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Abstract

For the parameters of a multinomial logistic regression it is shown how to obtain the
bias-reducing penalized maximum likelihood estimator by using the equivalent Poisson log-
linear model. The calculation needed is not simply an application of the Jeffreys- prior
penalty to the Poisson model. The development allows a simple and computationally efficient
implementation of the reduced-bias estimator, using standard software for generalized linear
models.
Keywords: Jeffreys prior; leverage; logistic linear regression; Poisson trick.

1 Introduction

Use of the Jeffreys-prior penalty to remove the O(n−1) asymptotic bias of the maximum likeli-
hood estimator in full exponential family models was developed in Firth (1993) and has been
found to be particularly effective in binomial and multinomial logistic regressions (e.g., Heinze
& Schemper, 2002; Bull et al., 2002, 2007). Implementation of the method in binomial and other
univariate-response models is by means of a simple, iterative data-adjustment scheme (Firth,
1992). In this paper we extend such simplicity of implementation to multinomial models.

In what follows, the Kronecker function δsk is equal to 1 when s = k and zero other-
wise. Suppose that observed k-vectors y1, . . . , yn of counts are realizations of independent
multinomial random vectors Y1, . . . , Yn. Let mr =

∑k
s=1 yrs be the multinomial total and let

πrs be the probability of the sth category for the multinomial vector Yr, with
∑k

s=1 πrs = 1
(r = 1, . . . , n; s = 1, . . . , k). In multinomial logistic regression the log-odds of category s versus
category k, say, for the rth multinomial vector is

log

(
πrs
πrk

)
= xTr βs (r = 1, . . . , n; s = 1, . . . , k − 1) . (1)

Here xr is a vector of p covariate values, with first component unity if a constant is included in
the model; and βs ∈ <p is a vector of parameters for the sth category (s = 1, . . . , k − 1).
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The multinomial model (1) can be embedded conveniently into a Poisson log-linear model.
If Yrs (r = 1, . . . , n; s = 1, . . . , k) are independently Poisson with means

µrs = exp{φr + (1− δsk)xTr βs}, (2)

then the Poisson likelihood factorizes: with Mr denoting
∑k

s=1 Yrs, the conditional distribu-
tion of Yr given Mr is the multinomial model of interest, while the totals Mr are Poisson-
distributed with means τr =

∑k
s=1 µrs (r = 1, . . . , n). Maximum likelihood inferences for

β = (βT1 , . . . , β
T
k−1)

T obtained from the full, unconditional Poisson likelihood are thus identi-
cal to those based directly on the multinomial likelihood. This equivalence was noted in Birch
(1963), and Palmgren (1981) showed that the inverse of the expected information on β1, . . . , βk−1
is the same in both representations under the restriction τr = mr (r = 1, . . . , n) on the param-
eter space of the Poisson log-linear model. That restriction is automatically satisfied at the
maximum likelihood estimate because if l(β, φ1, . . . , φn) is the log-likelihood for the model (2)
then ∂l/∂φr = mr − τr.

The multinomial logit model (1) and the Poisson log-linear model (2) are both full expo-
nential families, and so in either case the bias-reducing penalty of Firth (1993) to the likelihood
is simply the Jeffreys (1946) invariant prior for the model. However, in the (β, φ) parameter-
ization, the penalized Poisson likelihood cannot in general be factorized as the product of the
required penalized multinomial likelihood and a factor free of β. As a result, naive computation
of reduced-bias estimates for the full parameter vector (β, φ) in the Poisson log-linear model
does not deliver reduced-bias estimates for the parameters β of the multinomial model, as might
be hoped.

The solution is to work with a restricted version of the Poisson model, in which the con-
straints τr = mr (r = 1, . . . , n) are explicitly imposed. This Poisson model is then a generalized
nonlinear model. This might at first sight appear to complicate what is intended to be a sim-
plifying computational device; however, the general results of Kosmidis & Firth (2009) apply,
and yield a useful representation of the adjusted score vector which in turn suggests a simple
iterative algorithm.

2 Bias reduction via the Poisson model

2.1 Reduction of the bias for φ and β under Poisson sampling

The incorrect, naive approach, which simply applies the Jeffreys prior to the Poisson-log-linear
model (2), is briefly reviewed here. This establishes notation, and will be useful for the iteration
developed in § 3.

