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Abstract

Graphical models are widely used to study biological networks. Inter-
ventions on network nodes often form part of experimental designs for
the study of biological networks. In this paper, we discuss the modelling
of interventional time-course data using graphical models known as dy-
namic Bayesian networks. Our work is motivated by, and illustrated in the
context of, protein signalling networks. We show empirical results that
demonstrate the need to carefully model interventions when interventions
form part of the design.

Contact: s.e.f.spencer@warwick.ac.uk

1 Introduction

Network inference approaches are widely used to shed light on biological net-
works, including gene regulatory and signalling networks. Since processes un-
derlying such networks are dynamical in nature, time-course data can help to
elucidate regulatory interplay. Network inference methods for time-course data
have been investigated in the literature, with contributions including (among
many others) [Husmeier| (2003)); Bansal et al.| (2006); Hill et al.| (2012]).

Interventions, for example gene knockouts, knockdowns by RNA-interference
(RNAI) or drug inhibition of kinases, play an important role in experimental
designs aimed at elucidating network structure. This is due to the fact that
association does not imply causation: interventions are needed to understand
whether a given node has a causal influence on another as opposed to merely
being co-expressed. As data acquisition costs fall, interventional time-course
designs are becoming more common.

CRiSM Paper No. 12-14, www.warwick.ac.uk/go/crism


mailto:s.e.f.spencer@warwick.ac.uk

Network inference often has the goal of generating testable hypotheses regarding
biological interplay. For example, prediction of an edge from node A to node
B might be validated by intervening on node A (e.g. by inhibition, knockout
or knockdown, possibly in combination with intervention on other nodes) and
observation of the effect on node B. Such hypotheses are causal hypotheses,
since they concern effects under intervention, and not simply correlation between
nodes. In this sense, biological network inference can have a causal aspect.

From the perspective of causal inference (Pearl, [2000, 2009), interventional
data require special treatment, because the intervention modifies the causal
graph and thereby the likelihood. However, existing methods for network infer-
ence from time-course data, including conventional dynamic Bayesian network
(DBNs) and their variants, do not account for interventional designs.

In this paper, we put forward an approach to network inference from time-course
data that takes account of interventional designs. We proceed within a graph-
ical models framework, using in particular DBNs. This is done by modifying
the statistical formulation for those experimental samples in which interven-
tions were carried out, following related literature in causal inference, including
Pearl (2000) and Eaton and Murphy| (2007). Specifically, for experiments in
which interventions were carried out, we modify the structure of the underly-
ing graphical model and explore various parameterizations of the effect of the
intervention.

A DBN is a Bayesian network (BN) with an explicit time index (for a detailed
treatment see |Hill et al.| (2012) or Murphy| (2002)). For multivariate time-course
data X, a DBN gives a likelihood p(X|G, 8) that depends on a graph G and pa-
rameters 0 (details of the DBN likelihood appear below). The graph G describes
the network edge structure (also referred to as the “topology” in the bioinformat-
ics literature, we use both terms interchangeably) and is the focus of inference
in this paper. Let X, denote the full set of time course data obtained under
experimental condition c. If the conditions are simply replicates, the indices ¢
run over instances of the same experimental design; then the overall likelihood
of the complete dataset {X_} is the familiar product [, p(X.|G, ). However, if
the design for experiment ¢ includes interventions, the likelihood itself should be
modified in accordance with the nature of the intervention (Pearl, [2000; Eaton
and Murphyl 2007). Such modification may include changes to the underlying
graphical model structure and/or changes to model parameters; this yields a
modified likelihood p.(X.|G,6.). Network inference then proceeds using the
overall likelihood [, pe(X¢|G, 8.). Precisely how the model and/or parameters
should be modified for interventional conditions is the main focus of this paper.

We illustrate our approach in the context of protein signalling networks. In
this setting, we consider in detail the case of intervention by kinase inhibitors.
We illustrate the methods on both simulated and real protein signalling data,
exploring the behaviour of a number of approaches by which to model interven-
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tions, and comparing their performance with respect to network reconstruction.
We find that in the presence of interventional data, analyses that do not account
for interventions do not perform well.

