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Abstract

The problem of clustering large data sets has attracted a lot of current research.
The approaches taken are mainly based either on the more efficient implementation or
modification of existing methods or/and on the construction of clusters from a small
sub-sample of the data and then the assignment of all observations in those clusters.
The current paper focuses on the latter direction. An alternative supervised procedure
to create the clusters is proposed. For learning the clusters, the procedure is using
subsets of the data which are still constructed via sub-sampling but within partitions of
the observation space. The general applicability of the approach is discussed together
with tuning the parameters that it depends on to increase its ability. The procedure
is applied to clustering the navigation patterns in the msnbc.com database.

K eywords: sub-sample; partition; hard clustering; clustering click-stream data

1 Introduction

In recent days, mainly due to the automatization in data collection procedures, the size of
the data sets has dramatically increased posing challenges to their statistical treatment.
Typical examples of such data sets are MRI pictures, transaction data from super markets
and web-usage data, where millions of observations are available. In this respect, clustering
methods can be very helpful to summarize these large data sets into few sets of equivalent,
in some appropriate sense, observations or to identify useful patterns. However, most of
the classical clustering methods (such as k-means, hierarchical clustering methods and
model-based approaches and their variants) have been designed to cope with relatively
small data sets and their scaling to huge data sets is not obvious or efficient.

Several of the approaches that have been suggested to reduce the computational burden
in clustering huge data sets try to optimize the existing procedures through more efficient
use of the data (see, for example, Bradley et al., 1998b; Chiu et al., 2001; Fraley et al.,
2005). Others proceed by either selecting better starting values (for example Coleman and
Woodruff, 2000; Ng and McLachlan, 2003) or by attempting a better usage of memory
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and computer resources (see Bradley et al., 1998a,b; Farnstrom et al., 2000). Some other
ideas applicable in hierarchical clustering can be seen in Tantrum et al. (2004) and Vijaya
et al. (2004). See, also Fraley et al. (2005) for an incremental algorithm.

Another class of approaches to clustering large data sets is to construct the clusters
based on a small random sub-sample of the data. This approach dates back to Kaufman
and Rousseeuw (1986) (CLARA algorithm). The key idea is to run the selected clustering
algorithm to several random sub-samples of the data and then decide, according to some
optimality criterion, which of the derived cluster configurations to use for the classification
of the rest of the data. Due to their simplicity such approaches can be used to provide
starting points to more sophisticated clustering methods (as is done for example in Steiner
and Hudec, 2007, in order to construct a large numbers of prototype clusters which are
subsequently combined into fewer ones using a more sophisticated model-based approach).

However, random sub-sampling in combination with hard clustering algorithms can
return unstable results (see, for example Posse, 2001; Wehrens et al., 2004), especially
when small groups are present in the data. A reason for this is that observations in the
small groups possibly present in the data may not be selected via random sub-sampling.

To overcome such drawbacks, in the current paper, a model-free, supervised way of
selecting subsets of the data is proposed, which aims to be robust to the deficiencies of
random sub-sampling for clustering applications. The suggested procedure uses random
sub-sampling and some k-medoids clustering method but within partitions of the obser-
vation space. In this way, small groups can be slightly over-represented in the resulting
subsets and thus usual clustering algorithms can reveal their existence. Furthermore, the
proposed procedure depends on several user-defined parameters and offers a way to take
a finite number of subsets from the data and decide which is the best to use according
to some optimality criterion. Finally the procedure applies to diverse types of data and
clustering algorithms.

The remaining of the paper proceeds as follows: Section 2 describes the main idea
and the contribution of the paper. In Section 3, the proposed procedure is applied on
a simulated data set and Section 4 is concerned with the currently fashionable problem
of web-clustering, where huge data sets are involved. Specifically, users are clustered
according to their browsing behavior. Finally, a discussion and concluding remarks can
be found in Section 5.

2 The proposed procedure

2.1 Motivation

When clustering large data sets, a common approach is to take a much smaller subset of
the observations and use it for the necessary inferences, avoiding, in this way, the computa-
tional issues that arise when using all the observations in the data set. The most common
approach is random sub-sampling (for example, as in the CLARA procedure). However, in
this way the observations in small groups have correspondingly small probability of being
selected, which might result in failure of detecting those small groups.

For example, consider an artificial setting of 504000 simulated observations of two
real-valued characteristics A and B as shown in the left plot of Figure 1. The data form
9 well-separated groups: 5 groups with 100000 observations each (cyan) and 4 groups
with 1000 observations each (red). The CLARA procedure is applied to this data for the
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construction of 9 clusters, taking, for robustness, 400 sub-samples of size 1000 each.
The resulting clustering is shown in the right plot of Figure 1. Clearly, despite the

simplicity of the structure of the data and the large number of random sub-samples used,
CLARA fails to correctly detect the true groups, breaking up the large groups and fusing
the small groups into large clusters.

A different approach which would allow small groups to be slightly over-represented
in the subsets could enable the clustering algorithms to construct corresponding small
clusters. This can be done by partitioning the observation space and then retrieving ran-
dom sub-samples within the partitions, because then the probability that an observation
is selected in any partition may differ between observations.