Let q = k − 1. In Firth (1992) it is shown that the bias-reducing adjusted score functions
for the model (2) can be written in the form

U∗t =
n∑
r=1

k∑
s=1

(
yrs +

1

2
hrss − µrs

)
zrst (t = 1, . . . , n+ pq) . (3)

Here zrst is the (s, t)th component of the k × (n+ pq) matrix

Zr =

[
Gr 1q ⊗ eTr
0Tpq eTr

]
(r = 1, . . . , n) ,

where Gr = Iq ⊗ xTr (r = 1, . . . , n), Iq is the q× q identity matrix, 0pq is a pq-vector of zeros, 1q
is a q-vector of ones, and er is a n-vector of zeros with one as its rth element. The quantity hrss

2

CRiSM Paper No. 10-18v2, www.warwick.ac.uk/go/crism



is the sth diagonal element of the k × k matrix Hr = ZrF
−1ZTr Wr, where F is the expected

information for θ and Wr = diag {µr1, . . . , µrk} (r = 1, . . . , n). The matrix Hr is the k × k,
rth diagonal block of the asymmetric hat matrix for the Poisson log-linear model. Expression
(3) directly suggests an iterative procedure for solving the adjusted score equations: at the

jth iteration, (i) calculate h
(j)
rss (r = 1, . . . , n; s = 1, . . . , k), where the superscript (j) denotes

evaluation at the candidate estimate θ(j) of the previous iteration, and then (ii) fit model (2)

by maximum likelihood but using adjusted responses yrs + h
(j)
rss/2 in place of yrs, to get new

estimates θ(j+1).
However, as noted in § 1, solving U∗t = 0 (r = 1, . . . , n) would not result in the reduced-bias

estimates of β for the multinomial model, because of the presence of the technical nuisance
parameters φ1, . . . , φn. For example, from (3) the adjusted score equation for φr is τr = mr +
tr(Hr)/2; this is in contrast to maximum likelihood, where the essential restriction τ̂r = mr

(r = 1, . . . , n) is automatic.

2.2 Adjusted score functions in the restricted parameter space

If the Poisson log-linear model (2) is parameterized in terms of θ† = (βT , τT )T , then the restric-
tion τr = mr (r = 1, . . . , n) can be applied directly by fixing components of the parameter vector
θ†. Furthermore, the parameters τ and β are orthogonal (Palmgren, 1981), which simplifies the
derivations. Model (2) is then re-written as a canonically-linked generalized nonlinear model,

logµrs = log
τr

1 +
∑q

u=1 exp (xTr βu)
+ (1− δsk)xTr βs (r = 1, . . . , n; s = 1, . . . , k) . (4)

The variance and the third cumulant of Yrs under the Poisson assumption are equal to µrs
and the leverages hrss are parameterization invariant. Hence, expression (13) in Kosmidis &
Firth (2009) gives that the bias-reducing adjusted score equations using adjustments based on
the expected information matrix take the form

U †t =
n∑
r=1

k∑
s=1

[
yrs +

1

2
hrss +

1

2
µrstr

{
(F †)−1D2

(
ζrs; θ

†
)}
− µrs

]
z†rst (t = 1, . . . , n+ pq) ,

where F † is the expected information on θ†, D2
(
ζrs; θ

†) denotes the (n+ pq)× (n+ pq) Hessian

matrix of ζrs with respect to θ†, and z†rst is the (s, t)th component of the k × (n+ pq) matrix

Z†r =

[
Gr − 1q ⊗

(
πTr Gr

)
1q ⊗

(
τ−1r eTr

)
−πTr Gr τ−1r eTr

]
(r = 1, . . . , n) ,

with πr = (πr1, . . . , πrq)
T and πrs = µrs/τr (s = 1, . . . , k).

After noting thatD2
(
ζrs; θ

†) does not depend on s and substituting for z†rst (r = 1, . . . , n; s =
1, . . . , k), the adjusted score functions for β take the simple form

U †t =
n∑
r=1

q∑
s=1

[
yrs +

1

2
hrss −

{
mr +

1

2
tr(Hr)

}
πrs

]
grst (t = 1, . . . , pq) , (5)

where grst is the (s, t)th component of Gr (r = 1, . . . , n).
The only quantities in expression (5) affected by the restriction τr = mr (r = 1, . . . , n) are

the leverages hrss. The following theorem shows the effect of the restriction on the leverages by
providing some identities on the relationship between the matrix Hr and the q× q, rth diagonal
block of the asymmetric hat matrix for the multinomial logistic regression model (1). Denote
the latter matrix by Vr.
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Theorem 1 Let vrsu be the (s, u)th component of the matrix Vr (r = 1, . . . , n; s, u = 1, . . . , q).
If the parameter space is restricted by τ1 = m1, . . . , τn = mn, then

hrss = πrs + vrss −
q∑

u=1

πruvrus (s = 1, . . . , q) ,

hrkk = πrk +

q∑
s,u=1

πruvrus ,

where πrs = µrs/mr (r = 1, . . . , n; s = 1, . . . , k).

