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Abstract: We consider various versions of adaptive Gibbs and Metropolis-
within-Gibbs samplers, which update their selection probabilities (and per-
haps also their proposal distributions) on the fly during a run, by learning
as they go in an attempt to optimise the algorithm. We present a cautionary
example of how even a simple-seeming adaptive Gibbs sampler may fail to
converge. We then present various positive results guaranteeing convergence
of adaptive Gibbs samplers under certain conditions.
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1. Introduction

Markov chain Monte Carlo is a commonly used approach to evaluating expec-
tations of the form θ :=

∫
X f(x)π(dx), where π is an intractable probability

measure, e.g. known up to a normalising constant. One simulates (Xn)n≥0, an
ergodic Markov chain on X , evolving according to a transition kernel P with
stationary limiting distribution π and, typically, takes ergodic average as an
estimate of θ. The approach is justified by asymptotic Markov chain theory,
see e.g. [33, 43]. Metropolis algorithms and Gibbs samplers (to be described in
Section 2) are among the most common MCMC algorithms, c.f. [36, 29, 43].
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The quality of an estimate produced by an MCMC algorithm depends on
probabilistic properties of the underlying Markov chain. Designing an appropri-
ate transition kernel P that guarantees rapid convergence to stationarity and
efficient simulation is often a challenging task, especially in high dimensions.
For Metropolis algorithms there are various optimal scaling results [37, 41, 9,
10, 4, 42, 43, 46] which provide “prescriptions” of how to do this, though they
typically depend on unknown characteristics of π.

For random scan Gibbs samplers, a further design decision is choosing the
selection probabilities (i.e., coordinate weightings) which will be used to select
which coordinate to update next. These are usually chosen to be uniform, but
some recent work [30, 26, 27, 16, 48, 12] has suggested that non-uniform weight-
ings may sometimes be preferable.

For a very simple toy example to illustrate this issue, suppose X = [0, 1] ×
[−100, 100], with π(x1, x2) ∝ x100

1 (1 + sin(x2)). Then with respect to x1, this π
puts almost all of the mass right up against the line x1 = 1. Thus, repeated Gibbs
sampler updates of the coordinate x1 provide virtually no help in exploring the
state space, and do not need to be done often at all (unless the functional f of
interest is extremely sensitive to tiny changes in x1). By contrast, with respect
to x2, this π is a highly multi-modal density with wide support and many peaks
and valleys, requiring many updates to the coordinate x2 in order to explore
the state space appropriately. (Of course, as with any Gibbs sampler, repeatedly
updating one coordinate does not help with distributional convergence, it only
helps with sampling the entire state space to produce good estimates.) Thus,
an efficient Gibbs sampler for this example would not update each of x1 and
x2 equally often; rather, it would update x2 very often and x1 hardly at all.
Of course, in this simple example, it is easy to see directly that x1 should be
updated less than x2, and furthermore such efficiencies would only improve
the sampler by approximately a factor of 2. However, in a high-dimensional
example (c.f. [12]), such issues could be much more significant, and also much
more difficult to detect manually.

One promising avenue to address this challenge is adaptive MCMC algo-
rithms. As an MCMC simulation progresses, more and more information about
the target distribution π is learned. Adaptive MCMC attempts to use this new
information to redesign the transition kernel P on the fly, based on the current
simulation output. That is, the transition kernel Pn used for obtaining Xn|Xn−1

may depend on {X0, . . . , Xn−1}. So, in the above toy example, a good adaptive
Gibbs sampler would somehow automatically “learn” to update x1 less often,
without requiring the user to determine this manually (which could be difficult
or impossible in a very high-dimensional problem).

Unfortunately, such adaptive algorithms are only valid if their ergodicity can
be established. The stochastic process (Xn)n≥0 for an adaptive algorithm is no
longer a Markov chain; the potential benefit of adaptive MCMC comes at the
price of requiring more sophisticated theoretical analysis. There is substantial
and rapidly growing literature on both theory and practice of adaptive MCMC
(see e.g. [18, 19, 5, 1, 20, 13, 44, 45, 25, 50, 51, 14, 8, 6, 7, 47, 49, 2, 3, 15]) which
includes counterintuitive examples where Xn fails to converge to the desired
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distribution π (c.f. [5, 44, 8, 25]), as well as many results guaranteeing ergodicity
under various assumptions. Most of the previous work on ergodicity of adaptive
MCMC has concentrated on adapting Metropolis and related algorithms, with
less attention paid to ergodicity when adapting the selection probabilities for
random scan Gibbs samplers.

Motivated by such considerations, in the present paper we study the ergod-
icity of various types of adaptive Gibbs samplers. To our knowledge, proofs of
ergodicity for adaptively-weighted Gibbs samplers have previously been consid-
ered only by [28], and we shall provide a counter-example below (Example 3.1)
to demonstrate that their main result is not correct. In view of this, we are not
aware of any valid ergodicity results in the literature that consider adapting
selection probabilities of random scan Gibbs samplers, and we attempt to fill
that gap herein.

This paper is organised as follows. We begin in Section 2 with basic defi-
nitions. In Section 3 we present a cautionary Example 3.1, where a seemingly
ergodic adaptive Gibbs sampler is in fact transient (as we prove formally later
in Section 6) and provides a counter-example to Theorem 2.1 of [28]. Next,
we establish various positive results for ergodicity of adaptive Gibbs samplers.
We consider adaptive random scan Gibbs samplers (AdapRSG) which update co-
ordinate selection probabilities as the simulation progresses; adaptive random
scan Metropolis-within-Gibbs samplers (AdapRSMwG) which update coordinate
selection probabilities as the simulation progresses; and adaptive random scan
adaptive Metropolis-within-Gibbs samplers (AdapRSadapMwG) that update coor-
dinate selection probabilities as well as proposal distributions for the Metropolis
steps. Positive results in the uniform setting are discussed in Section 4, whereas
Section 5 deals with the nonuniform setting. In each case, we prove that under
reasonably mild conditions, the adaptive Gibbs samplers are guaranteed to be
ergodic, although our cautionary example does show that it is important to
verify some conditions before applying such algorithms.

2. Preliminaries

Gibbs samplers are commonly used MCMC algorithms for sampling from com-
plicated high-dimensional probability distributions π in cases where the full con-
ditional distributions of π are easy to sample from. To define them, let (X ,B(X ))
be an d−dimensional state space where X = X1 × · · · × Xd and write Xn ∈ X
as Xn = (Xn,1, . . . , Xn,d). We shall use the shorthand notation

Xn,−i := (Xn,1, . . . , Xn,i−1, Xn,i+1, . . . , Xn,d) ,

and similarly X−i = X1 × · · · × Xi−1 ×Xi+1 × · · · × Xd.
Let π(·|x−i) denote the conditional distribution of Zi |Z−i = x−i where

Z ∼ π. The random scan Gibbs sampler draws Xn given Xn−1 (iteratively
for n = 1, 2, 3, . . .) by first choosing one coordinate at random according to
some selection probabilities α = (α1, . . . , αd) (e.g. uniformly), and then updat-
ing that coordinate by a draw from its conditional distribution. More precisely,
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the Gibbs sampler transition kernel P = Pα is the result of performing the
following three steps.

Algorithm 2.1 (RSG(α)).

1. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities α, i.e.
with P(i = j) = αj

2. Draw Y ∼ π(·|Xn−1,−i)
3. Set Xn := (Xn−1,1, . . . , Xn−1,i−1, Y,Xn−1,i+1, . . . , Xn−1,d).

Whereas the standard approach is to choose the coordinate i at the first
step uniformly at random, which corresponds to α = (1/d, . . . , 1/d), this may
be a substantial waste of simulation effort if d is large and variability of co-
ordinates differs significantly. This has been discussed theoretically in [30] and
also observed empirically e.g. in Bayesian variable selection for linear models in
statistical genetics [48, 12].

Throughout the paper we denote the transition kernel of a random scan Gibbs
sampler with selection probabilities α as Pα and the transition kernel of a single
Gibbs update of coordinate i is denoted as Pi, hence Pα =

∑d
i=1 αiPi.

We consider a class of adaptive random scan Gibbs samplers where selection
probabilities α = (α1, . . . , αd) are subject to optimization within some subset
Y ⊆ [0, 1]d of possible choices. Therefore a single step of our generic adaptive
algorithm for drawing Xn given the trajectory Xn−1, . . . , X0, and current selec-
tion probabilities αn−1 = (αn−1,1, . . . , αn−1,d) amounts to the following steps,
where Rn(·) is some update rule for αn.

Algorithm 2.2 (AdapRSG).