2.2 Data-dependent partitions of the observation space

Let x1, . . . , xN be N observations belonging to an observation space Ω and define an
appropriate, positive-valued measure d(., .) for measuring the dissimilarity between any
two observations. Furthermore, let µ̂ be an element of Ω which, in some appropriate sense,
is located centrally relative to the observations x1, . . . , xN . For example, in Euclidean
spaces, µ̂ may be set as the mean vector of x1, . . . , xN .

Denote by x(1), . . . , x(N) the observations sorted in increasing distance from µ̂ and
without loss of generality, suppose that the observation space is Euclidean. Consider the
creation of h− 1 concentric hyper-spheres F1, . . . , Fh−1 with center µ̂ and radii r1 ≤ ... ≤
rh−1, respectively, which are defined by the data as

ri = max
j∈{1,...,i[N/h]}

d
{
x(j), µ̂

}
(i = 1, . . . , h− 1) ,

where [N/h] is N/h rounded to the closest integer. Furthermore, set rh = +∞.
Using the above construction, the observation space may be partitioned in partitions

I1, . . . , Ih, where

I1 = F1

Ii = Fi ∩ F ci−1 (i = 2, . . . , h) ,

with Fh = Ω.
Such a partitioning scheme depends exclusively on the observed data and results in

partitions with [N/h] observations each, where the last partition may contain more or
fewer observations than the others depending on the value of N/h.

In this way, letting r0 = 0, the observations xj with j ∈ D, D ⊂ {1, . . . , N} are
equivalent if and only if ri−1 ≤ d(xj , µ̂) < ri for all j ∈ D, for some i = 1, . . . , h.

The above equivalence relations motivate the treatment of each partition indepen-
dently. Random sub-sampling without replacement can be used to obtain s sub-samples
of size n from each partition and a k-medoids clustering algorithm (for example the PAM
algorithm in Kaufman and Rousseeuw (1990)) can be applied to each sub-sample to obtain
c centroids. The resultant centroids may be thought as summarizing the information of the
observations in each partition in terms of minimum average distance from the centroids,
and thus the set of centroids from all partitions (much smaller in size than the whole data
set) can be used to summarize the information contained in the original data. Then, a
clustering algorithm is applied to this set of centroids and all observations in the data set
are classified in the resultant clusters.
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2.3 Specification of the parameters h, s, n and c

The above construction requires the specification of the parameters h, s, n and c. If h = 1,
the procedure is equivalent to obtaining all the centroids that result from the application
of k-medoids with c centroids on each one of s random sub-samples with size n, where the
sub-samples are taken from all the available data points. This, in turn, is similar — but
not the same — to collecting the resulting centroids in the iterations of CLARA and using
them as a representative subset of the data. A systematic way of specifying the values of
those parameters may be constructed by noting that the number of elements sampled in
the aforementioned elementary setting can serve as the reference amount of information
for the definition of possible partitioning schemes.

Suppose that the resulting subsets are used for clustering the data in m ≤M clusters.
First, note that the size of the resultant subset of observations is hsc. The total number
of elements that are sampled during the procedure is k = hsn. Thus, specifying k we can
enumerate all possible combinations of positive integers h, s, n and c, for which k = hsn
is solved under the natural constraints

hsc ≥ M , (1)

c ≥ 1 ,

n ≥ c ,

[N/h] ≥ n ,

h > 1 ,

s ≥ 1 .

The first constraint ensures that the maximum number of clusters to be constructed using
the subset is smaller than the size of the subset.

Clearly, the solution set after defining k is either empty or finite, because h, s, n and
c are all positive integers. Thus, fixing k to an appropriate value, the procedure described
in the previous section can be applied for all possible quadruplets (h, s, n, c) for which
k = hsn is solved subject to the constraints (1), and the subset that gives the best results
for the original data can be selected according to some application dependent optimality
criterion. As is done in later sections, c can also be fixed at some integer value instead of
allowing it to vary freely. In this way, the number of settings that need to be considered
is greatly reduced.

2.4 Steps of the suggested procedure

After having chosen µ̂, the procedure involves the following steps:

A. Initialization

A.1 Calculate di = d(xi, µ̂), i = 1, . . . , N .

A.2 Sort di, i = 1, . . . , N , in increasing order.

A.3 Order the observations according to the ordering of dis and obtain the ordered sample
x(1), . . . , x(N).
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B. Main iterations

For every (h, s, n, c) that solves k = hsn under the constraints (1), the following steps are
repeated t times.

B.1 Construct h observation sets

G1 = {x(1), . . . , x([N/h])} ,
...

Gh−1 = {x((h−2)[N/h]+1), . . . , x((h−1)[N/h])} ,
Gh = {x((h−1)[N/h]+1), . . . , x(N)}.

B.2 For j = 1 to h

B.2.1 Obtain s random sub-samples of size n from Gj .

B.2.2 Apply a k-medoids clustering algorithm with c centroids to each sub-sample.