The proof of Theorem 1 is in the Appendix.
Direct use of the identities in Theorem 1 yields that, under the restriction τr = mr (r =

1, . . . , n), the adjusted score functions for β in (5) take the form

U †t =

n∑
r=1

q∑
s=1

[
yrs +

1

2
vrss −

{
mr +

1

2
tr(Vr)

}
πrs −

1

2

q∑
u=1

πruvrus

]
grst (t = 1, . . . , pq) .

Application of results from Kosmidis & Firth (2009, p.797) on adjusted score functions for
canonical-link multivariate generalized linear models, after some simple matrix manipulation,
shows that these adjusted score functions are identical to those obtained by direct penalization
of the likelihood for the multinomial model (1). Hence the required reduced-bias estimates of
β are reduced-bias estimates of the nonlinear Poisson model (4) under parameter constraints
τr = mr (r = 1, . . . , n). The algebraic manipulations, which are straightforward but tedious,
are in the Appendix.

3 Reduced-bias estimates for β

Expression (5) suggests the following iterative procedure: move from candidate estimates β(j)

to new values β(j+1) by solving

0 =

n∑
r=1

q∑
s=1

[
yrs +

1

2
h̃(j)rss −

{
mr +

1

2
tr
(
H̃(j)
r

)}
π(j+1)
rs

]
grst (t = 1, . . . , pq) , (6)

with h̃
(j)
rss calculated for the restricted parameterization. Directly from (5), the above iteration

has a stationary point at the reduced-bias estimates of β.
To implement the above iteration one can take advantage of the fact that the solution of

the adjusted score functions (3) for the Poisson log-linear model (2) implies the solution of
τr = mr + tr(Hr)/2 (r = 1, . . . , n). Hence, iteration (6) can be implemented as:

1. set φ̃
(j)
r = logmr − log

{
1 +

∑q
s=1 exp

(
xTr β

(j)
s

)}
(r = 1, . . . , n),

2. use θ̃(j) = (β(j), φ̃
(j)
1 , . . . , φ̃

(j)
n ) to calculate new values H̃

(j)
r (r = 1, . . . , n),

3. fit model (2) by maximum likelihood but using the adjusted responses yrs+h̃
(j)
rss/2 in place

of yrs to get new estimates φ(j+1) and β(j+1) (r = 1, . . . , n; s = 1, . . . , k).

The β-block of the inverse of the expected information matrix evaluated at the reduced-bias
estimates can be used to produce valid standard errors for the estimators.

Note that Hr depends on the model parameters only through the Poisson expectations
µr1, . . . , µrk (r = 1, . . . , n) and that the first step implies the rescaling of the current values of

4

CRiSM Paper No. 10-18v2, www.warwick.ac.uk/go/crism



those expectations so that they sum to the corresponding multinomial totals. It is straight-
forward to implement this iteration using standard software for univariate-response generalized
linear models; a documented program for the R statistical computing environment (R Develop-
ment Core Team, 2010) is available in the Appendix.
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Appendix

Preamble

The proof and algebraic derivations that follow are taken from Appendices B.5 and B.6 of the
2007 University of Warwick PhD thesis by I. Kosmidis (Kosmidis, 2007), available online at
http://www.ucl.ac.uk/~ucakiko/ikosmidis_thesis.html.

This appendix corrects minor typographical errors in Appendices B.5 and B.6 of the PhD
thesis, and makes the notational and textual adjustments needed to match material in the
paper.

Proof of Theorem 1

Write Z†r =
[
Q1,r Q2,r

]
(r = 1, . . . , n), where

Q1,r =

[
Gr
0Tpq

]
− 1k ⊗ (πTr Gr) and Q2,r = 1k ⊗ (τ−1r eTr ) . (7)

In Palmgren (1981) it is shown that the expected information on θ† is the block diagonal
matrix

F † =

F †β
F †τ

 ,
where F †β is the expected information on β and F †τ = diag(1/τ1, . . . , 1/τn) is the expected
information on τ . Palmgren (1981) also showed that if the parameter space is restricted by

τ1 = m1, . . . , τn = mn then F †β = E where E is the information on β corresponding to the
likelihood function of the multinomial logistic regression model. Noting that the k × k matrix
Hr is parameterization invariant,

Hr = Z†r

(
F †
)−1 (

Z†r

)T
Wr (8)

= Q1,r

(
F †β

)−1
QT1,rWr +Q2,rdiag(τ1, . . . , τn)QT2,rWr (r = 1, . . . , n) ,
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where Wr = mrdiag(πr1, . . . , πrk). Substituting (7) in (8) and restricting the parameter space
by τ1 = m1, . . . , τn = mn gives