Related work on incorporating interventions into network inference includeBansal
et al| (2006 and, in a more general setting, Eaton and Murphy| (2007) for dis-
crete data. [Frolich et al| (2008) extend the nested effects models of Markowetz
et al.| (2005) to accommodate continuous observations. Here we focus on contin-
uous protein concentration measurements over multiple timecourse experiments.
Recently, Bender et al| (2010) presented an approach based on hidden Markov
models that applies in the setting of interest here. Finally |Terfve et al.| (2012)
described CellNetOptimizer — a collection of tools that utilize Boolean logic net-
works to refine an existing network model. Two tools in particular, CNOdt and
CNOode, are appropriate for timecourse data.

The remainder of the paper is structured as follows: first a Bayesian framework
for network inference using DBNs is outlined in Sections[2.1.1]to[2.1.4] Next, the
interventional models that constitute our main focus, are described in Section
[2:2] We illustrate some of key points of the approach using examples in Sections
24 Empirical results appear in Section [3] We close with discussion of open
questions and future prospects.

2 Methods

We first fix ideas and notation by first reviewing the “classical” DBN formu-
lation (without interventions). We then go on to discuss in detail how the
likelihood can be modified to account for interventions. Taken together, this
gives an overall approach by which to infer networks from data that includes
interventions.

2.1 Dynamic Bayesian network model

A DBN uses a graph to describe probabilistic relationships between variables
through time, with associated parameters specifying the temporal relationships.
Following (Friedman et al.,|1998; Husmeier} 2003), we consider DBNs with edges
forward in time only (i.e. first-order Markov with no within-time-slice-edges)
and assume stationarity in the sense that neither network topology nor param-
eters change through time. Then, each variable at time ¢ depends only on its
regulators at the previous time step. Further, since the graph structure does
not change with time and edges are always forward in time, the topology can
be described by a graph G with exactly one vertex for each protein under study
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and edges understood to mean that the child depends on the state of the parent
at the previous time-step.

2.1.1 Statistical formulation

Let xj .+ denote log-expression of variable j € {1...p}, at time t € {1...T} in
the time-course obtained under experimental conditions ¢ € C. The edge set of
the graph G is E(G). Let v9) = {i: (i,j) € E(G)} denote the set of parents for
node j. Then, for conditions ¢ without intervention, the DBN model for node j
is

(1)

= agj_) + iy $i7c7t—1/3§j) T €t >0,
Jiet a;a) +€eo t=0.

where, ﬂi(J ) denotes parameters that govern the dependence on parent nodes
in the previous time step, agj ), aéj ) are coefficients that do not depend on the
parent set vU) and €j,et ~ N(0, O'JZ) is a noise term. The use of two intercept
parameters, one for the initial time point, allows the model more flexibility to
incorporate the unmeasured effects of the parents acting on the first observa-

tions.

2.1.2 Variable selection

Under the stationarity and Markov assumptions above, there is a close relation-
ship between inference concerning the DBN graph G and variable selection for
the above regression formulation. As discussed in detail in [Hill et al.| (2012), ex-
ploiting this connection allows efficient inference regarding the graph G. Specif-
ically, if P(i € W(j)\X) is the posterior probability that variable ¢ appears in
the regression model for variable j above (i.e. the posterior inclusion probabil-
ity in the variable selection sense) and assuming a graph prior P(G) that is
decomposable over nodes, we have

P((i,7) € E(G)[X) P(i € 77|X)

> I(i € )P =4|X) (2)
yEM

where M denotes the set of all possible variable subsets and I is the indicator
function.

Thus, due to the structure of the DBN model, for estimation of posterior prob-
abilities of edges in graph G it suffices to perform variable selection for each
node in turn, with variables at the previous time point considered as potential
predictors. To ease notational burden we leave implicit dependence on node j
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in the following sections. Let x = {z; .} denote all observations for protein
j; we assume there are total of n such observations. Then, model can be
written as

x = Xoa+X,8+c€ (3)

where € ~ Nn(On,O'zI n), Npn denotes the n-dimensional multivariate Normal
density, 0, is the n dimensional vector of zeros and I, is the n x n identity
matrix. The design matrix is split into two parts: Xy = [1{t>0}1{t20}]n><2’
which is the same for every model and has parameter vector a; and X, which
depends on the choice of parents given by v and has parameter vector 3. Let
a be the length of a and b be the length of 3, then Xy has dimension n X a
and X, has dimension n x b. In the absence of interventions, observations
of the parent proteins from the previous timepoint form the columns of X,
(we discuss interventions below). For the first observation, where there are no
previous observations, zeros are inserted into X, in the place of the parent
observations.