1. Set αn := Rn(α0, . . . , αn−1, Xn−1, . . . , X0) ∈ Y
2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities αn
3. Draw Y ∼ π(·|Xn−1,−i)
4. Set Xn := (Xn−1,1, . . . , Xn−1,i−1, Y,Xn−1,i+1, . . . , Xn−1,d)

Algorithm 2.2 defines Pn, the transition kernel used at time n, and αn plays
here the role of Γn in the more general adaptive setting of e.g. [44, 8]. Let
πn = πn(x0, α0) denote the distribution of Xn induced by Algorithm 2.1 or 2.2,
given starting values x0 and α0, i.e. for B ∈ B(X ),

πn(B) = πn
(
(x0, α0), B

)
:= P(Xn ∈ B|X0 = x0, α0). (1)

Clearly if one uses Algorithm 2.1 then α0 = α remains fixed and πn(x0, α)(B) =
Pnα (x0, B). By ‖ν−µ‖TV denote the total variation distance between probability
measures ν and µ. Let

T (x0, α0, n) := ‖πn(x0, α0)− π‖TV . (2)

We call the adaptive Algorithm 2.2 ergodic if T (x0, α0, n) → 0 for π-almost
every starting state x0 and all α0 ∈ Y.
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We shall also consider random scan Metropolis-within-Gibbs samplers that
instead of sampling from the full conditional at step (2) of Algorithm 2.1 (respec-
tively at step (3) of Algorithm 2.2), perform a single Metropolis or Metropolis-
Hastings step [32, 22]. More precisely, given Xn−1,−i the i-th coordinate Xn−1,i

is updated by a draw Y from the proposal distribution QXn−1,−i
(Xn−1,i, ·) with

the usual Metropolis acceptance probability for the marginal stationary distri-
bution π(·|Xn−1,−i). Such Metropolis-within-Gibbs algorithms were originally
proposed by [32] and have been very widely used. Versions of this algorithm
which adapt the proposal distributions QXn−1,−i

(Xn−1,i, ·) were considered by
e.g. [20, 45], but always with fixed (usually uniform) coordinate selection prob-
abilities. If instead the proposal distributions QXn−1,−i

(Xn−1,i, ·) remain fixed,
but the selection probabilities αi are adapted on the fly, we obtain the following
algorithm (where qx,−i(x, y) is the density function for Qx,−i(x, ·)).

Algorithm 2.3 (AdapRSMwG).

1. Set αn := Rn(α0, . . . , αn−1, Xn−1, . . . , X0) ∈ Y
2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities αn
3. Draw Y ∼ QXn−1,−i

(Xn−1,i, ·)
4. With probability

min

(
1,

π(Y |Xn−1,−i) qXn−1,−i(Y,Xn−1,i)

π(Xn−1|Xn−1,−i) qXn−1,−i
(Xn−1,i, Y )

)
, (3)

accept the proposal and set

Xn = (Xn−1,1, . . . , Xn−1,i−1, Y,Xn−1,i+1, . . . , Xn−1,d) ;

otherwise, reject the proposal and set Xn = Xn−1.

Ergodicity of AdapRSMwG is considered in Sections 4.2 and 5 below. Of course,
if the proposal distribution QXn−1,−i

(Xn−1,i, ·) is symmetric about Xn−1, then
the q factors in the acceptance probability (3) cancel out, and (3) reduces to
the simpler probability min

(
1, π(Y |Xn−1,−i)/π(Xn−1|Xn−1,−i)

)
.

We shall also consider versions of the algorithm in which the proposal distri-
butionsQXn−1,−i(Xn−1,i, ·) are also chosen adaptively, from some family {Qx−i,γ}γ∈Γi

with corresponding density functions qx−i,γ , as in e.g. the statistical genetics
application [48, 12]. Versions of such algorithms with fixed selection proba-
bilities are considered by e.g. [20] and [45]. They require additional adapta-
tion parameters γn,i that are updated on the fly and are allowed to depend
on the past trajectories. More precisely, if γn = (γn,1, . . . , γn,d) and Gn =
σ{X0, . . . , Xn, α0, . . . , αn, γ0, . . . , γn}, then the conditional distribution of γn
given Gn−1 can be specified by the particular algorithm used, via a second
update function R′n. If we combine such proposal distribution adaptions with
coordinate selection probability adaptions, this results in a doubly-adaptive al-
gorithm, as follows.

Algorithm 2.4 (AdapRSadapMwG).

1. Set αn := Rn(α0, . . . , αn−1, Xn−1, . . . , X0, γn−1, . . . , γ0) ∈ Y
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2. Set γn := R′n(α0, . . . , αn−1, Xn−1, . . . , X0, γn−1, . . . , γ0) ∈ Γ1 × . . .× Γn
3. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities α, i.e.

with P(i = j) = αj
4. Draw Y ∼ QXn−1,−i,γn−1,i

(Xn−1,i, ·)
5. With probability (3),

min

(
1,

π(Y |Xn−1,−i) qXn−1,−i,γn−1,i
(Y,Xn−1,i)

π(Xn−1|Xn−1,−i) qXn−1,−i,γn−1,i
(Xn−1,i, Y )

)
,

accept the proposal and set

Xn = (Xn−1,1, . . . , Xn−1,i−1, Y,Xn−1,i+1, . . . , Xn−1,d) ;

otherwise, reject the proposal and set Xn = Xn−1.

Ergodicity of AdapRSadapMwG is considered in Sections 4.3 and 5 below.

3. A counter-example

Adaptive algorithms destroy the Markovian nature of (Xn)n≥0, and are thus
notoriously difficult to analyse theoretically. In particular, it is easy to be tricked
into thinking that a simple adaptive algorithm “must” be ergodic when in fact
it is not.

For example, Theorem 2.1 of [28] states that ergodicity of adaptive Gibbs
samplers follows from the following two simple conditions:

(i) αn → α a.s. for some fixed α ∈ (0, 1)d; and
(ii) The random scan Gibbs sampler with fixed selection probabilities α in-

duces an ergodic Markov chain with stationary distribution π.

Unfortunately, this claim is false, i.e. (i) and (ii) alone do not guarantee
ergodicity, as the following example and proposition demonstrate. (It seems
that in the proof of Theorem 2.1 in [28], the same measure is used to represent
trajectories of the adaptive process and of a corresponding non-adaptive process,
which is not correct and thus leads to the error.)

Example 3.1. Let N = {1, 2, . . . }, and let the state space X = {(i, j) ∈ N×N :
i = j or i = j + 1}, with target distribution given by π(i, j) ∝ j−2. On X ,
consider a class of adaptive random scan Gibbs samplers for π, as defined by
Algorithm 2.2, with update rule given by:

Rn

(
αn−1, Xn−1 = (i, j)

)
=


{

1
2 + 4

an
, 1

2 −
4
an

}
if i = j,

{
1
2 −

4
an
, 1

2 + 4
an

}
if i = j + 1,

(4)

for some choice of the sequence (an)∞n=0 satisfying 8 < an ↗∞.
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Example 3.1 satisfies assumptions (i) and (ii) above. Indeed, (i) clearly holds
since αn → α := ( 1

2 ,
1
2 ), and (ii) follows immediately from the standard Markov

chain properties of irreducibility and aperiodicity (c.f. [33, 43]). However, if an
increases to ∞ slowly enough, then the example exhibits transient behaviour
and is not ergodic. More precisely, we shall prove the following:

Proposition 3.2. There exists a choice of the (an) for which the process (Xn)n≥0

defined in Example 3.1 is not ergodic. Specifically, starting at X0 = (1, 1), we
have P(Xn,1 →∞) > 0, i.e. the process exhibits transient behaviour with positive
probability, so it does not converge in distribution to any probability measure on
X . In particular, ||πn − π||TV 9 0.

Remark 3.3. In fact, we believe that in Proposition 3.2, P(Xn,1 → ∞) = 1,
though to reduce technicalities we only prove that P(Xn,1 → ∞) > 0, which is
sufficient to establish non-ergodicity.

A detailed proof of Proposition 3.2 is presented in Section 6. We also simu-
lated Example 3.1 on a computer (with the (an) as defined in Section 6), result-
ing in the following trace plot of Xn,1 which illustrates the transient behaviour
since Xn,1 increases quickly and steadily as a function of n:

0 2000 4000 6000 8000

0
50

0
10

00
15

00

n

X
n1
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4. Ergodicity - the uniform case

We now present positive results about ergodicity of adaptive Gibbs samplers un-
der various assumptions. Results of this section are specific to uniformly ergodic
chains. (Recall that a Markov chain with transition kernel P is uniformly ergodic
if there exist M <∞ and ρ < 1 s.t. ‖Pn(x, ·)−π(·)‖TV ≤Mρn for every x ∈ X ;
see e.g. [33, 43] for this and other notions related to general state space Markov
chains.) In some sense this is a severe restriction, since most MCMC algorithms
arising in statistical applications are not uniformly ergodic. However, truncating
the variables involved at some (very large) value is usually sufficient to ensure
uniform ergodicity without affecting the statistical conclusions in any practical
sense, so the results of this section may be sufficient for a pragmatical user. The
nonuniform case is considered in the following Section 5.