B.3 Apply a clustering algorithm on the subset of the data consisting of all the centroids
that were obtained in the previous steps.

B.4 Classify all the observations in the data set in the resultant clusters.

B.5 Calculate some appropriate optimality criterion for the clustering on all observations
of the data set.

Note that step B.5 can be expensive for extremely large data sets. In such cases, steps
B.4 and B.5 can be omitted, calculating the optimality criterion merely for the clustering
of the subset that results in step B.3.

2.5 Computational considerations

For any specific choice of (h, s, n, c), the total number of calculations required for the
application of the proposed procedure is O(N) + r(n, s, h, c). The O(N) term reflects
the effort required for calculating and sorting d(xi, µ̂) (i = 1, . . . , n) (which only needs
to be done once for all available quadruplets (h, s, n, c)) and for the classification of the
observations in step B.4 of the procedure. The term r(n, h, s, c) is appearing due to the
additional calculations required for the application of a k-medoids clustering algorithm to
each of the s sub-samples of size n. Nevertheless, the extra effort r(n, h, s, c) is not very
large given that the clustering algorithm is applied to a small subset of the observations
contained in a partition.

3 Application to simulated data

To demonstrate its benefits and functionality, the proposed procedure is applied to the
example of Section 2.1. Interest is in detecting well-separated small groups, and thus the
optimality criterion for the selection of the best clustering is chosen to be the maximum
average silhouette width. The average silhouette widths are calculated for the clustering
that results from the application of PAM with m = 9 centroids on the each subset of
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Table 1: Average silhouette widths when clustering the subsets corresponding to all pos-
sible settings of h, s and n for k = 1000, c = 6 and M = 9. The procedure is repeated
t = 10 times per setting. For each subset 9 clusters are constructed.

Setting h s n hsc
Average silhouette widths for 10 repetitions per setting

1 2 3 4 5 6 7 8 9 10

1 2 1 500 12 0.37 0.45 0.31 0.26 0.34 0.34 0.22 0.28 0.45 0.37
2 2 2 250 24 0.67 0.79 0.61 0.71 0.76 0.76 0.61 0.65 0.75 0.62
3 2 4 125 48 0.67 0.68 0.60 0.59 0.68 0.65 0.71 0.63 0.69 0.59
4 2 5 100 60 0.72 0.63 0.65 0.65 0.64 0.69 0.62 0.60 0.68 0.70
5 2 10 50 120 0.77 0.70 0.74 0.67 0.74 0.74 0.71 0.83 0.65 0.82
6 2 20 25 240 0.83 0.63 0.83 0.65 0.52 0.63 0.53 0.54 0.64 0.57
7 2 25 20 300 0.61 0.70 0.71 0.62 0.51 0.61 0.60 0.62 0.62 0.59
8 2 50 10 600 0.41 0.53 0.52 0.62 0.54 0.52 0.53 0.63 0.43 0.63
9 4 1 250 24 0.33 0.31 0.38 0.32 0.29 0.27 0.31 0.45 0.40 0.46
10 4 2 125 48 0.40 0.54 0.51 0.41 0.45 0.41 0.41 0.49 0.43 0.44
11 4 5 50 120 0.71 0.58 0.71 0.49 0.68 0.60 0.44 0.70 0.52 0.64
12 4 10 25 240 0.70 0.72 0.63 0.60 0.61 0.54 0.51 0.62 0.60 0.69
13 4 25 10 600 0.52 0.39 0.50 0.63 0.63 0.39 0.43 0.52 0.43 0.62
14 5 1 200 30 0.57 0.66 0.43 0.53 0.56 0.42 0.52 0.53 0.54 0.47
15 5 2 100 60 0.61 0.66 0.72 0.65 0.74 0.82 0.64 0.72 0.68 0.70
16 5 4 50 120 0.72 0.67 0.72 0.73 0.82 0.74 0.82 0.73 0.61 0.82
17 5 5 40 150 0.71 0.73 0.53 0.65 0.71 0.81 0.81 0.82 0.82 0.82
18 5 8 25 240 0.53 0.63 0.71 0.63 0.74 0.66 0.73 0.62 0.73 0.54
19 5 10 20 300 0.63 0.72 0.53 0.74 0.71 0.65 0.53 0.53 0.50 0.71
20 5 20 10 600 0.42 0.41 0.52 0.54 0.52 0.42 0.41 0.42 0.52 0.61
21 5 25 8 750 0.42 0.52 0.51 0.41 0.44 0.52 0.52 0.52 0.43 0.51
22 8 1 125 48 0.52 0.48 0.51 0.56 0.42 0.53 0.53 0.54 0.41 0.55
23 8 5 25 240 0.53 0.54 0.53 0.43 0.52 0.63 0.61 0.52 0.55 0.43
24 10 1 100 60 0.70 0.51 0.58 0.58 0.60 0.60 0.57 0.51 0.59 0.63
25 10 2 50 120 0.70 0.63 0.63 0.73 0.72 0.64 0.72 0.81 0.72 0.72
26 10 4 25 240 0.54 0.61 0.63 0.70 0.63 0.52 0.72 0.39 0.42 0.53
27 10 5 20 300 0.63 0.62 0.62 0.61 0.54 0.61 0.62 0.73 0.70 0.63
28 10 10 10 600 0.42 0.61 0.61 0.42 0.54 0.52 0.51 0.51 0.50 0.63
29 20 1 50 120 0.63 0.59 0.64 0.79 0.70 0.61 0.79 0.63 0.59 0.61
30 20 2 25 240 0.60 0.62 0.64 0.53 0.50 0.41 0.51 0.62 0.64 0.61
31 20 5 10 600 0.42 0.52 0.53 0.42 0.53 0.42 0.52 0.52 0.53 0.52
32 25 1 40 150 0.71 0.61 0.71 0.62 0.70 0.69 0.80 0.63 0.71 0.73
33 25 2 20 300 0.48 0.61 0.71 0.62 0.52 0.61 0.62 0.52 0.59 0.54
34 25 4 10 600 0.41 0.41 0.45 0.53 0.51 0.52 0.54 0.52 0.43 0.52
35 25 5 8 750 0.43 0.43 0.53 0.42 0.53 0.43 0.42 0.53 0.42 0.43
36 40 1 25 240 0.43 0.54 0.41 0.63 0.51 0.54 0.41 0.51 0.53 0.51
37 50 1 20 300 0.40 0.52 0.41 0.51 0.62 0.40 0.52 0.63 0.53 0.41
38 50 2 10 600 0.43 0.52 0.51 0.51 0.53 0.53 0.43 0.43 0.54 0.45
39 100 1 10 600 0.40 0.52 0.45 0.53 0.44 0.42 0.43 0.42 0.42 0.42
40 125 1 8 750 0.43 0.54 0.42 0.52 0.51 0.42 0.43 0.53 0.42 0.43