We can assume without loss of generality that the two parts of the design matrix
(Xo and X ) are orthogonal, ie. X?;X7 = 04xp. This reparameterisation
ensures the predictors have mean zero, for details see Appendix A.

2.1.3 Marginal likelihood

The marginal likelihood p(x|y) for node j is obtained by marginalising over all
model parameters, that is p(x|y) = [ p(x|0,v)p(0]y) d@ where 8 = (., 3,0)
is the full set of model parameters. We make use of widely-used parameter
priors from the Bayesian literature (Denison et all [2002). Firstly, we assume
improper priors for a and o, namely that p(a,ol|y) % for ¢ > 0. Note
that as this prior is improper, for meaningful comparisons to be made between
models in M this prior must be the same for all of the models. Secondly,
we assume Zellner’s g-prior for the regression coefficients, so that 8|(«, o,v) ~

N, (0,,, gaQ(XZ;XA,)_l). Following Smith and Kohn| (1996); Kohn et al. (2001),

we set ¢ = n. With this prior the covariance matrix for 3 is proportional to
(X fX )~ which has some nice properties, for example invariance to rescaling
of the columns of X, (Smith and Kohn|[1996). Using standard results (Denison
et all 2002), the marginal likelihood is then given in closed form as,

C _n;a
poch) = o (XN Po - 5 Py)x)

(n+1 4)

where Py = Xo(X§ X)X, P, = X, (X2 X,)"* X and the normalising
constant C = %F(%)ﬂ_("_“)/ﬂXOTXOFl.
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We also wish to consider the model in which b = 0, which corresponds to v = 0.
The regression equation is simply x = X oo + €, and the marginal likelihood is

given by p(x|y =0) = C (x*'(I,, — Po)x)_(n_a)/z.

2.1.4 Model prior

Following [Scott and Berger| (2010) we include a multiplicity correction to prop-
erly weight models in light of number of possible parent sets. Since there are
(g) models for node j with k parents, the prior probability is chosen so that

P(79) (z)‘l_
2.1.5 Computation

Combining the marginal likelihood and model prior P(v(j )) gives the poste-
rior P(v9)|x) o p(x|y))P(y1)) over parent sets (so far, for the no-intervention
case). Then, posterior probabilities P((4,j) € G|x) for individual edges in the
graph are obtained directly from the posterior over parent sets by Eq. 2] As
discussed in detail in Hill et al.| (2012), placing a bound m on graph in-degree,
following common practice in structural inference for graphical models (e.g.
Husmeier}, 2003)), allows exact computation of the posterior scores.

2.2 Modelling interventions

In statistical terms, interventions may alter the edge structure of the graphi-
cal model, or model parameters, or both. Here, we discuss the modelling of
interventional data in the context of the DBN model outlined above. For ex-
perimental conditions ¢ that involve an intervention, the approaches below give
different approaches by which to form the likelihood p.(x|G, 8..) for an interven-
tional experiment c. We first give a general typology of interventions following
Eaton and Murphy| (2007)), with extensions to accommodate the wide range of
interventions seen in biological experiments, and then go on to discuss kinase
inhibition in detail.

2.2.1 Approaches for modelling interventions

In a perfect intervention the target of the intervention is treated as known and
certain edges that the target node participates in are removed. We call an
intervention that corresponds to removal of edges leading out of the target node
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No intervention Perfect Mechanism change
X ey X 2y X 2y
Xi4X 2y Xi+4X Y Xi4X 22Xy
Fixed effect Perfect and Mechanism change
fixed effect and fixed effect
X 2y X 2y X2y
Xi X 2y Xi4x oy Xi4X 2Ry

Figure 1: Diagrammatic representation of intervention models in their ‘-out’
forms for an inhibitor Xi that targets X (see text for details).

perfect-out interventions and one that corresponds to removal of edges leading
in to the target node a perfect-in intervention. For example, a knockout with
known target gene j can be thought of as externally setting the transcription
level of node j to zero. This removes the causal influence of other nodes on j
and therefore constitutes a perfect-in intervention. However, since the change
to j may have causal influences on other nodes, outgoing links are allowed to
remain.