To continue, recall that RSG(α) stands for random scan Gibbs sampler with
selection probabilities α as defined by Algorithm 2.1, and AdapRSG is the adap-
tive version as defined by Algorithm 2.2. For notation, let ∆d−1 := {(p1, . . . , pd) ∈
Rd : pi ≥ 0,

∑d
i=1 pi = 1} be the (d− 1)−dimensional probability simplex, and

let
Y := [ε, 1]d ∩∆d−1 (5)

for some 0 < ε ≤ 1/d. We shall assume that all our selection probabilities are
in this set Y.

Remark 4.1. The above assumption may seem constraining, it is however irrel-
evant in practice. The additional computational effort on top of the unknown
optimal strategy α∗ (that may be in ∆d−1 − Y) is easily controlled by setting
ε := (Kd)−1 that effectively upperbounds it by 1/K. The argument can be eas-
ily made rigorous e.g. in terms of the total variation distance or the asymptotic
variance.

4.1. Adaptive random scan Gibbs samplers

The main result of this section is the following.

Theorem 4.2. Let the selection probabilities αn ∈ Y for all n, with Y as in (5).
Assume that

(a) |αn−αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y.
(b) there exists β ∈ Y s.t. RSG(β) is uniformly ergodic.

Then AdapRSG is ergodic, i.e.

T (x0, α0, n)→ 0 as n→∞. (6)

Moreover, if

(a’) supx0,α0
|αn − αn−1| → 0 in probability,
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then convergence of AdapRSG is also uniform over all x0, α0, i.e.

sup
x0,α0

T (x0, α0, n)→ 0 as n→∞. (7)

Remark 4.3. 1. Assumption (b) will typically be verified for β = (1/d, . . . , 1/d);
see also Proposition 4.8 below.

2. We expect that most adaptive random scan Gibbs samplers will be de-
signed so that |αn − αn−1| ≤ an for every n ≥ 1, x0 ∈ X , α0 ∈ Y, and
ω ∈ Ω, for some deterministic sequence an → 0 (which holds for e.g.
the adaptations considered in [12]). In such cases, (a’) is automatically
satisfied.

3. The sequence αn is not required to converge, and in particular the amount
of adaptation, i.e.

∑∞
n=1 |αn − αn−1|, is allowed to be infinite.

4. In Example 3.1, condition (a′) is satisfied but condition (b) is not.
5. If we modify Example 3.1 by truncating the state space to say X̃ = X ∩

({1, . . . ,M}× {1, . . . ,M}) for some 1 < M <∞,, then the corresponding
adaptive Gibbs sampler is ergodic, and (7) holds.

Before we proceed with the proof of Theorem 4.2, we need some preliminary
lemmas, which may be of independent interest.

Lemma 4.4. Let β ∈ Y with Y as in (5). If RSG(β) is uniformly ergodic, then
also RSG(α) is uniformly ergodic for every α ∈ Y. Moreover there exist M <∞
and ρ < 1 s.t. supx0∈X ,α∈Y T (x0, α, n) ≤Mρn → 0.

Proof. Let Pβ be the transition kernel of RSG(β). It is well known that for
uniformly ergodic Markov chains the whole state space X is small (c.f. Theorem
5.2.1 and 5.2.4 in [33] with their ψ = π). Thus there exists s > 0, a probability
measure µ on (X ,B(X )) and a positive integer m, s.t. for every x ∈ X ,

Pmβ (x, ·) ≥ sµ(·). (8)

Fix α ∈ Y and let

r := min
i

αi
βi
.

Since β ∈ Y, we have 1 ≥ r ≥ ε
1−(d−1)ε > 0 and Pα can be written as a mixture

of transition kernels of two random scan Gibbs samplers, namely

Pα = rPβ + (1− r)Pq, where q =
α− rβ
1− r

.

This combined with (8) implies

Pmα (x, ·) ≥ rmPmβ (x, ·) ≥ rmsµ(·)

≥
( ε

1− (d− 1)ε

)m
sµ(·) for every x ∈ X . (9)

By Theorem 8 of [43] condition (9) implies

‖Pnα (x, ·)− π(·)‖TV ≤
(

1−
( ε

1− (d− 1)ε

)m
s

)bn/mc
for all x ∈ X . (10)
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Since the right hand side of (10) does not depend on α, the claim follows.

Lemma 4.5. Let Pα and Pα′ be random scan Gibbs samplers using selection
probabilities α, α′ ∈ Y := [ε, 1− (d− 1)ε]d for some ε > 0. Then

‖Pα(x, ·)− Pα′(x, ·)‖TV ≤
|α− α′|

ε+ |α− α′|
≤ |α− α

′|
ε

. (11)

Proof. Let δ := |α− α′|. Then r := mini
α′i
αi
≥ ε

ε+maxi |αi−α′i|
≥ ε

ε+δ and reason-

ing as in the proof of Lemma 4.4 we can write Pα′ = rPα + (1− r)Pq for some
q and compute

‖Pα(x, ·)− Pα′(x, ·)‖TV = ‖(rPα + (1− r)Pα)− (rPα + (1− r)Pq)‖TV

= (1− r)‖Pα − Pq‖TV ≤
δ

ε+ δ
,

as claimed.

Corollary 4.6. Pα(x,B) as a function of α on Y is Lipschitz with Lipschitz
constant 1/ε for every fixed set B ∈ B(X ).

Corollary 4.7. If |αn−αn−1| → 0 in probability, then also supx∈X ‖Pαn
(x, ·)−

Pαn−1(x, ·)‖TV → 0 in probability.

Proof of Theorem 4.2. We conclude the result from Theorem 1 of [44] that re-
quires simultaneous uniform ergodicity and diminishing adaptation. Simultane-
ous uniform ergodicity results from combining assumption (b) and Lemma 4.4.
Diminishing adaptation results from assumption (a) with Corollary 4.7. More-
over note that Lemma 4.4 is uniform in x0 and α0 and (a′) yields uniformly
diminishing adaptation again by Corollary 4.7. A look into the proof of Theo-
rem 1 [44] reveals that this suffices for the uniform part of Theorem 4.2.

Finally, we note that verifying uniform ergodicity of a random scan Gibbs
sampler, as required by assumption (b) of Theorem 4.2, may not be straight-
forward. Such issues have been investigated in e.g. [38] and more recently in
relation to the parametrization of hierarchical models (see [35] and references
therein). In the following proposition, we show that to verify uniform ergodicity
of any random scan Gibbs sampler, it suffices to verify uniform ergodicity of
the corresponding systematic scan Gibbs sampler (which updates the coordi-
nates 1, 2, . . . , d in sequence rather than select coordinates randomly). See also
Theorem 2 of [34] for a related result.

Proposition 4.8. Let α ∈ Y with Y as in (5). If the systematic scan Gibbs
sampler is uniformly ergodic, then so is RSG(α).

Proof. Let
P = P1P2 · · ·Pd

CRiSM Paper No. 11-03, www.warwick.ac.uk/go/crism
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be the transition kernel of the uniformly ergodic systematic scan Gibbs sampler,
where Pi stands for the step that updates coordinate i. By the minorisation con-
dition characterisation, there exist s > 0, a probability measure µ on (X ,B(X ))
and a positive integer m, s.t. for every x ∈ X ,

Pm(x, ·) ≥ sµ(·).

However, the probability that the random scan Gibbs sampler P1/d in itsmd sub-

sequent steps will update the coordinates in exactly the same order is (1/d)md >
0. Therefore the following minorisation condition holds for the random scan
Gibbs sampler.

Pmd1/d(x, ·) ≥ (1/d)mdsµ(·).
We conclude that RSG(1/d) is uniformly ergodic, and then by Lemma 4.4 it
follows that RSG(α) is uniformly ergodic for any α ∈ Y.

4.2. Adaptive random scan Metropolis-within-Gibbs

In this section we consider random scan Metropolis-within-Gibbs sampler al-
gorithms (see also Section 5 for the nonuniform case). Thus, given Xn−1,−i,
the i-th coordinate Xn−1,i is updated by a draw Y from the proposal dis-
tribution QXn−1,−i(Xn−1,i, ·) with the usual Metropolis acceptance probability
for the marginal stationary distribution π(·|Xn−1,−i). Here, we consider Algo-
rithm AdapRSMwG, where the proposal distributions QXn−1,−i

(Xn−1,i, ·) remain
fixed, but the selection probabilities αi are adapted on the fly. We shall prove
ergodicity of such algorithms under some circumstances. (The more general al-
gorithm AdapRSadapMwG is then considered in the following section.)