observations (thus steps B.4 and B.5 are omitted). The required centrally located point
µ̂ is chosen to be the sample mean vector.

For k = 1000 and for c = 6, Table 1 shows the possible solutions of k = hsn under the
constraints (1) along with the size of the resultant subset of observations and the average
silhouette widths (in two significant places) in t = 10 repetitions per setting. The settings
that result in the largest average silhouette width are setting 5 (h = 2, s = 10, n = 50)
in the seventh repetition and setting 6 (h = 2, s = 20, n = 25) in the first and third
repetitions, where the average silhouette width has value 0.83 (those cases are shown in
boldface type on Table 1). The corresponding clustering of the whole data set for these
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two settings is identical and is shown in Figure 2.
In this artificial example the assumed observation groups are fully reconstructed by

merely using partitioning, random sub-sampling and a hard clustering algorithm. Fur-
thermore, the total number of observations sampled for producing Table 1 and the effort
required for the application of the PAM procedure, are both comparable to the corre-
sponding requirements for the application of CLARA in Section 2.1.

As a final observation, note that settings 15, 16, 17 also result in average silhouette
widths greater than 0.8 and the corresponding clusterings of all the observations in the
data set are equally good.

4 A hard clustering of the msnbc.com data

4.1 Description of the data

The proposed procedure is used to obtain a clustering of the msnbc.com data set1. The
data consist of records for all the users who visited msnbc.com on the entire day of 28th
September 1999. For each user the ordered sequence of URL hits is recorded. Nevertheless,
what is given is the category where each URL belongs to and not the URL itself. The URL
categories are coded as 1: front page, 2: news, 3: tech, 4: local, 5: opinion, 6: on-air, 7:
misc, 8: weather, 9: health, 10: living, 11: business, 12: sports, 13: summary, 14: bulletin
board service, 15: travel, 16: msn-news, 17: msn-sports. For example, two observations
in the data are

user A: 6 9 4 4 4 10 3 10 5 10 4 4 4

user B: 1 2 1 14 14 14 14 14 14 14 14 14 14 14 14 1 2 2

Thus, user A first visits a URL of category 6, then a URL of category 9, then 4, followed
by another of category 4, and so on. The length of the sequences in the data varies from 1
to 14795 URL hits, which combined with the fact that there are 989818 sequences makes
the construction of clusters challenging. An attempt can be found in Cadez et al. (2003)
where mixtures of first-order Markov models are used to cluster these data; through an
Expectation Maximization (EM) algorithm variant, the models therein are trained using
a random sub-sample of 100023 sequences and the result is evaluated using another sub-
sample of 98687 sequences. The conclusion of Cadez et al. (2003) analyses was that there
are 60 to 100 clusters on the data.

4.2 Clustering the msnbc.com data

In this section we attempt to group the msnbc.com data in m ≤ 20 clusters using the
proposed procedure with k = 5000 and c = 10. These parameter values result in 69
triplets (h, s, n) that solve k = hsn under the constraints (1) and we choose to use only
the 55 triplets that correspond to more than one subset per partition. The procedure is
repeated t = 10 times for each setting. We have selected to work with up to 20 clusters
mainly for illustration but also because a much larger number of clusters would have been
hard to interpret and present.