In a mechanism change intervention the structure of the graph remains un-
changed, but parameters associated with edges that the target participates in
are allowed to change. In a mechanism-change-out intervention, parameters are
re-estimated for the case where the target is a parent; in a mechanism-change-in
intervention parameters are re-estimated when the target is the child.

In a fized-effect intervention, the effect of the inhibitor is modelled by an ad-
ditional, additive parameter in the regression equation. In a fized-effect-in in-
tervention the effect appears in the equation for the target itself, while in a
fized-effect-out intervention the effect appears in the equations for the children
of the target. As we discuss further below, these formulations can be useful in
certain settings where the intervention results in a change in the average level
of the target or its causal descendants.

These intervention models can be used in combination (see Figure|l]) to reflect
understanding of the biological action of the interventions. The perfect and
mechanism change intervention models cannot be used together as this would
introduce a column of zeros into the design matrix.
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2.2.2 Example: intervention by kinase inhibition

We now discuss in detail a specific type of inhibition, namely drug inhibition
of kinases, as used in studies of protein signalling. This example illustrates the
need to consider the mechanism of the intervention in selecting amongst the
interventional formulations outlined above. Kinase inhibition blocks the kinase
domain of the target, removing the ability of the target to enzymatically influ-
ence other nodes. However, such inhibitors may not prevent phosphorylation
of the target itself. Therefore, we focus on “-out” interventions for modelling
kinase inhibitors.

As we argue below, perfect interventions in combination with fixed effect in-
terventions are well suited to modelling kinase inhibition using log-transformed
data, since they capture the blocking of enzymatic ability and also allow es-
timation of the quantitative effect of inhibition on child nodes. Recalling the
regression equation for a node j with parents vy (Eq. , we see that X, is the
parent-specific design matrix. In combined perfect and fixed effect interventions,
a zero is inserted in the design matrix when a parent protein is inhibited and
for these observations an additive parameter is also estimated. Inserting a zero
into X, is equivalent to forcing the protein under inhibition to take its mean
value (as we have orthogonalised X, to the intercepts X, which causes the
columns of X, to have mean zero). The fixed effect term appears as a binary
column in the design matrix, (with ones in rows corresponding to conditions
where the inhibitor was active) and an additional parameter in the vector 3.
This allows data-driven estimation of the effect of inhibition on the children of
the inhibitor’s targets. This effect must be estimated when working with rel-
ative log-concentrations, since the locations of specific values on the scale are
lost.

The regression equation for perfect fixed effect interventions is therefore

x = Xoa+ (I, X,)B+ Y Ldi+e,
i€Z,

where I, is an n X |y| binary matrix with entry (¢, j) equal to 0 if the jth parent
in v is inhibited in sample i and 1 otherwise; A - B denotes the element-wise
product of matrices A and B; Z, is the set of inhibitors that target nodes in
v; and 1; is a vector with jth entry 1 if inhibitor i is active in sample j and 0
otherwise. The matrix I, accounts for the perfect interventons and the §; (for
i € Z,) are the interventional fixed effects.
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Figure 2: An example protein network showing the action of inhibitors Xi and
Yi on proteins X, Y and Z.

2.3 A toy example

We now illustrate the foregoing interventional models and the modifications to
the DBN that they induce by considering a toy, three-node protein phosphory-
lation example. The causal graph G is illustrated in Figure [2} Proteins X and
Z act as kinases for protein Y, with kinase inhibitors against X and Y (“X{i”
and “Yi” respectively) available. Experimental conditions include no inhibitors,
inhibitor Xi only, inhibitor Yi only and both inhibitors together. Below we show
how the model for Y, conditional on parent set v(¥) = {X, Z}, is modified under
various intervention schemes. The vector observations x,y, z with components
indexed by ¢ € {0,Xi, Yi, Xi+ Yi} are taken to be phospho-protein levels, with
x, z observed at a certain time ¢ and y at the following time ¢ 4 1, such that
the former are potential predictors for the latter. Without accounting for inter-
ventions we have the familiar model for y (as in Eq. |3} here rows in the design
matrix correspond to experiments ¢ and columns to the parents)