To continue, let Px−i denote the resulting Metropolis transition kernel for
obtaining Xn,i|Xn−1,i given Xn−1,−i = x−i. We shall require the following as-
sumption.

Assumption 4.9. For every i ∈ {1, . . . , d} the transition kernel Px−i is uni-
formly ergodic for every x−i ∈ X−i. Moreover there exist si > 0 and an in-
teger mi s.t. for every x−i ∈ X−i there exists a probability measure νx−i

on
(Xi,B(Xi)), s.t.

Pmi
x−i

(xi, ·) ≥ siνx−i
(·) for every xi ∈ Xi.

We have the following counterpart of Theorem 4.2.

Theorem 4.10. Let αn ∈ Y for all n, with Y as in (5). Assume that

(a) |αn−αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y.
(b) there exists β ∈ Y s.t. RSG(β) is uniformly ergodic.
(c) Assumption 4.9 holds.

Then AdapRSMwG is ergodic, i.e.

T (x0, α0, n)→ 0 as n→∞. (12)

Moreover, if
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(a’) supx0,α0
|αn − αn−1| → 0 in probability,

then convergence of AdapRSMwG is also uniform over all x0, α0, i.e.

sup
x0,α0

T (x0, α0, n)→ 0 as n→∞. (13)

Remark 4.11. Remarks 4.3.1–4.3.3 still apply. Also, assumption 4.9 can easily
be verified in some cases of interest, e.g.

1. Independence samplers are essentially uniformly ergodic if and only if the
candidate density is bounded below by a multiple of the stationary density,
i.e. q(dx) ≥ sπ(dx) for some s > 0, c.f. [31].

2. The Metropolis-Hastings algorithm with continuous and positive proposal
density q(·, ·) and bounded target density π is uniformly ergodic if the
state space is compact, c.f. [33, 43].

To prove Theorem 4.10 we build on the approach of [40]. In particular recall
the following notion of strong uniform ergodicity.

Definition 4.12. We say that a transition kernel P on X with stationary
distribution π is (m, s)−strongly uniformly ergodic, if for some s > 0 and positive
integer m

Pm(x, ·) ≥ sπ(·) for every x ∈ X .

Moreover, we will say that a family of Markov chains
{
Pγ
}
γ∈Γ

on X with

stationary distribution π is (m, s)−simultaneously strongly uniformly ergodic, if
for some s > 0 and positive integer m

Pmγ (x, ·) ≥ sπ(·) for every x ∈ X and γ ∈ Γ.

By Proposition 1 in [40], if a Markov chain is both uniformly ergodic and
reversible, then it is strongly uniformly ergodic. The following lemma improves
over this result by controlling both involved parameters.

Lemma 4.13. Let µ be a probability measure on X , let m be a positive integer
and let s > 0. If a reversible transition kernel P satisfies the condition

Pm(x, ·) ≥ sµ(·) for every x ∈ X ,

then it is
((⌊

log(s/4)
log(1−s)

⌋
+ 2
)
m, s

2

8

)
−strongly uniformly ergodic.

Proof. By Theorem 8 of [43] for every A ∈ B(X ) we have

‖Pn(x,A)− π(A)‖TV ≤ (1− s)bn/mc,

And in particular

‖P km(x,A)− π(A)‖TV ≤ s/4 for k ≥ log(s/4)

log(1− s)
. (14)
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Since π is stationary for P, we have π(·) ≥ sµ(·) and thus an upper bound for
the Radon-Nikodym derivative

dµ/dπ ≤ 1/s. (15)

Moreover by reversibility

π(dx)Pm(x,dy) = π(dy)Pm(y,dx) ≥ π(dy)sµ(dx)

and consequently
Pm(x,dy) ≥ s

(
µ(dx)/π(dx)

)
π(dy). (16)

Now define
A := {x ∈ X : µ(dx)/π(dx) ≥ 1/2}

Clearly µ(Ac) ≤ 1/2. Therefore by (15) we have

1/2 ≤ µ(A) ≤ (1/s)π(A)

and hence π(A) ≥ s/2. Moreover (14) yields

P km(x,A) ≥ s/4 for k :=

⌊
log(s/4)

log(1− s)

⌋
+ 1.

And with k defined above by (16) we have

P km+m(x, ·) =

∫
X
P km(x,dz)Pm(z, ·) ≥

∫
A

P km(x,dz)Pm(z, ·)

≥
∫
A

P km(x,dz)(s/2)π(·) ≥ (s2/8)π(·).

This completes the proof.

We will need the following generalization of Lemma 4.4.

Lemma 4.14. Let β ∈ Y with Y as in (5). If RSG(β) is uniformly ergodic
then there exist s′ > 0 and a positive integer m′ s.t. the family

{
RSG(α)

}
α∈Y is

(m′, s′)−simultaneously strongly uniformly ergodic.

Proof. Pβ(x, ·) is uniformly ergodic and reversible, therefore by Proposition 1 in
[40] it is (m, s1)−strongly uniformly ergodic for some m and s1. Therefore, and
arguing as in the proof of Lemma 4.4, c.f. (9), there exist s2 ≥

(
ε

1−(d−1)ε

)m
, s.t.

for every α ∈ Y and every x ∈ X

Pmα (x, ·) ≥ s2P
m
β (x, ·) ≥ s1s2π(·). (17)

Set m′ = m and s′ = s1s2.
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Proof of Theorem 4.10. We proceed as in the proof of Theorem 4.2, i.e. es-
tablish diminishing adaptation and simultaneous uniform ergodicity and con-
clude (12) and (13) from Theorem 1 of [44]. Observe that Lemma 4.5 applies
for random scan Metropolis-within-Gibbs algorithms exactly the same way as
for random scan Gibbs samplers. Thus diminishing adaptation results from as-
sumption (a) and Corollary 4.7. To establish simultaneous uniform ergodicity,
observe that by Assumption 4.9 and Lemma 4.13 the Metropolis transition
kernel for ith coordinate i.e. Px−i

has stationary distribution π(·|x−i) and is((⌊
log(si/4)
log(1−si)

⌋
+ 2
)
mi,

s2i
8

)
−strongly uniformly ergodic. Moreover by Lemma 4.14

the family RSG(α), α ∈ Y is (m′, s′)−strongly uniformly ergodic, therefore by
Theorem 2 of [40] the family of random scan Metropolis-within-Gibbs sam-
plers with selection probabilities α ∈ Y, RSMwG(α), is (m∗, s∗)−simultaneously
strongly uniformly ergodic with m∗ and s∗ given as in [40].

We close this section with the following alternative version of Theorem 4.10.

Theorem 4.15. Let αn ∈ Y for all n, with Y as in (5). Assume that

(a) |αn−αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y.
(b) there exists β ∈ Y s.t. RSMwG(β) is uniformly ergodic.

Then AdapRSMwG is ergodic, i.e.

T (x0, α0, n)→ 0 as n→∞. (18)

Moreover, if

(a’) supx0,α0
|αn − αn−1| → 0 in probability,

then convergence of AdapRSMwG is also uniform over all x0, α0, i.e.

sup
x0,α0

T (x0, α0, n)→ 0 as n→∞. (19)

Proof. Diminishing adaptation results from assumption (a) and Corollary 4.7.
Simultaneous uniform ergodicity can be established as in the proof of Lemma 4.4.
The claim follows from Theorem 1 of [44].

Remark 4.16. Whereas the statement of Theorem 4.15 may be useful in spe-
cific examples, typically condition (b), the uniform ergodicity of a random scan
Metropolis-within-Gibbs sampler, will be not available and establishing it will
involve conditions required by Theorem 4.10.

4.3. Adaptive random scan adaptive Metropolis-within-Gibbs

In this section, and also later in Section 5, we consider the adaptive random
scan adaptive Metropolis-within-Gibbs algorithm AdapRSadapMwG, that updates
both selection probabilities of the Gibbs kernel and proposal distributions of
the Metropolis step. Thus, given Xn−1,−i, the i-th coordinate Xn−1,i is up-
dated by a draw Y from a proposal distribution QXn−1,−i, γn,i

(Xn−1,i, ·) with
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K.  Latuszyński et al./Adaptive Gibbs samplers 15

the usual acceptance probability. This doubly-adaptive algorithm has been used
by e.g. [12] for an application in statistical genetics. As with adaptive Metropo-
lis algorithms, the adaption of the proposal distributions in this setting is
motivated by optimal scaling results for random walk Metropolis algorithms
[37, 41, 9, 10, 4, 42, 43, 45, 46].