The grouping of each subset in m clusters, (m = 2, . . . , 20) results by using the string
edit distance for calculating dissimilarities (see, for example, Hay et al., 2004, for a de-
scription and the use of the string edit distance in the analyses of server-logs) and PAM.

1the data set is publicly available at http://kdd.ics.uci.edu/databases/msnbc/msnbc.html
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The most dominant sequence in the data is 6 with 91805 occurrences (almost 9.2% of the
data). Nevertheless, taking into account the nature of the string edit distance, the “cen-
trally” located observation µ̂ in the data is set to the second most dominant sequence in
the data, 1 (with 57552 occurrences), because the URLs of category “front page” are the
most common in the msnbc.com data. The best clustering in m clusters, m ∈ {2, . . . , 20},
is chosen amongst at most 550 alternatives as the clustering that gives the smallest average
distance from the medoids when all sequences in the data are assigned in the clusters (step
B.5 of the proposed procedure). For example, in the construction of 11 clusters, Table 2
shows the average distances from medoids for the t = 10 repetitions per setting, in two
significant places. The minimum value for the average distance from medoids is 3.31 and it
is attained for several settings in Table 2. For example, for the setting 16 (h = 4, s = 125,
n = 10) that value is attained in the third repetition. All those optimal settings produce
very similar clusterings of the observations and so arbitrarily choosing one of them for
each value of m does not affect the result. In this way, a list of clusterings in 2, 3, . . ., and
20 clusters is constructed.

4.3 Assessing the number of clusters

For choosing an optimal number of clusters we use the concept of open sequences. An open
sequence in the current context is defined as an ordered sequence of two URL categories
or more, where the same category cannot occur two times consecutively (Büchner et al.,
1999, used open sequences to describe navigational patterns). For example, the sequence
{2, 14, 14, 1} is not an open sequence because the URL category 14 appears two times
consecutively. On the other hand, {2, 1, 14, 2} is an open sequence and is contained in the
sequence for user B in Subsection 4.1, because 2, 1, 14 and 2 appear in this specific order
when we read the observed URL categories from left to right. The support of an open
sequence is defined as the number of sequences in the data containing the open sequence
divided by the total number of observations in the data set. The connection between
open sequences and clusters is made via the association rule “If the observation contains
the open sequence then the observation belongs to cluster j”. Then, the confidence of the
above association rule (or, equivalently, the confidence of the open sequence in cluster j)
is the number of observations in cluster j containing the open sequence divided by the
total number of observations in the data containing it. High values for the confidence of
an open-sequence in a cluster suggests that users containing that open sequence are highly
associated with that cluster.

For each one of the optimal clusterings, the confidences of all lε open sequences that
have support greater or equal than a threshold ε > 0, are calculated. Then the functions

P (m) =
m

lε(m− 1)

lε∑
i=1

m∑
j=1

wij(1− wij) ,

Q(m) = − 1

lε logm

lε∑
i=1

m∑
j=1

wij logwij ,

are evaluated at m ∈ {2, . . . , 20}, where wij is specific to each clustering in m clusters
and denotes the confidence of the ith open sequence for the jth cluster (i = 1, . . . , lε ; j =
1, . . . ,m). The dependence of wij to each clustering in m clusters is suppressed for no-
tational simplicity. By the definition of confidence,

∑m
j=1wij = 1 (i = 1, . . . , lε). Note
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Table 2: Average distance from medoids when clustering the subsets corresponding to the
settings of h, s and n for k = 5000, c = 10 and M = 20. Only the settings with s > 1
are considered and the procedure is repeated t = 10 times per setting. For each subset 11
clusters are constructed.