Yo Zo )
; TXi ZXi
Yxi =X + Xi Xi B +e.
Yvi Tyi A
YXi+Yi TXi+Yi 2RXi+Yi

With perfect(-out) interventions are assumed, this equation becomes

Yo Lo =20
. 0 ZXi
Yxi = Xoa + i B+e,
Yvi Tyi Z2Yi
YXi+vi 0 ZXi+Yi

since inhibitor Xi prevents X from influencing the phosphorylation state of Y.
Since the inhibitor Yi targets the kinase domain of Y, but may nonetheless allow
phosphorylation of Y, the model does not force Y to be unphosphorylated.

For fixed effect interventions the parameter vector 3 is extended to include an
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additional parameter:

Yo o 0 2o
. Tx; 1 zx;
Yxi _ X()a + Xi Xi /8 te
Yvi Tyi 0 Zzvi
YXit+Yi Txi+yi 1 2Xitvi

For perfect interventions with fixed effect interventions the model becomes:

Yo zo 0 =z
. 1 =z
Yxi = X+ i B+ e
Yyi ryi 0 zy;
YXi+vi 0 1 zxiyvi
Finally, for mechanism change interventions we have:
Yo g O Z0
; Tx; 2ZXi
Yxi _ X()a + Xi Xi /@ +e.
Yyi zyi O Zvi
YXit+Yi 0  Zxitvi 2ZXitvi

Given our focus on kinase inhibitors, we considered only “-out” interventions
above. For comparison, perfect-in interventions, which act upon the parents
of a protein instead of its children, (see for example Eaton and Murphyl, 2007)
produce the model:

[yo ]:X0a+[m0 %o ],B—I—e.
Yxi TXi ZXi

Note that for ‘-in’ forms of the intervention it is inhibitor Yi which directly
affects Y rather than inhibitor Xi.

2.4 Protein data example

We now illustrate the foregoing approaches using a simple, real data exam-
ple (Figure [3)) in which a known three-node network is interrogated by inhibi-
tion (data courtesy Gray Lab, OHSU Knight Cancer Institute, Portland, OR,
USA). Three phospho-proteins — the receptor EGFR, phosphorylated on tyro-
sine residue #1173 (“EGFRpY1173”), and two nodes downstream of EGFR,
namely AKTpS473 and MAPKpT202 — were observed through time under sev-
eral experimental conditions. The conditions included: no inhibitors (green in
Figure 3)), with an AKT inhibitor (blue), with an EGFR inhibitor (red) and
with both EGFR and AKT inhibition (purple). In line with the known net-
work, the data show a clear reduction in the observed level of AKTpS473 and
MAPKpT202 under EGFR inhibition.

10
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To investigate the behaviour of the interventional schemes described above,
we carried out inference for these data using DBNs coupled to the respective
intervention scheme. We show the data itself, fitted output from the various
models and the corresponding inferred networks. Strikingly, although several
of the methods fit the data reasonably well, only fixed effect and perfect-fixed-
effect are able to both fit the data and estimate what we believe to be the correct
network.

It is noteworthy that even in this simple example it is possible to fit the data
well whilst estimating a plainly incorrect network. For example, the no inter-
vention model fits the data (including the inhibitor time courses) reasonably
well, but does not estimate the known edges from EGFR to MAPK and AKT,
despite the fact that both MAPK and AKT change dramatically under EGFR
inhibition in the very data being analysed. This is an example of statistical
confounding that arises due to the fact that the data are analysed “blind”: the
analysis does not know which time course was obtained under EGFR inhibition,
rendering the easily seen causal effect of EGFR on AKT and MAPK invisible
to network inference. In contrast, the fixed effect intervention approaches can
directly incorporate this information in the overall network inference. Note also
that the inhibitors can be seen to affect the concentration of their target pro-
teins, most likely due to feedback mechanisms that are represented by self-edges
in the estimated network. For more discussion about the role of the self edge in
the network, see Section [4