Let Px−i, γn,i denote the resulting Metropolis transition kernel for obtaining
Xn,i|Xn−1,i given Xn−1,−i = x−i. We will prove ergodicity of this generalised
algorithm using tools from the previous section. Assumption 4.9 must be refor-
mulated accordingly, as follows.

Assumption 4.17. For every i ∈ {1, . . . , d}, x−i ∈ X−i and γi ∈ Γi, the
transition kernel Px−i, γi is uniformly ergodic. Moreover there exist si > 0 and
an integer mi s.t. for every x−i ∈ X−i and γi ∈ Γi there exists a probability
measure νx−i, γi on (Xi,B(Xi)), s.t.

Pmi
x−i, γi(xi, ·) ≥ siνx−i, γi(·) for every xi ∈ Xi.

We have the following counterpart of Theorems 4.2 and 4.10.

Theorem 4.18. Let αn ∈ Y for all n, with Y as in (5). Assume that

(a) |αn − αn−1| → 0 in probability for fixed starting values x0 ∈ X , α0 ∈ Y
and γ0 ∈ Γ.

(b) there exists β ∈ Y s.t. RSG(β) is uniformly ergodic.
(c) Assumption 4.17 holds.
(d) The Metropolis-within-Gibbs kernels exhibit diminishing adaptation, i.e.

for every i ∈ {1, . . . , d} the Gn+1 measurable random variable

sup
x∈X
‖Px−i, γn+1,i

(xi, ·)−Px−i, γn,i
(xi, ·)‖TV → 0 in probability, as n→∞,

for fixed starting values x0 ∈ X , α0 ∈ Y and γ0.

Then AdapRSadapMwG is ergodic, i.e.

T (x0, α0, n)→ 0 as n→∞. (20)

Moreover, if

(a’) supx0,α0
|αn − αn−1| → 0 in probability,

(d’) supx0,α0
supx∈X ‖Px−i, γn+1,i

(xi, ·)−Px−i, γn,i
(xi, ·)‖TV → 0 in probability,

then convergence of AdapRSadapMwG is also uniform over all x0, α0, i.e.

sup
x0,α0

T (x0, α0, n)→ 0 as n→∞. (21)

Remark 4.19. Remarks 4.3.1–4.3.3 still apply. And, Remark 4.11 applies for
verifying Assumption 4.17. Verifying condition (d) is discussed after the proof.

Proof. We again proceed by establishing diminishing adaptation and simulta-
neous uniform ergodicity and concluding the result from Theorem 1 of [44].
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To establish simultaneous uniform ergodicity we proceed as in the proof of
Theorem 4.10. Observe that by Assumption 4.17 and Lemma 4.13 every adap-
tive Metropolis transition kernel for ith coordinate i.e. Px−i, γi has stationary

distribution π(·|x−i) and is
((⌊

log(si/4)
log(1−si)

⌋
+ 2
)
mi,

s2i
8

)
−strongly uniformly er-

godic. Moreover, by Lemma 4.14 the family RSG(α), α ∈ Y is (m′, s′)−strongly
uniformly ergodic, therefore by Theorem 2 of [40] the family of random scan
Metropolis-within-Gibbs samplers with selection probabilities α ∈ Y and pro-
posals indexed by γ ∈ Γ, is (m∗, s∗)−simultaneously strongly uniformly ergodic
with m∗ and s∗ given as in [40].

For diminishing adaptation we write

sup
x∈X
‖Pαn, γn(x, ·)− Pαn−1, γn−1(x, ·)‖TV ≤

sup
x∈X
‖Pαn, γn(x, ·)− Pαn−1, γn(x, ·)‖TV

+ sup
x∈X
‖Pαn−1, γn(x, ·)− Pαn−1, γn−1

(x, ·)‖TV

The first term above converges to 0 in probability by Corollary 4.7 and assump-
tion (a). The second term

sup
x∈X
‖Pαn−1, γn(x, ·)− Pαn−1, γn−1(x, ·)‖TV ≤

d∑
i=1

αn−1,i sup
x∈X
‖Px−i, γn+1,i

(xi, ·)− Px−i, γn,i
(xi, ·)‖TV

converges to 0 in probability as a mixture of terms that converge to 0 in prob-
ability.

The following lemma can be used to verify assumption (d) of Theorem 4.18;
see also Example 4.21 below.

Lemma 4.20. Assume that the adaptive proposals exhibit diminishing adapta-
tion i.e. for every i ∈ {1, . . . , d} the Gn+1 measurable random variable

sup
x∈X
‖Qx−i, γn+1,i

(xi, ·)−Qx−i, γn,i
(xi, ·)‖TV → 0 in probability, as n→∞,

for fixed starting values x0 ∈ X and α0 ∈ Y.
Then any of the following conditions

(i) The Metropolis proposals have symmetric densities, i.e.

qx−i, γn,i(xi, yi) = qx−i, γn,i(yi, xi),

(ii) Xi is compact for every i, π is continuous, everywhere positive and bounded,

implies condition (d) of Theorem 4.18.

CRiSM Paper No. 11-03, www.warwick.ac.uk/go/crism
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Proof. Condition (i) implies condition (d) of Theorem 4.18 as a consequence of
Proposition 12.3 of [1]. For the second statement note that condition (ii) implies
there exists K < ∞, s.t. π(y)/π(x) ≤ K for every x, y ∈ X . To conclude that
(d) results from (ii) note that

|min{a, b} −min{c, d}| < |a− c|+ |b− d| (22)

and recall acceptance probabilities αi(x, y) = min
{

1, π(y)qi(y,x)
π(x)qi(x,y)

}
. Indeed for

any x ∈ X and A ∈ B(X ) using (22) we have

|P1(x,A)− P2(x,A)| ≤
∣∣∣∣ ∫
A

(
min

{
q1(x, y),

π(y)

π(x)
q1(y, x)

}
−min

{
q2(x, y),

π(y)

π(x)
q2(y, x)

})
dy

∣∣∣∣
+ I{x∈A}

∣∣∣∣ ∫
X

((
1− α1(x, y)

)
q1(x, y)

−
(
1− α2(x, y)

)
q2(x, y)

)
dy

∣∣∣∣
≤ 4(K + 1)‖Q1(x, ·)−Q2(x, ·)‖TV

And the claim follows since a random scan Metropolis-within-Gibbs sampler is
a mixture of Metropolis samplers.

We now provide an example to show that diminishing adaptation of proposals
as in Lemma 4.20 does not necessarily imply condition (d) of Theorem 4.18, so
some additional assumption is required, e.g. (i) or (ii) of Lemma 4.20.

Example 4.21. Consider a sequence of Metropolis algorithms with transi-
tion kernels P1, P2, . . . designed for sampling from π(k) = pk(1 − p) on X =
{0, 1, . . . }. The transition kernel Pn results from using proposal kernel Qn and
the standard acceptance rule, where

Qn(j, k) = qn(k) :=

{
pk
(

1
1−p − p

n + p2n
)−1

for k 6= n,

p2n
(

1
1−p − p

n + p2n
)−1

for k = n.

Clearly

sup
j∈X
‖Qn+1(j, ·)−Qn(j, ·)‖TV = qn+1(n)− qn(n)→ 0.

However

sup
j∈X
‖Pn+1(j, ·)− Pn(j, ·)‖TV ≥ Pn+1(n, 0)− Pn(n, 0)

= min
{
qn+1(0),

π(0)

π(n)
qn+1(n)

}
− min

{
qn(0),

π(0)

π(n)
qn(n)

}
= qn+1(0)− qn(0)pn → 1− p 6= 0.
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5. Ergodicity - nonuniform case

In this section we consider the case where nonadaptive kernels are not necessary
uniformly ergodic. We study adaptive random scan Gibbs adaptive Metropo-
lis within Gibbs (AdapRSadapMwG) algorithms in the nonuniform setting, with
parameters α ∈ Y and γi ∈ Γi, i = 1, . . . , d, subject to adaptation. The con-
clusions we draw apply immediately to adaptive random scan Gibbs Metropolis
within Gibbs (AdapRSMwG) algorithms by keeping the parameters γi fixed for the
Metropolis within Gibbs steps.

We keep the assumption that selection probabilities are in Y defined in (5),
whereas the uniform ergodicity assumption will be replaced by some natural
regularity conditions on the target density.

Our strategy is to use the generic approach of [44] and to verify the dimin-
ishing adaptation and the containment conditions. The containment condition
has been extensively studied in [8] and it is essentially necessary for ergodicity
of adaptive chains, see Theorem 2 therein for the precise result. In particular
containment is implied by simultaneous geometrical ergodicity for the adaptive
kernels. More precisely, we shall use the following result of [8].