Setting h s n hsc
Average distance from medoids for 10 repetitions per setting

1 2 3 4 5 6 7 8 9 10

1 2 2 1250 40 3.59 3.56 3.61 3.56 3.68 3.52 3.50 3.52 3.68 3.59
2 2 4 625 80 4.00 3.54 4.11 3.47 3.82 3.52 3.98 4.07 3.87 3.68
3 2 5 500 100 3.50 4.01 4.30 4.12 4.24 3.59 3.64 3.56 3.78 3.98
4 2 10 250 200 4.79 4.14 4.73 4.78 4.77 5.08 4.96 4.89 4.72 4.49
5 2 20 125 400 4.16 4.22 3.82 4.06 4.16 4.08 4.21 4.16 4.27 4.54
6 2 25 100 500 3.93 3.93 4.04 3.89 3.79 4.00 4.26 4.24 4.13 4.21
7 2 50 50 1000 3.96 3.58 3.84 3.58 3.66 3.56 3.64 3.73 3.72 3.57
8 2 100 25 2000 3.44 3.46 3.48 3.62 3.48 3.63 3.45 3.52 3.46 3.45
9 2 125 20 2500 3.54 3.52 3.35 3.37 3.55 3.51 3.40 3.42 3.55 3.59
10 2 250 10 5000 3.32 3.33 3.43 3.32 3.32 3.42 3.32 3.31 3.41 3.35
11 4 2 625 80 3.78 4.01 3.63 3.88 3.75 3.59 3.81 3.73 3.79 3.62
12 4 5 250 200 4.36 4.05 4.20 4.16 3.79 4.02 4.16 3.85 3.87 3.96
13 4 10 125 400 3.99 3.75 3.92 4.51 3.87 4.39 4.02 4.12 4.13 4.33
14 4 25 50 1000 3.61 3.45 3.73 3.51 3.77 3.56 3.77 3.72 3.72 3.69
15 4 50 25 2000 3.41 3.44 3.69 3.47 3.37 3.44 3.45 3.58 3.72 3.48
16 4 125 10 5000 3.33 3.42 3.31 3.31 3.31 3.33 3.33 3.32 3.32 3.33
17 5 2 500 100 4.05 3.60 3.62 3.78 3.72 3.77 3.90 3.69 3.66 3.71
18 5 4 250 200 4.18 4.17 3.91 3.93 3.94 3.75 4.07 4.25 3.79 3.74
19 5 5 200 250 4.84 4.14 3.75 4.13 4.00 4.10 3.89 4.19 3.80 3.81
20 5 8 125 400 4.11 4.01 3.87 4.03 3.87 3.75 3.83 4.15 4.05 3.89
21 5 10 100 500 3.77 3.78 3.73 3.83 3.64 3.84 3.87 3.83 3.97 3.83
22 5 20 50 1000 3.58 3.74 3.69 3.53 3.54 3.60 3.75 3.49 3.52 3.50
23 5 25 40 1250 3.59 3.64 3.79 3.47 3.41 3.74 3.67 3.79 3.49 3.70
24 5 40 25 2000 3.38 3.66 3.55 3.47 3.53 3.47 3.52 3.49 3.40 3.52
25 5 50 20 2500 3.43 3.40 3.44 3.34 3.34 3.47 3.48 3.34 3.42 3.34
26 5 100 10 5000 3.40 3.41 3.33 3.32 3.32 3.33 3.32 3.33 3.32 3.42
27 8 5 125 400 3.82 3.94 4.06 3.67 4.22 4.10 3.95 4.22 4.09 3.78
28 8 25 25 2000 3.41 3.45 3.40 3.62 3.45 3.40 3.53 3.44 3.44 3.35
29 10 2 250 200 3.68 3.81 3.72 3.74 3.62 3.63 3.60 3.74 3.75 3.77
30 10 4 125 400 3.98 4.32 3.79 3.92 3.83 3.70 3.64 3.73 3.65 4.32
31 10 5 100 500 3.83 3.71 3.68 4.03 3.59 3.67 3.55 3.71 3.68 3.81
32 10 10 50 1000 3.51 3.44 3.53 3.55 3.62 3.79 3.53 3.42 3.61 3.61
33 10 20 25 2000 3.74 3.40 3.44 3.43 3.45 3.43 3.52 3.40 3.56 3.43
34 10 25 20 2500 3.43 3.41 3.35 3.42 3.51 3.40 3.41 3.40 3.55 3.45
35 10 50 10 5000 3.31 3.41 3.40 3.32 3.32 3.33 3.36 3.32 3.33 3.31
36 20 2 125 400 3.73 3.77 3.78 3.55 3.82 3.64 3.62 3.56 3.58 3.61
37 20 5 50 1000 3.60 3.38 3.66 3.43 3.50 3.53 3.89 3.56 3.67 3.73
38 20 10 25 2000 3.42 3.53 3.34 3.54 3.67 3.37 3.32 3.42 3.38 3.36
39 20 25 10 5000 3.41 3.31 3.32 3.33 3.41 3.33 3.32 3.32 3.32 3.42
40 25 2 100 500 3.79 3.72 3.76 3.58 3.93 3.69 3.73 3.92 3.81 3.61
41 25 4 50 1000 3.40 3.53 3.42 3.55 3.34 3.45 3.54 3.64 3.69 3.75
42 25 5 40 1250 3.46 3.56 3.45 3.63 3.36 3.42 3.39 3.67 3.41 3.55
43 25 8 25 2000 3.41 3.64 3.43 3.33 3.43 3.50 3.34 3.44 3.43 3.32
44 25 10 20 2500 3.34 3.54 3.52 3.33 3.46 3.34 3.35 3.35 3.36 3.43
45 25 20 10 5000 3.33 3.32 3.41 3.41 3.43 3.50 3.33 3.42 3.33 3.34
46 40 5 25 2000 3.36 3.34 3.34 3.33 3.34 3.52 3.44 3.43 3.36 3.37
47 50 2 50 1000 3.43 3.56 3.56 3.49 3.56 3.51 3.70 3.54 3.58 3.46
48 50 4 25 2000 3.43 3.53 3.41 3.44 3.34 3.45 3.34 3.44 3.35 3.34
49 50 5 20 2500 3.42 3.34 3.34 3.42 3.44 3.34 3.34 3.33 3.50 3.34
50 50 10 10 5000 3.32 3.32 3.32 3.33 3.34 3.35 3.32 3.32 3.41 3.33
51 100 2 25 2000 3.43 3.42 3.52 3.35 3.36 3.43 3.42 3.33 3.43 3.43
52 100 5 10 5000 3.31 3.31 3.32 3.33 3.33 3.40 3.33 3.39 3.33 3.32
53 125 2 20 2500 3.34 3.34 3.32 3.43 3.50 3.32 3.42 3.42 3.33 3.43
54 125 4 10 5000 3.33 3.41 3.33 3.32 3.32 3.33 3.31 3.32 3.32 3.33
55 250 2 10 5000 3.32 3.41 3.32 3.31 3.32 3.32 3.41 3.32 3.31 3.42
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Figure 3: The values of P (m) and Q(m) for the clusterings obtained in Subsection 4.2.
The support threshold is set to ε = 0.02
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that a clustering where each open sequence has confidence 1 for some cluster and 0 for the
rest would be ideal because then the lε open sequences are perfectly represented by the m
clusters. In that case P (m) = Q(m) = 0. On the other hand, the worst case scenario is
wij = 1/m (i = 1, . . . ,m ; j = 1, . . . , lε) and hence P (m) = Q(m) = 1. Thus, given that
P (m) and Q(m) take values in the interval [0, 1], preferable clusterings could be considered
the ones that correspond to small values of P (m) and Q(m). However, depending blindly
on these criteria may return misleading results, especially for small m, because P (m) and
Q(m) can take small values also when there exists a single, possibly big, cluster wherein
all open-sequences have very high confidence. Hence, some conservatism is needed when
assessing the number of clusters based on these criteria.