3 Results

We performed a simulation study to compare the network inference methods
with different intervention models. Data for 15 nodes were simulated from a
DBN using a data-generating graph G* (see Figure S1). Mimicking the design
of typical real proteomic experiments, for each protein we simulated a small
number of timepoints (8) in several experimental conditions (4, namely: no
inhibitor; ‘A’ inhibition; ‘B’ inhibition; both ‘A’ and ‘B’ inhibition), giving
n = 32 multivariate datapoints. We sampled coefficients for the node-specific
linear models uniformly at random from the set (—1,—0.5) U (0.5,1) in order
to create associations of various strengths, whilst avoiding associations close to
zero. To simulate data under in silico inhibition requires an intervention model:
since each interventional scheme also corresponds to such a data-generating
model, to avoid bias we simulated data based on all four intervention models
that were considered, namely perfect, fixed effects, perfect with fixed effect and
mechanism change. Network inference was then carried out as described above
using these four intervention models plus the model with no intervention and
simple, marginal correlations between nodes (i.e. a co-expression network).

11
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Figure 4: ROC curves for the different intervention models for simulated data
based on a) perfect b) fixed effect, c) perfect and fixed effect and d) mecha-
nism change intervention models. The crosses indicate the performance of the
posterior median network (50% posterior edge probability threshold).
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Figure {4| shows ROC curves (produced from 20 datasets for each regime) for
each combination of intervention method and the underlying model. In each
case and as expected, analysis under the data-generating model gives the best
results. However, the perfect and fixed effect model does consistently well and
is generally close to the data-generating model. The mechanism change model
generally appears to perform similarly to the perfect intervention model. Co-
expression analysis does much less well than all of the DBN models. Note that
even under the correct data-generating model, in this noisy, small sample exam-
ple, the area under the ROC curve can be much lower than unity, highlighting
the inherent difficulty of the network inference problem and the challenging
nature of the simulation.

4 Discussion

Network inference is widely used to generate hypotheses about regulatory links
in biological systems. Hypotheses that are intended to be validated by interven-
tional experiments are by definition causal hypotheses. Interventional data are
important for elucidation of causal links. We discussed and illustrated the issues
of confounding that can arise in network inference. As we showed in simple toy
and real data examples, nodes not linked in terms of regulation can nonetheless
exhibit statistical association and thereby easily lead network inference astray.
We showed how such confounding can present a concern even with only three
nodes but the issue becomes rapidly more severe in higher dimensions. Results
on simulated data suggested that the “perfect-fixed-effect” intervention scheme
we proposed represents a good default choice for kinase inhibition experiments.

A number of limitations of network inference in real applications are discussed in
Oates and Mukherjee| (2012), who point to several reasons why network inference
may not be possible in practice. A point of particular relevance to this paper is
the fact that usually only a subset of the nodes can be intervened upon. Further
experimental and computational work is needed to assess whether for a given
class of network, intervention on only a subset of nodes is sufficient for recovery
of the causal graph.

The self edge (the edge that connects a protein to itself) has two roles in the
model. First, it can represent statistical autocorrelation in the protein time-
course. Second, it can represent a feedback loop, possibly via some additional
unmeasured proteins. Negative feedback would give rise to a negative regres-
sion coefficient and positive feedback, a positive coefficient. Since we integrate
out the regression coefficient to obtain the marginal likelihood, the posterior
signalling network does not give any indication of the direction of this effect, or
what role the self edge is performing. In future work we hope to differentiate
between inhibition and activation effects in the protein signalling network using
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ideas from causal inference; this may help to identify the role of the self-edges.

Appendix A — Orthogonalisation

We can assume without loss of generality that the two parts of the design matrix
X and X, are orthogonal, i.e. XOTXAY = 04xp. If this is not the case then
we can reparameterise from x = Xoa + X8 + €, to x = Xpa' + X;,@ + €,
where o’ = a0 — (X[ X) ' X[ X8, X, = (I, - Po) X, and X[ X! = 04

The orthogonal reparameterisation is useful because the hat matrix of the linear

model (H) is simpler when written in terms of X; rather than X, i.e. H =

Py + X, (X;TX;)’lX;T. For more details see |F0rte Deltell| (]2011[).

‘ B Inhibited in timecourse 2 & 4
B Inhibited in timecourse 3 & 4

Figure S1: Network used to generate simulated data.
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