Theorem 5.1 (Corollary 2 of [8]). Consider the family {Pγ : γ ∈ Γ} of Markov
chains on X ⊆ Rd, satisfying the following conditions

(i) for any compact set C ∈ B(X ), there exist some integer m > 0, and real
ρ > 0, and a probability measure νγ on C s.t.

Pmγ (x, ·) ≥ ρνγ(·) for all x ∈ C,

(ii) there exists a function V : X → (1,∞), s.t. for any compact set C ∈ B(X ),
we have supx∈C V (x) <∞, π(V ) <∞, and

lim sup
|x|→∞

sup
γ∈Γ

PγV (x)

V (x)
< 1,

then for any adaptive strategy using {Pγ : γ ∈ Γ}, containment holds.

Throughout this section we assume Xi = R for i = 1, ..., d, and X = Rd and
let µk denote the Lebsque measure on Rk. By {e1, ..., ed} denote the coordinate
unit vectors and let | · | be the Euclidean norm.

Our focus is on random walk Metropolis proposals with symmetric densities
for updating Xi|X−i denoted as qi,γi(·), γi ∈ Γi. We shall work in the following
setting, extensively studied for nonadaptive Metropolis within Gibbs algorithms
in [17], see also [40] for related work and [23] for analysis of the random walk
Metropolis algorithm.

Assumption 5.2. The target distribution π is absolutely continuous with re-
spect to µd with strictly positive and continuous density π(·) on X .

Assumption 5.3. The family {qi,γi}1≤i≤d;γi∈Γi
of symmetric proposal densities

with respect to µ1 (one-dimensional Lebesgue measure) is such that there exist
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constants ηi > 0, δi > 0, for i = 1, ..., d, s.t.

inf
|x|≤δi

qi,γi(x) ≥ ηi for every 1 ≤ i ≤ d and γi ∈ Γi. (23)

Assumption 5.4. There exist 0 < δ < ∆ ≤ ∞, such that

ξ := inf
1≤i≤d,γi∈Γi

∫ ∆

δ

qi,γi(y)µ1(dy) > 0, (24)

and, for any sequence x = {xj} with limj→∞ |xj | = +∞ there exists a subse-
quence x̃ = {x̃j} s.t. for some i ∈ {1, . . . , d} and all y ∈ [δ,∆],

lim
j→∞

π(x̃j)

π(x̃j − sign(x̃ji )yei)
= 0 and lim

j→∞

π(x̃j + sign(x̃ji )yei)

π(x̃j)
= 0. (25)

Discussion of the seemingly involved 5.4 and simple criterions for checking it
are given in [17]. It was shown in [17] that under these assumptions nonadaptive
random scan Metropolis withing Gibbs algorithms are geometrically ergodic
for subexponential densities. We establish ergodicity of the doubly adaptive
AdapRSadapMwG algorithm in the same setting.

Theorem 5.5. Let π be a subexponential density and let the selection probabil-
ities αn ∈ Y for all n, with Y as in (5). Moreover assume that

(a) |αn−αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y,
γi ∈ Γi, i = 1, . . . , d;

(b) The Metropolis-within-Gibbs kernels exhibit diminishing adaptation, i.e.
for every i ∈ {1, . . . , d} the Gn+1 measurable random variable

sup
x∈X
‖Px−i, γn+1,i

(xi, ·)−Px−i, γn,i
(xi, ·)‖TV → 0 in probability, as n→∞,

for fixed starting values x0 ∈ X and α0 ∈ Y, γi ∈ Γi, i = 1, . . . , d;
(c) Assumptions 5.2, 5.3, 5.4 hold.

Then AdapRSadapMwG is ergodic, i.e.

T (x0, α0, γ0, n)→ 0 as n→∞. (26)

Before proving this result we state its counterpart for densities that are log-
concave in the tails. This is another typical setting carefully studied in the
context of geometric ergodicity of nonadaptive chains ([17, 40, 31]) where As-
sumption 5.4 is replaced by the following two conditions.

Assumption 5.6. There exists an φ > 0 and δ s.t. 1/φ ≤ δ < ∆ ≤ ∞ and,
for any sequence x := {xj} with limj→∞ |xj | = +∞, there exists a subsequence
x̃ := {x̃j} s.t. for some i ∈ {1, . . . , d} and for all y ∈ [δ,∆],

lim
j→∞

π(x̃j)

π(x̃j − sign(x̃ji )yei)
≤ exp{−φy} and

lim
j→∞

π(x̃j + sign(x̃ji )yei)

π(x̃j)
≤ exp{−φy}. (27)
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Assumption 5.7.

inf
1≤i≤d,γi∈Γi

∫ ∆

δ

yqi,γi(y)µ1(dy) ≥ 1

εφ(e− 1)
.

Remark 5.8. As remarked in [17], Assumption 5.6 generalizes the one-dimensional
definition of log-concavity in the tails and Assumption 5.7 is easy to ensure, at
least if ∆ =∞, by taking the proposal distribution to be a mixture of an adap-
tive component and an uniform on [−U,U ] for U large enough or a mean zero
Gaussian with large enough variance.

Theorem 5.9. Let the selection probabilities αn ∈ Y for all n, with Y as in
(5). Moreover assume that

(a) |αn−αn−1| → 0 in probability for fixed starting values x0 ∈ X and α0 ∈ Y,
γi ∈ Γi, i = 1, . . . , d;

(b) The Metropolis-within-Gibbs kernels exhibit diminishing adaptation, i.e.
for every i ∈ {1, . . . , d} the Gn+1 measurable random variable

sup
x∈X
‖Px−i, γn+1,i

(xi, ·)−Px−i, γn,i
(xi, ·)‖TV → 0 in probability, as n→∞,

for fixed starting values x0 ∈ X and α0 ∈ Y, γi ∈ Γi, i = 1, . . . , d;
(c) Assumptions 5.2, 5.3, 5.6, 5.7 hold.

Then AdapRSadapMwG is ergodic, i.e.

T (x0, α0, γ0, n)→ 0 as n→∞. (28)

We now proceed to proofs.

Proof of Theorem 5.5. Ergodicity will follow from Theorem 2 of [44] by estab-
lishing diminishing adaptation and containment condition. Diminishing adap-
tation can be verified as in the proof of Theorem 4.18. Containment will result
form Theorem 5.1.

Recall that Pα,γ is the random scan Metropolis within Gibbs kernel with
selection probabilities α and proposals indexed by {γi}1≤i≤d. To verify the small
set condition (i), observe that Assumptions 5.2 and 5.3 imply that for every
compact set C and every vector γi ∈ Γi, i ∈ 1, . . . , d, we can find m∗ and ρ∗

independent of {γi}, and such that Pm
∗

1/d,γ(x, ·) ≥ ρ∗ν(·) for all x ∈ C. Hence,

arguing as in the proof of Lemma 4.4, there exist m and ρ, independent of {γi},
such that Pmα,γ(x, ·) ≥ ρν(·) for all x ∈ C.

To establish the drift condition (ii), let Vs := π(x)−s for some s ∈ (0, 1) to
be specified later. Then by Proposition 3 of [40] for all 1 ≤ i ≤ d, γi ∈ Γi, and
x ∈ Rd we have

Pi,γiVs(x) ≤ r(s)Vs(x) where r(s) := 1 + s(1− s)1/s−1. (29)

Since r(s)→ 1 as s→ 0, we can choose s small enough, so that

r(s) < 1 +
εξ

1− 2εξ
.
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The rest of the argument follows the proof of Theorem 2 in [17], we just need
to make sure it is independent of α and γ. Assume by contradiction that there
exists am Rd−valued sequence {xj} s.t. lim supj→∞ Pα,γVs(x

j)/Vs(x
j) ≥ 1.

Then there exists a subsequence {x̂j} such that limj→∞ Pα,γVs(x̂
j)/Vs(x̂

j) ≥ 1.
Moreover, as shown in [17], there exists an integer k ∈ {1, . . . , d} and a further
subsequence {x̃j}, independent of γk, and such that

lim
j→∞

Pk,γkVs(x̃
j)/Vs(x̃

j) ≤ r(s)− (2r(s)− 1)ξ. (30)

The contradiction follows from (29) and (30), since

lim
j→∞

Pα,γVs(x̃
j)

Vs(x̃j)
= lim

j→∞

d∑
i=1

αi
Pi,γiVs(x̃

j)

Vs(x̃j)

= lim
j→∞

αkPk,γkVs(x̃j)/Vs(x̃j) +
∑
i 6=k

αi
Pi,γiVs(x̃

j)

Vs(x̃j)


≤ ε

(
r(s)− (2r(s)− 1)ξ

)
+ (1− ε)r(s) < 1.

Proof of Theorem 5.9. The proof is along the same lines as the proof of Theorem
5.5 and the proof of Theorem 3 of [17] and is omitted.