For the msnbc.com data, ε is set to 0.02 and the values of P (m) andQ(m) are calculated
for the clusterings obtained in Subsection 4.2. The result is shown in Figure 3. The
smallest value of both criteria results for m = 3 but the conservative choice of m = 6
seems to be satisfactory, because for 8 to 11 clusters the values of P (m) and Q(m) are
almost unchanged and for 12 to 20 clusters P (m) and Q(m) take bigger values.

4.4 Description of the clusters

Each plot in Figure 4 shows the frequency of appearance of each URL category in the cor-
responding cluster relative to its frequency in the whole data set. Furthermore, each plot
in Figure 5 shows the frequency of appearance of each URL category in the corresponding
cluster relative to the total number of URLs appearing in that cluster. Hence, Figure 4
provides a rough between cluster analysis of URL categories (the sum of frequencies of
each URL category among clusters is 1) and Figure 5 provides a within one (the sum
of the frequencies of the URL categories in each cluster is 1). The cluster sizes and the
minimum, average and maximum length of the sequences in each cluster are also displayed

12
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Figure 4: The frequency of appearance of each URL category in the corresponding cluster
relative to its frequency in the whole data set. The size of each cluster and the minimum,
average and maximum length of the sequences within each cluster are shown on the title
and the subtitle of the corresponding plot.
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on the plots. Note that, Figure 4 and Figure 5 are merely a useful visualization of the
by-row and by-column relative frequencies from the cross-tabulation of clusters and URL
categories.

Clusters 5 and 6 are the smallest in size clusters and also have the highest average
length of sequences. Specifically, cluster 5 contains the 13 of the 19 sequences with length
greater than 1000 in the data set. The common feature characterizing those 13 sequences
amongst all 19 is the high concentration of URLs of the “front page” category (category
1). Furthermore, about 80% of the hits to URLs of the “weather” category (category 8) is
contained in cluster 6 and also, as Figure 5 reveals, about the 80% of the URLs in cluster
6 are of category “weather”. A closer look reveals that all users in cluster 5 have visited
at least once a URL of category “front page” and all users in cluster 6 have visited at least
once a URL of category “weather”. Cluster 3 contains about the 70% of the hits to URLs
of category “bulletin board service” (category 14) and also, as Figure 5 reveals, about the
60% of the URLs in cluster 3 are of category “bulletin board service”. Similar conclusions
can be drawn for cluster 4 which seems to be dominated by and also contain many of the
hits in the data set to URLs of the “news” category. The two large in size clusters 1 and
2 do not have a similar transparent interpretation in terms of URL categories. By the
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Figure 5: The frequency of appearance of each URL category in the corresponding cluster
relative to the number of URLs appearing in that cluster. The size of each cluster and the
minimum, average and maximum length of the sequences within each cluster are shown
on the title and the subtitle of the corresponding plot.
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plots of Figure 4, cluster 2 contains a moderate percentage of URLs in many categories
and cluster 1 contains the majority of the hits in the data set to URLs of the categories
6, 9, 13 and 15 and about half the hits to URLs of the categories 3, 4, 5, 7, 10, 11, 12,
16. Furthermore, by the corresponding plots of Figure 5, the slight dominance of category
6 in cluster 1 and category 1 in cluster 2 are noted, but overall there are no significantly
dominant URL categories within those clusters. The case gets clearer when considering
higher-order interactions of URL categories.