Hr =

[
VrΣ

−1
r 0q

0Tq 0

]
Wr −

[
1Tk ⊗ (VrΣ

−1
r πr)

0Tk

]
Wr −

[
1k ⊗ (πTr Σ−1r V T

r ) 0k

]
Wr

+ πTr VrΣ
−1
r πr1k×kWr +

[
(1k ⊗ πr) 1kπrk

]
(9)

where πrk = 1 −
∑q

s=1 πrs (r = 1, . . . , n) and 1k×k is a k × k matrix of ones. The matrix
Vr = GrE

−1GTr Σr is the q × q, rth diagonal block of the asymmetric ‘hat matrix’ for the
multinomial logistic regression model, and Σr is the q × q variance-covariance matrix of the
incomplete multinomial vector (Yr1, . . . , Yrq)

T , with (s, u)th component

σrsu =

{
mrπrs(1− πrs) , s = u
−mrπrsπru , s 6= u

(s, u = 1, . . . , q) .

The inverse Σ−1r of Σr has (s, u)th component

ρrsu =

{
m−1r (π−1rs + π−1rk ) , s = u

m−1r π−1rk , s 6= u
(s, u = 1, . . . , q) .

Expression (9) is an expression of Hr in the restricted parameter space in terms of Vr and
the multinomial probabilities πr1, . . . , πrk. After performing the matrix multiplications and
additions in (9) the diagonal elements of Hr (r = 1, . . . , n) are written as

hrss = πrs + vrss −
πrs
πrk

q∑
u=1

vrsu +
πrs
πrk

q∑
u=1

q∑
w=1

πruvruw (s = 1, . . . , q) ,

hrkk = πrk +

q∑
u=1

q∑
w=1

πruvruw .

The proof is completed after showing that

q∑
u=1

πruvrus =
πrs
πrk

q∑
u=1

vrsu −
πrs
πrk

q∑
u=1

q∑
w=1

πruvruw (r = 1, . . . , n; s = 1, . . . , q) . (10)

If Gr = 1q ⊗ xTr is substituted in Vr = GrE
−1GTr Σr and E−su denotes the (s, u)th, p× p block of

E−1 (that is the block corresponding to βs and βu), then direct matrix multiplication gives

vrsu = mrπru

(
xTr E

−
suxr −

q∑
w=1

πrwx
T
r E
−
swxr

)
(s, u = 1, . . . , q) . (11)

Hence, because E−su = E−us, the left hand side of (10) is

q∑
u=1

πruvrus = mrπrs

q∑
u=1

πrux
T
r E
−
suxr −mrπrs

q∑
u=1

q∑
w=1

πruπrwx
T
r E
−
uwxr (s = 1, . . . , q) .

Substituting (11) in the right hand side of (10) gives the same result as above. �
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Derivation of the adjusted scores via the multinomial likelihood

From Kosmidis & Firth (2009, p. 797) the bias-reducing adjusted score equations for the
multinomial logistic regression model using adjustments based on the expected information
matrix take the form

U †t =
n∑
r=1

q∑
s=1

[
yrs −mrπrs +

1

2
tr
(
VrΣ

−1
r Krs

)]
grst (t = 1, . . . , pq) , (12)

where Krs is the q × q, sth block of rows of the q2 × q matrix of third-order cumulants of the
incomplete multinomial vector (r = 1, . . . , n; s = 1, . . . , q) and has (u, v)th component

κrsuv =


mrπrs(1− πrs)(1− 2πrs) s = u = v
−mrπrsπrv(1− πrs) s = u 6= v
2mrπrsπruπv s, u, v distinct

(s, u, v = 1, . . . , q) .

Direct matrix multiplication then gives,

Σ−1r Krs =



−πrs 0 . . . 0 . . . 0
0 −πrs . . . 0 . . . 0
...

...
. . .

...
...

−πr1 −πr2 . . . 1− 2πrs . . . −πrq
...

...
...

. . .
...

0 0 . . . 0 . . . −πrs


(s = 1, . . . , q) ,

and

tr
(
VrΣ

−1
r Krs

)
= vrss −

q∑
u=1

πruvrus − πrstrVr (r = 1, . . . , n; s = 1, . . . , q) .

Substituting the above expression into (12) gives

U †t =

n∑
r=1

q∑
s=1

[
yrs +

1

2
vrss −

{
mr +

1

2
tr(Vr)

}
πrs −

1

2

q∑
u=1

πruvrus

]
grst (t = 1, . . . , pq) .

�
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