Example 5.10. We now give an example involving a simple generalised linear
mixed model. Consider the model and prior given by

Yi ∼ Pois
(
eθ+Xi

)
(31)

Xi ∼ N(0, 1) (32)

θ ∼ N(0, 1) (33)

The model is chosen to be extremely simple so as to not detract from the argu-
ment used to demonstrate ergodicity of adapRSadapMwG, although this argument
readily generalises to different exponential families, link functions and random
effect distributions.

We consider simulating from the posterior distribution of θ,X given obser-
vations y1, . . . yn using adapRSadapMwG. More specifically we set

qx−i,γ(xi, yi) =
exp

{
−(yi − xi)2/2γ

}
√

2πγ
(34)

where the range of permissible scales γ is restricted to be in some range < = [a, b]
with 0 < a ≤ b <∞. We are in the subexponential tail case and specifically we
have the following.

Proposition 5.11. Consider adapRSadapMwG applied to model (31) using any
adaptive scheme satisfying the conditions (a) and (b) of Theorem 5.5. Then the
scheme is ergodic.
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For the proof, we require the following definition from [17]. We let

Φ = {functions φ : R+ → R+; φ(x)→∞ as x→∞}.

Proof. of Proposition 5.11. According to Theorem 5.5, it remains to check
conditions 5.2, 5.3, 5.4 hold. Conditions 5.2 and 5.3 hold by construction, while
condition 5.4 consists of two separate conditions. One of these, given in (24),
holds by construction from (34). Moreover, [17] shows that (25) can be replaced
by the following condition: there exist functions {φi ∈ Φ, 1 ≤ i ≤ d} such that
i ∈ {1, . . . , d} and all y ∈ [δ,∆],

lim|xi|→∞ sup{x−i; φj(|xj |)≤φi(|xi|), j 6=i}
π(x̃j)

π(x̃j−sign(x̃j
i )yei)

= 0 (35)

and lim|xi|→∞ sup{x−i; φj(|xj |)≤φi(|xi|), j 6=i}
π(x̃j+sign(x̃j

i )yei)

π(x̃j) = 0. (36)

Now take φi(x) = x for all 1 ≤ i ≤ d so that (35) can be rewritten as the two
conditions

lim
|xi|→∞

sup
{x−i; |xj |≤|xi|, j 6=i}

exp

{∫ 0

−y
∇i log π(x+ sign(xi)zei)dz

}
= 0 (37)

lim
|xi|→∞

sup
{x−i; |xj |≤|xi|, j 6=i}

exp

{∫ y

0

∇i log π(x+ sign(xi)zei)dz

}
= 0 (38)

for all y ∈ [δ,∆], where ∇i denotes the derivative in the ith direction. We
shall show that uniformly on the set Si(xi) which is defined to be {x−i; |xj | ≤
|xi|, j 6= i} the function ∇i log π(x) converges to −∞ as xi → +∞ and to +∞
as xi approaches −∞.

Now we have d = n+1 and let i correspond to the component xi for 1 ≤ i ≤ n
with n+ 1 denoting the component θ. Therefore for 1 ≤ i ≤ n

∇i log π(x) = −eθ+xi + yi − xi

and

∇n+1 log π(x) = −
n∑
i=1

eθ+xi −
n∑
i=1

yi − θ

Now for xi > 0, 1 ≤ i ≤ n

∇i log π(x) ≥ yi − xi

which is diverging to −∞ independently of x−i. Similarly,

∇n+1 log π(x) ≥
n∑
i=1

yi − θ

diverging to −∞ independently of {xi; 1 ≤ i ≤ n}.
For xi < 0, 1 ≤ i ≤ n and (x−i, θ) ∈ Si(xi),

∇i log π(x) ≤ yi − xi + 1
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again diverging to +∞ uniformly. Finally for θ < 0 and x ∈ Sn+1(θ)

∇n+1 log π(x) ≥ −n+
n∑
i=1

yi − θ

again demonstrating the required uniform convergence. Thus ergodicity holds.

Remark 5.12. The random effect distribution in Example 5.10 can be altered
to give different results. For instance if the distribution is doubly exponential
Theorem 4.2 can be applied using very similar arguments to those used above.
Extensions to more complex hierarchical models are clearly possible though we
don’t pursue this here

Remark 5.13. An important problem that we have not focused on involves the
construction of explicit adaptive strategies. Since little is know about the optimi-
sation of the Random Scan Random Walk Metropolis even in the non-adaptive
case, this is not a straightforward question. Further work we are engaged in is
exploring adaptation to attept to maximise a given optimality criterion for the
chosen class of samplers. Two possible strategies are

• to scale the proposal variance to approach 2.4× the empirically observed
conditional variance;
• to scale the proposal variance to achieve an algorithm with acceptance

proportion approximately 0.44.

Both these methods are founded in theoretical arguments, see for instance [42].

6. Proof of Proposition 3.2

The analysis of Example 3.1 is somewhat delicate since the process is both time
and space inhomogeneous (as are most nontrivial adaptive MCMC algorithms).
To establish Proposition 3.2, we will define a couple of auxiliary stochastic pro-
cess. Consider the following one dimensional process (X̃n)n≥0 obtained from
(Xn)n≥0 by

X̃n := Xn,1 +Xn,2 − 2.

Clearly X̃n − X̃n−1 ∈ {−1, 0, 1}, moreover Xn,1 → ∞ and Xn,2 → ∞ if and

only if X̃n → ∞. Note that the dynamics of (X̃n)n≥0 are also both time and
space inhomogeneous.

We will also use an auxiliary random-walk-like space homogeneous process

S0 = 0 and Sn :=
n∑
i=1

Yi, for n ≥ 1,

where Y1, Y2, . . . are independent random variables taking values in {−1, 0, 1}.
Let the distribution of Yn on {−1, 0, 1} be

νn :=

{
1

4
− 1

an
,

1

2
,

1

4
+

1

an

}
. (39)

CRiSM Paper No. 11-03, www.warwick.ac.uk/go/crism
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We shall couple (X̃n)n≥0 with (Sn)n≥0, i.e. define them on the same prob-

ability space {Ω,F ,P}, by specifying the joint distribution of (X̃n, Sn)n≥0 so
that the marginal distributions remain unchanged. We describe the details of
the construction later. Now define

ΩX̃≥S := {ω ∈ Ω : X̃n(ω) ≥ Sn(ω) for every n} (40)

and
Ω∞ := {ω ∈ Ω : Sn(ω)→∞}. (41)

Clearly, if ω ∈ ΩX̃≥S ∩ Ω∞, then X̃n(ω) → ∞. In the sequel we show that for
our coupling construction

P(ΩX̃≥S ∩ Ω∞) > 0. (42)

We shall use the Hoeffding’s inequality for Sk+n
k := Sk+n − Sk. Since Yn ∈

[−1, 1], it yields for every t > 0,

P(Sk+n
k − ESk+n

k ≤ −nt) ≤ exp{−1

2
nt2}. (43)

Note that EYn = 2/an and thus ESk+n
k = 2

∑k+n
i=k+1 1/ai. The following choice

for the sequence an will facilitate further calculations. Let

b0 = 0,

b1 = 1000,

bn = bn−1

(
1 +

1

10 + log(n)

)
, for n ≥ 2

cn =

n∑
i=0

bn,

an = 10 + log(k), for ck−1 < n ≤ ck.

Remark 6.1. To keep notation reasonable we ignore the fact that bn will not be
an integer. It should be clear that this does not affect proofs, as the constants
we have defined, i.e. b1 and a1 are bigger then required.

Lemma 6.2. Let Yn and Sn be as defined above and let

Ω1 :=
{
ω ∈ Ω : Sk = k for every 0 < k ≤ c1

}
. (44)

Ωn :=
{
ω ∈ Ω : Sk ≥

bn−1

2
for every cn−1 < k ≤ cn

}
for n ≥ 2. (45)

Then

P
( ∞⋂
n=1

Ωn

)
> 0. (46)

Remark 6.3. Note that bn ↗∞ and therefore
⋂∞
n=1 Ωn ⊂ Ω∞.
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Proof. With positive probability, say p1,S , we have Y1 = · · · = Y1000 = 1 which
gives Sc1 = 1000 = b1. Hence P(Ω1) = p1,S > 0. Moreover recall that Scncn−1

is a

sum of bn i.i.d. random variables with EScncn−1
= 2bn

10+log(n) . Therefore for every

n ≥ 1 by Hoeffding’s inequality with t = 1/(10 + log(n)), we can also write

P
(
Scncn−1

≤ bn
10 + log(n)

)
≤ exp

{
− 1

2

bn
(10 + log(n))2

}
=: pn.