The confidences of the open sequences with support threshold ε = 0.02 are shown in
Table 3, where confidences greater that 0.5 are shown in boldface type. Note that most of
these open sequences are strongly associated with the observations in clusters 2 and 5. This
suggests that clusters 2 and 5 accommodate similar browsing behaviours. It seems that,
the separation of these two clusters is due to the fact that cluster 5 contains on average
longer sequences than cluster 2. Exceptions are the open sequences {1, 2}, {1, 6}, {7, 4},
{2, 4}, {6, 7}, {7, 6} and {6, 7, 6}. The last three of the aforementioned open sequences
are strongly associated with the observations in cluster 1, with confidences 0.743, 0.741
and 0.813, respectively. Lastly, the open sequences for ε = 0.02 do not show any strong
association with clusters 3, 4 and 6. Especially, cluster 6 seems to be isolated from the
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Table 3: The open sequences that have support greater than ε = 0.02 in the msnbc.com
data and their confidences for the selected clustering in the 6 clusters.

Open sequence Support
Confidences

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

{1, 2} 0.072 0.050 0.437 0.018 0.230 0.253 0.012
{2, 1} 0.042 0.014 0.518 0.006 0.039 0.412 0.011
{1, 12} 0.041 0.024 0.604 0.013 0.049 0.302 0.008
{1, 2, 1} 0.038 0.000 0.535 0.000 0.000 0.455 0.010
{1, 4} 0.037 0.044 0.570 0.015 0.063 0.294 0.014
{1, 14} 0.037 0.007 0.498 0.207 0.016 0.262 0.010
{1, 6} 0.035 0.338 0.439 0.014 0.000 0.195 0.014
{1, 7} 0.034 0.077 0.597 0.017 0.033 0.256 0.020
{1, 11} 0.032 0.033 0.579 0.014 0.039 0.326 0.009
{1, 3} 0.031 0.036 0.604 0.015 0.082 0.255 0.008
{6, 7} 0.030 0.743 0.130 0.029 0.000 0.068 0.030
{12, 1} 0.026 0.009 0.512 0.006 0.012 0.451 0.010
{1, 10} 0.026 0.083 0.561 0.013 0.068 0.263 0.012
{7, 1} 0.025 0.024 0.613 0.007 0.007 0.329 0.020
{7, 6} 0.025 0.741 0.132 0.024 0.000 0.074 0.029
{7, 4} 0.024 0.316 0.324 0.044 0.106 0.135 0.075
{4, 1} 0.023 0.016 0.510 0.006 0.013 0.442 0.013
{1, 12, 1} 0.023 0.000 0.485 0.000 0.000 0.507 0.008
{14, 1} 0.022 0.004 0.523 0.052 0.004 0.404 0.013
{1, 7, 1} 0.022 0.000 0.615 0.000 0.000 0.369 0.016
{11, 1} 0.022 0.006 0.522 0.004 0.005 0.454 0.009
{6, 1} 0.021 0.152 0.518 0.010 0.000 0.304 0.016
{6, 7, 6} 0.021 0.813 0.091 0.021 0.000 0.052 0.023
{1, 11, 1} 0.020 0.000 0.510 0.000 0.000 0.482 0.008
{2, 4} 0.021 0.128 0.245 0.041 0.335 0.211 0.039

other clusters for this particular choice of ε, because all open sequences are almost not
associated with it.

5 Discussion and concluding Remarks

A supervised way for obtaining subsets of the data is developed for use in applications
involving large data sets. The suggested approach consists of the construction of a data-
dependent partitioning on the observation space, sub-sampling within the partitions and
the application of a k-medoids clustering algorithm on each of the sub-samples. Then, the
resultant centroids are returned as the subset. In this way, the probability that an obser-
vation is included in the final subset is allowed to differ between observations facilitating
the detection of any small groups present in the data by standard clustering procedures.

The number of partitions, number and size of sub-samples per partition and the number
of centroids per sub-sample for the application of the procedure are parameters specified
by the user. In this respect, a systematic way of obtaining possible parameter values has
been proposed, which results by merely fixing the total number of observations sampled
during the procedure.

The suggested approach was used for efficiently obtaining a hard clustering of the
msnbc.com data set in 6 clusters, and as the analysis indicated each of the clusters seems
to contain observations with specific common characteristics. Importantly, that cluster-
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ing could serve as a starting point for more sophisticated approaches in clustering the
msnbc.com data.

Of course, despite the fact that, as is demonstrated both with simulated and real data,
the suggested approach is computationally feasible for large data sets and can return good
results, a formal justification for its general use is still lacking.

In the current paper, the observation space is partitioned in equi-sized partitions, each
containing observations which are equivalent in terms of their distance from a centrally
located observation µ̂. While this seemed a natural choice of partitioning scheme to the
authors, other similar schemes may be constructed, for example, by allowing the number
of observations per partition to vary or by constructing the partitions based on other more
specific aspects of the data at hand.

Lastly, the procedure can be conveniently set up for parallel computation, for example,
by treating one partition per thread for each parameter setting, or by treating one param-
eter setting per thread. The later parallelization strategy was used for the clustering of
the msnbc.com data.
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