B. Rannala. Bayesian phylogenetic inference using DNA sequences: a

Markov chain Monte Carlo method. Mol. Biol. Evol., 14:717–724, 1997.

T. Yoshida, M. Chida, M. Ichioka, and Y. Suda. Blood lactate parameters related

to aerobic capacity and endurance performance. European Journal of Applied

Physiology and Occupational Physiology, 56:7–11, 1987.

Z. Zheng. On swapping and simulated tempering algorithms. Stochastic processes

and their applications, 104:131–154, 2001.

Acknowledgements

The first author acknowledges the partial support received through a Visiting Fel-

low grant of the University of Insubria during the development of this work. A.

Mira acknowledges the partial support of the PRIN (Italian National Research Pro-

gram) 2007XECZ7L 003. The software implementing the models and the MCMC

algorithms employed in Sections 3, 4 and 5 can be obtained in the form of MATLAB

modules upon request to the first author.

55

CRiSM Paper No. 09-37v2, www.warwick.ac.uk/go/crism