Therefore using the above bound iteratively we obtain

P(Sc1 = b1, Scn ≥ bn for every n ≥ 2) ≥ p1,S

∞∏
n=2

(1− pn). (47)

Now consider the minimum of Sk for cn−1 < k ≤ cn and n ≥ 2. The worst case
is when the process Sk goes monotonically down and then monotonically up for
cn−1 < k ≤ cn. By the choice of bn, equation (47) implies also

P
( ∞⋂
n=1

Ωn

)
≥ p1,S

∞∏
n=2

(1− pn). (48)

Clearly in this case

p1,S

∞∏
n=2

(1− pn) > 0 ⇔
∞∑
n=1

log(1− pn) > −∞ ⇔
∞∑
n=1

pn <∞. (49)

We conclude (49) by comparing pn with 1/n2. We show that there exists n0

such that for n ≥ n0 the series pn decreases quicker then the series 1/n2 and
therefore pn is summable. We check that

log
pn−1

pn
> log

n2

(n− 1)2
for n ≥ n0. (50)

Indeed

log
pn−1

pn
= −1

2

(
bn−1

(10 + log(n− 1))2
− bn

(10 + log(n))2

)
=

bn−1

2

(
11 + log(n)

(10 + log(n))3
− 1

(10 + log(n− 1))2

)
=

bn−1

2

(
(11 + log(n))(10 + log(n− 1))2 − (10 + log(n))3

(10 + log(n))3(10 + log(n− 1))2

)
.

Now recall that bn−1 is an increasing sequence. Moreover the enumerator can
be rewritten as

(10 + log(n))
(

(10 + log(n− 1))2 − (10 + log(n))2
)

+ (10 + log(n− 1))2,
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now use a2 − b2 = (a+ b)(a− b) to identify the leading term (10 + log(n− 1))2.
Consequently there exists a constant C and n0 ∈ N s.t. for n ≥ n0

log
pn−1

pn
≥ C

(10 + log(n))3
>

2

n− 1
> log

n2

(n− 1)2
.

Hence
∑∞
n=1 pn <∞ follows.

Now we will describe the coupling construction of (X̃n)n≥0 and (Sn)n≥0. We
already remarked that

⋂∞
n=1 Ωn ⊂ Ω∞. We will define a coupling that implies

also

P

(( ∞⋂
n=1

Ωn

)
∩ΩX̃≥S

)
≥ CP

( ∞⋂
n=1

Ωn

)
for some universal C > 0, (51)

and therefore
P
(

ΩX̃≥S ∩ Ω∞

)
> 0. (52)

Thus nonergodicity of (Xn)n≥0 will follow from Lemma 6.2. We start with the
following observation.

Lemma 6.4. There exists a coupling of X̃n − X̃n−1 and Yn, such that

(a) For every n ≥ 1 and every value of X̃n−1

P(X̃n − X̃n−1 = 1, Yn = 1) ≥ P(X̃n − X̃n−1 = 1)P(Yn = 1), (53)

(b) Write even or odd X̃n−1 as X̃n−1 = 2i− 2 or X̃n−1 = 2i− 3 respectively.
If 2i− 8 ≥ an then the following implications hold a.s.

Yn = 1 ⇒ X̃n − X̃n−1 = 1 (54)

X̃n − X̃n−1 = −1 ⇒ Yn = −1. (55)

Proof. Property (a) is a simple fact for any two {−1, 0, 1} valued random
variables Z and Z ′ with distributions say {d1, d2, d3} and {d′1, d′2, d′3}. Assign
P(Z = Z ′ = 1) := min{d3, d

′
3} and (a) follows. To establish (b) we analyse the

dynamics of (Xn)n≥0 and consequently of (X̃n)n≥0. Recall Algorithm 2.2 and
the update rule for αn in (4). Given Xn−1 = (i, j), the algorithm will obtain
the value of αn in step 1, next draw a coordinate according to (αn,1, αn,2) in
step 2. In steps 3 and 4 it will move according to conditional distributions for
updating the first or the second coordinate. These distributions are

(1/2, 1/2) and

(
i2

i2 + (i− 1)2
,

(i− 1)2

i2 + (i− 1)2

)
respectively. Hence givenXn−1 = (i, i) the distribution ofXn ∈ {(i, i−1), (i, i), (i+
1, i)} is((1

2
− 4

an

) i2

i2 + (i− 1)2
, 1−

(1

2
− 4

an

) i2

i2 + (i− 1)2
−
(1

4
+

2

an

)
,

1

4
+

2

an

)
, (56)
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K.  Latuszyński et al./Adaptive Gibbs samplers 27

whereas if Xn−1 = (i, i − 1) then Xn ∈ {(i − 1, i − 1), (i, i − 1), (i, i)} with
probabilities(

1

4
− 2

an
, 1−

(1

4
− 2

an

)
−
(1

2
+

4

an

) (i− 1)2

i2 + (i− 1)2
,
(1

2
+

4

an

) (i− 1)2

i2 + (i− 1)2

)
, (57)

respectively. We can conclude the evolution of (X̃n)n≥0. Namely, if X̃n−1 =

2i − 2 then the distribution of X̃n − X̃n−1 ∈ {−1, 0, 1} is given by (56) and if
X̃n−1 = 2i− 3 then the distribution of X̃n− X̃n−1 ∈ {−1, 0, 1} is given by (57).
Let ≤st denote stochastic ordering. By simple algebra both measures defined in
(56) and (57) are stochastically bigger then

µin = (µin,1, µ
i
n,2, µ

i
n,3), (58)

where

µin,1 =
(1

4
− 2

an

)(
1 +

2

i

)
=

1

4
− 1

an
− 2i+ 8− an

2ian
, (59)

µin,2 = 1−
(1

4
− 2

an

)(
1 +

2

i

)
−
(1

4
+

2

an

)(
1− 2

max{4, i}
)
,

µin,3 =
(1

4
+

2

an

)(
1− 2

max{4, i}
)

=
1

4
+

1

an
+

2 max{4, i} − 8− an
2an max{4, i}

. (60)

Recall νn, the distribution of Yn defined in (39). Examine (59) and (60) to see
that if 2i − 8 ≥ an, then µin ≥st νn. Hence in this case also the distribution
of X̃n − X̃n−1 is stochastically bigger then the distribution of Yn. The joint
probability distribution of (X̃n− X̃n−1, Yn) satisfying (54) and (55) follows.

Proof of Proposition 3.2. Define

Ω1,X̃ :=
{
ω ∈ Ω : X̃n − X̃n−1 = 1 for every 0 < n ≤ c1

}
. (61)

Since the distribution of X̃n − X̃n−1 is stochastically bigger then µin defined in
(58) and µin(1) > c > 0 for every i and n,

P
(
Ω1,X̃

)
=: p1,X̃ > 0.

By Lemma 6.4 (a) we have

P
(
Ω1,X̃ ∩ Ω1

)
≥ p1,S p1,X̃ > 0. (62)

Since Sc1 = X̃c1 = c1 = b1, on Ω1,X̃ ∩ Ω1, the requirements for Lemma 6.4 (b)

hold for n − 1 = c1. We shall use Lemma 6.4 (b) iteratively to keep X̃n ≥ Sn
for every n. Recall that we write X̃n−1 as X̃n−1 = 2i − 2 or X̃n−1 = 2i − 3. If
2i− 8 ≥ an and X̃n−1 ≥ Sn−1 then by Lemma 6.4 (b) also X̃n ≥ Sn. Clearly if

X̃k ≥ Sk and Sk ≥ bn−1

2 for cn−1 < k ≤ cn then X̃k ≥ bn−1

2 for cn−1 < k ≤ cn,
hence

2i− 2 ≥ bn−1

2
for cn−1 < k ≤ cn.
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This in turn gives 2i−8 ≥ bn−1

2 −6 for cn−1 < k ≤ cn and since ak = 10+log(n),
for the iterative construction to hold, we need bn ≥ 32 + 2 log(n + 1). By the
definition of bn and standard algebra we have

bn ≥ 1000

(
1 +

n∑
i=2

1

10 + log(n)

)
≥ 32 + 2 log(n+ 1) for every n ≥ 1.

Summarising the above argument provides

P(Xn,1 →∞) ≥ P
(

Ω∞ ∩ ΩX̃≥S

)
≥ P

(( ∞⋂
n=1

Ωn

)
∩ ΩX̃≥S

)

≥ P

(
Ω1,X̃ ∩

( ∞⋂
n=1

Ωn

)
∩ ΩX̃≥S

)

≥ p1,X̃p1,S

∞∏
n=2

(1− pn) > 0.

Hence (Xn)n≥0 is not ergodic, and in particular ‖πn − π‖TV 9 0.
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